1
|
Boonyasiri A, Fuhs DT, Naorungroj T, Wang L, Wang J, Ratanarat R, Li J, Nation RL, Thamlikitkul V, Landersdorfer CB. Disposition of colistin in critically-ill patients on sustained low-efficiency dialysis: a population pharmacokinetic study. Clin Microbiol Infect 2025:S1198-743X(25)00252-6. [PMID: 40449589 DOI: 10.1016/j.cmi.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 06/03/2025]
Abstract
OBJECTIVES Although colistin (administered as colistin methanesulphonate [CMS]) is used to treat infections in critically-ill patients undergoing sustained low-efficiency dialysis (SLED), there is a paucity of information on appropriate dosing regimens. This study aimed to characterize the population pharmacokinetics (popPK) of colistin during SLED and evaluate the likelihood of antibacterial benefit and colistin nephrotoxicity for different regimens. METHODS A prospective popPK study included 13 critically-ill patients (six females) treated with CMS and receiving SLED (6-8h). For each subject, the PK of formed colistin was studied on a nonSLED day and a SLED day (n=8 studied during SLED day first). A single intravenous daily dose [150mg colistin base activity (CBA)] was administered on a nonSLED day. On a SLED day, patients received 150mg CBA 12-hourly. Serial blood, urine and dialysate samples were collected over 24h on both days. Colistin plasma concentrations were measured by high-performance liquid chromatography. PopPK modeling and Monte Carlo Simulations were performed. RESULTS A linear one-compartment disposition model well-described the data. The population mean apparent colistin body clearance, excluding SLED clearance, was 1.69 L/h (20% interindividual variability [IIV], 42.1% interoccasion variability). The apparent colistin SLED clearance was 3.49 L/h (41.7% IIV), i.e. 67.4% of total colistin clearance on a SLED day. The apparent volume of distribution was 50.2 L (23.0% IIV). CONCLUSIONS Colistin clearance was substantially higher during SLED; therefore, SLED should be accounted for in CMS dosing regimens. This project generated clinically applicable regimens, including loading doses, to achieve required probabilities of target attainment in patients undergoing SLED.
Collapse
Affiliation(s)
- Adhiratha Boonyasiri
- Division of Clinical Epidemiology, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Dominika T Fuhs
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thummaporn Naorungroj
- Division of Critical Care Medicine, Department of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lu Wang
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ranistha Ratanarat
- Division of Critical Care Medicine, Department of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Roger L Nation
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Honore PM, Perriens E, Blackman S, De Lissnyder N, Detournay A, Cutuli SL, De Pascale G, Mariano F. Optimizing colistin dosing in patients undergoing continuous kidney replacement therapy: critical considerations for intensivists. Crit Care 2025; 29:184. [PMID: 40340692 PMCID: PMC12060416 DOI: 10.1186/s13054-025-05412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Affiliation(s)
- Patrick M Honore
- CHU UCL Godinne Namur, UCL Louvain Medical School, Campus Godinne, Avenue G Thérasse 1, 5530, Yvoir (Namur), Belgium.
- Faculty of Medicine and member of the Experimental Research Laboratory Institute of the Catholic Louvain Medical School, Brussels, Belgium.
| | - Emily Perriens
- ICU Brugmann University Hospital, ULB University, Brussels, Belgium
| | - Sydney Blackman
- Gynecology Department CHIREC Hospital, ULB University, Brussels, Belgium
| | | | | | - Salvatore Lucio Cutuli
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, 00168, Rome, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Mariano
- Department of Medical Sciences, University of Turin, Turin, Italy
- Nephrology, Dialysis and Transplantation U, City of Health and Science, CTO Hospital, Turin, Italy
| |
Collapse
|
3
|
Zamri PJ, Lim SMS, Sime FB, Roberts JA, Abdul-Aziz MH. A Systematic Review of Pharmacokinetic Studies of Colistin and Polymyxin B in Adult Populations. Clin Pharmacokinet 2025; 64:655-689. [PMID: 40246790 PMCID: PMC12064624 DOI: 10.1007/s40262-025-01488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND AND OBJECTIVE The pharmacokinetics of polymyxins are highly variable and conventional dosing regimens may likely lead to sub-optimal exposures and outcomes, particularly in critically ill patients with multi-drug-resistant infections. The aim of this systematic review is to describe the published pharmacokinetic data and to investigate variables that have been shown to affect the pharmacokinetics of colistimethate sodium, colistin, and polymyxin B in adult populations. METHODS Sixty studies were identified. A total of 27 and 33 studies described the pharmacokinetics of colistin and polymyxin B, respectively. RESULTS The most common dosing regimen for colistimethate sodium was a loading dose of 9 MIU, followed by 9 MIU/day in two to three divided doses, while for polymyxin B, a loading dose of 100-200 mg, followed by 50-100 mg every 12 h was given. Studies that used colistin sulfate instead of colistimethate sodium reported lower inter-individual variability, which may be attributed to the formulation of colistin sulfate being an active drug. The volume of distribution for colistin is typically lower in healthy individuals than in critically ill patients, owing to variations in physiological and pathological conditions. The clearance of colistimethate sodium in critically ill patients not undergoing dialysis was higher, around 13 L/h, compared with those receiving continuous renal replacement therapy, where clearance ranged from 2.31 to 8.23 L/h. In patients receiving continuous renal replacement therapy, clearance of colistin was higher compared with colistimethate sodium (2.06-6.63 L/h and 1.57-3.85 L/h, respectively). Colistin protein binding in critically ill patients ranged from 51% to 79%. The volume of distribution of polymyxin B was similar between critically ill and acutely ill patients, with range of 6.3-33.1 L and 6.22-38.6 L, respectively. Clearance of polymyxin B was also almost similar between critically ill and acutely ill patients (range of 1.27-2.32 L/h). There were two studies that reported free drug concentrations instead of the total drug concentrations of polymyxin B. In critically ill patients, protein binding ranged from 48.8% to 92.4% for polymyxin B. Creatinine clearance was the most common patient characteristic associated with altered clearance of colistimethate sodium and/or colistin, and polymyxin B. CONCLUSIONS Critically ill patients exhibit complex pharmacokinetics for colistin and polymyxin B, influenced by renal function, body weight, and clinical factors such as acute kidney injury, augmented renal clearance, serum albumin, and liver function. These factors necessitate individualized dosing adjustments to avoid toxicity and achieve therapeutic efficacy. Model-informed precision dosing provides a promising approach to optimize their use by integrating population pharmacokinetic parameters, patient-specific variables, and therapeutic drug monitoring, ensuring a balance between efficacy, safety, and resistance prevention.
Collapse
Affiliation(s)
- Puteri Juanita Zamri
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmacy, Hospital Selayang, Ministry of Health Malaysia, Selangor, Malaysia.
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Sazlyna Mohd Sazlly Lim
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Fekade Bruck Sime
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women'S Hospital, Brisbane, QLD, Australia
- Department of Pharmacy, Royal Brisbane and Women'S Hospital, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Herston Infectious Diseases Institute (Heidi), Metro North Health, Brisbane, QLD, Australia
| | - Mohd Hafiz Abdul-Aziz
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
4
|
Huang T, Luo Y, Wu Y, Niu L, Xiao Y, Wu T, Chen X, Liu Y, Lu J, Zhu D, Liu T. Population pharmacokinetics of colistin sulfate in patients on continuous veno-venous hemodiafiltration. Sci Prog 2025; 108:368504251325334. [PMID: 40033936 PMCID: PMC11877486 DOI: 10.1177/00368504251325334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE The aim of this study is to establish a population pharmacokinetic (PK) model for patients undergoing continuous veno-venous hemodiafiltration (CVVHDF) and optimize the dosing regimen of colistin sulfate. METHODS A prospective observational study in a single center was conducted on patients who were administrated with colistin sulfate and CVVHDF for at least 48 h. Blood samples were obtained prior to dosing and four to six blood samples (primarily C0.5h, C1h, C2h, C4h, and C6h) after dosing. The blood concentration of colistin sulfate was determined by ultra-high performance liquid chromatography-tandem mass spectrometry assay. The NONMEM program was used to establish the population PK model and perform Monte Carlo simulations. The predictability and stability of the model were internally evaluated by the goodness of fit plots, visual prediction check, and bootstraps. RESULTS A total of 86 plasma concentrations from 20 patients were used for population PK modeling. A two-compartment model with first-order linear elimination best described the population PK characteristics of colistin sulfate. Cystatin C (CysC) and body weight (WT) were identified as covariates for clearance (CL). Internal evaluation results showed that the final model had good stability and prediction performance. Monte Carlo simulations showed that only when the body WT was 50 kg with CysC ≥3.07 mg/l, and when the body WT was 65 kg with CysC = 5.11 mg/l, and minimum inhibitory concentration (MIC) = 0.25 mg/l, the target attainment probability (PTA) of the daily dose of 1.5 million U regimen was ≥90%. All treatment regimens fail to achieve the target PTA when MIC = 1 mg/l. CONCLUSIONS With the decrease of CysC levels and the increase of WT, the dose of colistin sulfate may need to be increased. It may be prudent for colistin sulfate to consider an initial dose doubling and subsequent maintenance dosing regimen of 200-225 million unit daily, administered in 2-3 divided doses, to attain PTA standard. This study was registered at the Chinese Clinical Trial Registry (www.chictr.org.cn) (trial registration number ChiCTR2300072191).
Collapse
Affiliation(s)
- Tianmin Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yilin Luo
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Niu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Xiao
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tingqing Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Chen
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjun Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejiu Lu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Donglan Zhu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Taotao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Pehlivanli A, Yanik Yalçin T, Yeşiler Fİ, Şahintürk H, Kurt Azap Ö, Zeyneloğlu P, Başgut B. Antimicrobial dosing recommendations during continuous renal replacement therapy: different databases, different doses. J Chemother 2024; 36:474-482. [PMID: 38409748 DOI: 10.1080/1120009x.2024.2321015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Meticulous antimicrobial management is essential among critically ill patients with acute kidney injury, particularly if renal replacement therapy is needed. Many factors affect drug removal in patients undergoing continuous renal replacement therapy CRRT. In this study, we aimed to compare current databases that are frequently used to adjust CRRT dosages of antimicrobial drugs with the gold standard. The dosage recommendations from various databases for antimicrobial drugs eliminated by CRRT were investigated. The book 'Renal Pharmacotherapy: Dosage Adjustment of Medications Eliminated by the Kidneys' was chosen as the gold standard. There were variations in the databases. Micromedex, UpToDate, and Sanford had similar rates to the gold standard of 45%, 35%, and 30%, respectively. The Micromedex database shows the most similar results to the gold standard source. In addition, a consensus was reached as a result of the expert panel meetings established to discuss the different antimicrobial dose recommendations of the databases.
Collapse
Affiliation(s)
- Aysel Pehlivanli
- Pharmacology Department, Faculty of Pharmacy, Başkent University
- Clinical Pharmacy and Drug Information Center, Ankara Hospital, Başkent University
| | - Tuğba Yanik Yalçin
- Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Başkent University
| | - Fatma İrem Yeşiler
- Anesthesiology and Critical Care Unit Department, Faculty of Medicine, Başkent University
| | - Helin Şahintürk
- Anesthesiology and Critical Care Unit Department, Faculty of Medicine, Başkent University
| | - Özlem Kurt Azap
- Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Başkent University
| | - Pınar Zeyneloğlu
- Anesthesiology and Critical Care Unit Department, Faculty of Medicine, Başkent University
| | - Bilgen Başgut
- Pharmacology Department, Faculty of Pharmacy, Başkent University
- Clinical Pharmacy and Drug Information Center, Ankara Hospital, Başkent University
| |
Collapse
|
6
|
De Pascale G, Lisi L, Cutuli SL, Marinozzi C, Palladini A, Ferrando ES, Tanzarella ES, Lombardi G, Grieco DL, Caroli A, Xhemalaj R, Cascarano L, Ciotti GMP, Sandroni C, Sanguinetti M, Navarra P, Antonelli M. High-dose colistin pharmacokinetics in critically ill patients receiving continuous renal replacement therapy. Ann Intensive Care 2024; 14:152. [PMID: 39340688 PMCID: PMC11438743 DOI: 10.1186/s13613-024-01384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Colistin, administered as intravenous colistimethate (CMS), is still used in the critical care setting and current guidelines recommend high dosage CMS in patients undergoing continuous renal replacement therapy (CRRT). Due to the paucity of real-life data, we aimed to describe colistin pharmacokinetic/pharmacodynamic (PK/PD) profile in a cohort of critically ill patients with infections due to carbapenem-resistant (CR) bacteria undergoing CRRT. RESULTS All consecutive patients admitted to three Intensive Care Units (ICUs) of a large metropolitan University Hospital, treated with colistin for at least 48 h at the dosage of 6.75 MUI q12, after 9 MIU loading dose, and undergoing CRRT were included. After the seventh dose, patients underwent blood serial sampling during a time frame of 24 h. We included 20 patients, who had CR-Acinetobacter baumannii ventilator-associated pneumonia and were characterized by a median SAPS II and SOFA score of 41 [34.5-59.3] and 9 [6.7-11], respectively. Fifteen patients died during ICU stay and six recovered renal function. Median peak and trough colistin concentrations were 16.6 mcg/mL [14.8-20.6] and 3.9 mcg/mL [3.3-4.4], respectively. Median area under the time-concentration curve (AUC0 - 24) and average steady-state concentration (Css, avg) were 193.9 mcg h/mL [170.6-208.6] and 8.07 mcg/mL [7.1-8.7]. Probability of target attainment of colistin pharmacodynamics according to the fAUC0 - 24/MIC target ≥ 12 was 100% for MIC ≤ 2 mcg/mL and 85% for MIC = 4 mcg/ML, although exceeding the toxicity limit of Css, avg 3-4 mcg/mL. CONCLUSIONS In critically ill patients with CR infections undergoing CRRT, recommended CMS dosage resulted in colistin plasmatic levels above bacterial MIC90, but exceeding the safety Css, avg. limit. TRIAL REGISTRATION This trial was registered in ClinicalTrials.gov on 23/07/2021 with the ID NCT04995133 (https//clinicaltrials.gov/study/NCT04995133).
Collapse
Affiliation(s)
- Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy.
| | - Lucia Lisi
- Sezione di Farmacologia, Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Lucio Cutuli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| | - Carlotta Marinozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Altea Palladini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Eloisa Sofia Tanzarella
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| | - Gianmarco Lombardi
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| | - Domenico Luca Grieco
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| | - Alessandro Caroli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rikardo Xhemalaj
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Cascarano
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| | - Gabriella Maria Pia Ciotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| | - Claudio Sandroni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Sezione di Farmacologia, Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore Largo A. Gemelli 8, Rome, 00168, Italy
| |
Collapse
|
7
|
Son JY, Kim S, Porsuk T, Shin S, Choi YJ. Clinical outcomes of colistin methanesulfonate sodium in correlation with pharmacokinetic parameters in critically ill patients with multi-drug resistant bacteria-mediated infection: A systematic review and meta-analysis. J Infect Public Health 2024; 17:843-853. [PMID: 38554590 DOI: 10.1016/j.jiph.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Colistin is a viable option for multidrug resistant gram-negative bacteria emerged from inappropriate antibiotic use. Nonetheless, suboptimal colistin concentrations and nephrotoxicity risks hinder its clinical use. Thus, the aim of this study is to investigate clinical outcomes in correlation with pharmacokinetic differences and infection types in critically ill patients on intravenous colistin methanesulfornate sodium (CMS). METHODS A systematic literature search of Embase, Google Scholars, and PubMed was performed to identify clinical trials evaluating pharmacokinetic parameters along with clinical outcomes of CMS treatment from inception to July 2023. The pooled analyses of clinical impact of CMS on nephrotoxicity, mortality, clinical cure, and colistin concentration at steady state (Css,avg) were performed. This study was registered in the PROSPERO (CRD 42023456120). RESULTS Total of 695 critically ill patients from 17 studies were included. The mortality was substantially lower in clinically cured patients (OR 0.05; 95% CI 0.02 - 0.14), whereas the mortality rate was statistically insignificant between nephrotoxic and non-nephrotoxic patients. Inter-patient variability of pharmacokinetic parameters of CMS and colistin was observed in critically ill patients. The standard mean differences of Css,avg were statistically insignificant between clinically cure and clinically failure groups (standard mean difference (SMD) -0.25; 95% CI -0.69 - 0.19) and between nephrotoxic and non-nephrotoxic groups (SMD 0.67; 95% CI -0.27-1.61). The clinical cure rate is substantially lower in pneumonia patients (OR 0.09; 95% CI 0.01 - 0.56), and pharmacokinetic parameters pertaining to microbiological cure were different among strains. CONCLUSION The mortality rate was substantially lower in clinically cured patients with CMS. However, no significant differences in Css,avg of colistin were examined to determine the impact of pharmacokinetic differences on clinical outcomes including mortality rate and nephrotoxicity risk. Nevertheless, the clinical cure rate is substantially lower in patients with respiratory infection than patients with urinary tract infection.
Collapse
Affiliation(s)
- Ji-Young Son
- Korean-National Institute for Bioprocessing Research and Training (K-NIBRT), Yonsei University, Incheon 21983, the Republic of Korea
| | - Semi Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Tuğçe Porsuk
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sooyoung Shin
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, the Republic of Korea; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, the Republic of Korea.
| | - Yeo Jin Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
8
|
Empirical antibiotic therapy for difficult-to-treat Gram-negative infections: when, how, and how long? Curr Opin Infect Dis 2022; 35:568-574. [PMID: 36206149 DOI: 10.1097/qco.0000000000000884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To discuss empirical therapy for severe infections due to Gram-negative bacteria with difficult-to-treat resistance (GNB-DTR) in current clinical practice, focusing in particular on the positioning of novel therapeutic agents and rapid diagnostic tests. RECENT FINDINGS The current era of novel agents active against GNB-DTR and showing differential activity against specific determinants of resistance is an unprecedented scenario, in which the clinical reasoning leading to the choice of the empirical therapy for treating severe GNB-DTR infections is becoming more complex, but it also allows for enhanced treatment precision. SUMMARY Novel agents should be used in line with antimicrobial stewardship principles, aimed at reducing selective pressure for antimicrobial resistance. However, this does not mean that they should not be used. Indeed, excesses in restrictive uses may be unethical by precluding access to the most effective and less toxic treatments for patients with severe GNB-DTR infections. Given these premises (the 'how'), empirical treatment with novel agents should be considered in all patients with risk factors for GNB-DTR and severe clinical presentation of acute infection (the 'when'). Furthermore, empirical novel agents should preferably be continued only for a few hours, until de-escalation, modification, or confirmation (as targeted therapy) is made possible by the results of rapid diagnostic tests (the 'how long').
Collapse
|
9
|
Population pharmacokinetics of polymyxin B in critically ill patients receiving continuous venovenous hemofiltration. Int J Antimicrob Agents 2022; 60:106599. [DOI: 10.1016/j.ijantimicag.2022.106599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
|
10
|
Matusik E, Boidin C, Friggeri A, Richard JC, Bitker L, Roberts JA, Goutelle S. Therapeutic Drug Monitoring of Antibiotic Drugs in Patients Receiving Continuous Renal Replacement Therapy or Intermittent Hemodialysis: A Critical Review. Ther Drug Monit 2022; 44:86-102. [PMID: 34772891 DOI: 10.1097/ftd.0000000000000941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Antibiotics are frequently used in patients receiving intermittent or continuous renal replacement therapy (RRT). Continuous renal replacement may alter the pharmacokinetics (PK) and the ability to achieve PK/pharmacodynamic (PD) targets. Therapeutic drug monitoring (TDM) could help evaluate drug exposure and guide antibiotic dosage adjustment. The present review describes recent TDM data on antibiotic exposure and PK/PD target attainment (TA) in patients receiving intermittent or continuous RRT, proposing practical guidelines for performing TDM. METHODS Studies on antibiotic TDM performed in patients receiving intermittent or continuous RRT published between 2000 and 2020 were searched and assessed. The authors focused on studies that reported data on PK/PD TA. TDM recommendations were based on clinically relevant PK/PD relationships and previously published guidelines. RESULTS In total, 2383 reports were retrieved. After excluding nonrelevant publications, 139 articles were selected. Overall, 107 studies reported PK/PD TA for 24 agents. Data were available for various intermittent and continuous RRT techniques. The study design, TDM practice, and definition of PK/PD targets were inconsistent across studies. Drug exposure and TA rates were highly variable. TDM seems to be necessary to control drug exposure in patients receiving intermittent and continuous RRT techniques, especially for antibiotics with narrow therapeutic margins and in critically ill patients. Practical recommendations can provide insights on relevant PK/PD targets, sampling, and timing of TDM for various antibiotic classes. CONCLUSIONS Highly variable antibiotic exposure and TA have been reported in patients receiving intermittent or continuous RRT. TDM for aminoglycosides, beta-lactams, glycopeptides, linezolid, and colistin is recommended in patients receiving RRT and suggested for daptomycin, fluoroquinolones, and tigecycline in critically ill patients on RRT.
Collapse
Affiliation(s)
- Elodie Matusik
- Pôle Pharmacie & Pôle Urgences-Réanimation-Anesthésie, Centre Hospitalier de Valenciennes, Valenciennes, France
| | - Clément Boidin
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service de Pharmacie, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon 1, EA 3738 CICLY - Centre pour l'Innovation en Cancérologie de Lyon, Oullins
| | - Arnaud Friggeri
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'Anesthésie, Médecine Intensive et Réanimation, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon, Faculté de Médecine Lyon Sud-Charles Mérieux, Oullins
- UMR CNRS 5308, Inserm U1111, Centre International de Recherche en Infectiologie, Laboratoire des Pathogènes Émergents
| | - Jean-Christophe Richard
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Laurent Bitker
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Jason A Roberts
- Faculty of Medicine the University of Queensland, University of Queensland Centre for Clinical Research
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes
| | - Sylvain Goutelle
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Pharmacie
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon ; and
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive Villeurbanne, France
| |
Collapse
|
11
|
Giacobbe DR, Karaiskos I, Bassetti M. How do we optimize the prescribing of intravenous polymyxins to increase their longevity and efficacy in critically ill patients? Expert Opin Pharmacother 2021; 23:5-8. [PMID: 34399631 DOI: 10.1080/14656566.2021.1961743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Ilias Karaiskos
- 1st Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
12
|
Yang Q, Pogue JM, Li Z, Nation RL, Kaye KS, Li J. Agents of Last Resort: An Update on Polymyxin Resistance. Infect Dis Clin North Am 2020; 34:723-750. [PMID: 33011049 DOI: 10.1016/j.idc.2020.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymyxin resistance is a major public health threat, because the polymyxins represent last-line therapeutics for gram-negative pathogens resistant to essentially all other antibiotics. Minimizing any potential emergence and dissemination of polymyxin resistance relies on an improved understanding of mechanisms of and risk factors for polymyxin resistance, infection prevention and stewardship strategies, together with optimization of dosing of polymyxins (eg, combination regimens).
Collapse
Affiliation(s)
- Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China.
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Zekun Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Keith S Kaye
- Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Jian Li
- Laboratory of Antimicrobial Systems Pharmacology, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
13
|
Li L, Li X, Xia Y, Chu Y, Zhong H, Li J, Liang P, Bu Y, Zhao R, Liao Y, Yang P, Lu X, Jiang S. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front Pharmacol 2020; 11:786. [PMID: 32547394 PMCID: PMC7273837 DOI: 10.3389/fphar.2020.00786] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous Renal Replacement Therapy (CRRT) is more and more widely used in patients for various indications recent years. It is still intricate for clinicians to decide a suitable empiric antimicrobial dosing for patients receiving CRRT. Inappropriate doses of antimicrobial agents may lead to treatment failure or drug resistance of pathogens. CRRT factors, patient individual conditions and drug pharmacokinetics/pharmacodynamics are the main elements effecting the antimicrobial dosing adjustment. With the development of CRRT techniques, some antimicrobial dosing recommendations in earlier studies were no longer appropriate for clinical use now. Here, we reviewed the literatures involving in new progresses of antimicrobial dosages, and complied the updated empirical dosing strategies based on CRRT modalities and effluent flow rates. The following antimicrobial agents were included for review: flucloxacillin, piperacillin/tazobactam, ceftriaxone, ceftazidime/avibactam, cefepime, ceftolozane/tazobactam, sulbactam, meropenem, imipenem, panipenem, biapenem, ertapenem, doripenem, amikacin, ciprofloxacin, levofloxacin, moxifloxacin, clindamycin, azithromycin, tigecycline, polymyxin B, colistin, vancomycin, teicoplanin, linezolid, daptomycin, sulfamethoxazole/trimethoprim, fluconazole, voriconazole, posaconzole, caspofungin, micafungin, amphotericin B, acyclovir, ganciclovir, oseltamivir, and peramivir.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xin Li
- Department of Pharmacy, Second Hospital of Jilin University, Changchun, China
| | - Yanzhe Xia
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Chu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haili Zhong
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei Liang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Rui Zhao
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Yang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyang Lu
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Saiping Jiang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Kristoffersson AN, Rognås V, Brill MJE, Dishon-Benattar Y, Durante-Mangoni E, Daitch V, Skiada A, Lellouche J, Nutman A, Kotsaki A, Andini R, Eliakim-Raz N, Bitterman R, Antoniadou A, Karlsson MO, Theuretzbacher U, Leibovici L, Daikos GL, Mouton JW, Carmeli Y, Paul M, Friberg LE. Population pharmacokinetics of colistin and the relation to survival in critically ill patients infected with colistin susceptible and carbapenem-resistant bacteria. Clin Microbiol Infect 2020; 26:1644-1650. [PMID: 32213316 DOI: 10.1016/j.cmi.2020.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/26/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The aim was to analyse the population pharmacokinetics of colistin and to explore the relationship between colistin exposure and time to death. METHODS Patients included in the AIDA randomized controlled trial were treated with colistin for severe infections caused by carbapenem-resistant Gram-negative bacteria. All subjects received a 9 million units (MU) loading dose, followed by a 4.5 MU twice daily maintenance dose, with dose reduction if creatinine clearance (CrCL) < 50 mL/min. Individual colistin exposures were estimated from the developed population pharmacokinetic model and an optimized two-sample per patient sampling design. Time to death was evaluated in a parametric survival analysis. RESULTS Out of 406 randomized patients, 349 contributed pharmacokinetic data. The median (90% range) colistin plasma concentration was 0.44 (0.14-1.59) mg/L at 15 minutes after the end of first infusion. In samples drawn 10 hr after a maintenance dose, concentrations were >2 mg/L in 94% (195/208) and 44% (38/87) of patients with CrCL ≤120 mL/min, and >120 mL/min, respectively. Colistin methanesulfonate sodium (CMS) and colistin clearances were strongly dependent on CrCL. High colistin exposure to MIC ratio was associated with increased hazard of death in the multivariate analysis (adjusted hazard ratio (95% CI): 1.07 (1.03-1.12)). Other significant predictors included SOFA score at baseline (HR 1.24 (1.19-1.30) per score increase), age and Acinetobacter or Pseudomonas as index pathogen. DISCUSSION The population pharmacokinetic model predicted that >90% of the patients had colistin concentrations >2 mg/L at steady state, but only 66% at 4 hr after start of treatment. High colistin exposure was associated with poor kidney function, and was not related to a prolonged survival.
Collapse
Affiliation(s)
- A N Kristoffersson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - V Rognås
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - M J E Brill
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Y Dishon-Benattar
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel; The Cheryl Spencer Institute for Nursing Research, University of Haifa, Israel
| | - E Durante-Mangoni
- Department of Precision Medicine, University of Campania 'L Vanvitelli' and AORN dei Colli-Monaldi Hospital, Napoli, Italy
| | - V Daitch
- Infectious Diseases University Research Centre, Rabin Medical Centre, Beilinson Hospital, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, and Department of Medicine E, Rabin Medical Centre, Beilinson Hospital, Petah Tikva, Israel
| | - A Skiada
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - J Lellouche
- National Centre for Infection Control and Antibiotic Resistance, Tel Aviv Medical Centre, Tel Aviv, Israel; National Laboratory for Antibiotic Resistance and Investigation of Outbreaks in Medical Institutions, Tel Aviv Medical Centre, Tel Aviv, Israel
| | - A Nutman
- National Centre for Infection Control and Antibiotic Resistance, Tel Aviv Medical Centre, Tel Aviv, Israel
| | - A Kotsaki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Athens, Greece
| | - R Andini
- Department of Precision Medicine, University of Campania 'L Vanvitelli' and AORN dei Colli-Monaldi Hospital, Napoli, Italy
| | - N Eliakim-Raz
- Infectious Diseases University Research Centre, Rabin Medical Centre, Beilinson Hospital, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, and Department of Medicine E, Rabin Medical Centre, Beilinson Hospital, Petah Tikva, Israel
| | - R Bitterman
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Techion - Israel Institute of Technology, Haifa, Israel
| | - A Antoniadou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Athens, Greece
| | - M O Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - L Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, and Department of Medicine E, Rabin Medical Centre, Beilinson Hospital, Petah Tikva, Israel; Department of Medicine E, Rabin Medical Centre, Beilinson Hospital, Petah Tikva, Israel
| | - G L Daikos
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - J W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | - Y Carmeli
- National Centre for Infection Control and Antibiotic Resistance, Tel Aviv Medical Centre, Tel Aviv, Israel; National Laboratory for Antibiotic Resistance and Investigation of Outbreaks in Medical Institutions, Tel Aviv Medical Centre, Tel Aviv, Israel
| | - M Paul
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Techion - Israel Institute of Technology, Haifa, Israel
| | - L E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, Giacobbe DR, Viscoli C, Giamarellou H, Karaiskos I, Kaye D, Mouton JW, Tam VH, Thamlikitkul V, Wunderink RG, Li J, Nation RL, Kaye KS. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2020; 39:10-39. [PMID: 30710469 DOI: 10.1002/phar.2209] [Citation(s) in RCA: 629] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The polymyxin antibiotics colistin (polymyxin E) and polymyxin B became available in the 1950s and thus did not undergo contemporary drug development procedures. Their clinical use has recently resurged, assuming an important role as salvage therapy for otherwise untreatable gram-negative infections. Since their reintroduction into the clinic, significant confusion remains due to the existence of several different conventions used to describe doses of the polymyxins, differences in their formulations, outdated product information, and uncertainties about susceptibility testing that has led to lack of clarity on how to optimally utilize and dose colistin and polymyxin B. We report consensus therapeutic guidelines for agent selection and dosing of the polymyxin antibiotics for optimal use in adult patients, as endorsed by the American College of Clinical Pharmacy (ACCP), Infectious Diseases Society of America (IDSA), International Society of Anti-Infective Pharmacology (ISAP), Society for Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). The European Society for Clinical Microbiology and Infectious Diseases (ESCMID) endorses this document as a consensus statement. The overall conclusions in the document are endorsed by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). We established a diverse international expert panel to make therapeutic recommendations regarding the pharmacokinetic and pharmacodynamic properties of the drugs and pharmacokinetic targets, polymyxin agent selection, dosing, dosage adjustment and monitoring of colistin and polymyxin B, use of polymyxin-based combination therapy, intrathecal therapy, inhalation therapy, toxicity, and prevention of renal failure. The treatment guidelines provide the first ever consensus recommendations for colistin and polymyxin B therapy that are intended to guide optimal clinical use.
Collapse
Affiliation(s)
- Brian T Tsuji
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | | | - Alexandre P Zavascki
- Department of Internal Medicine, Medical School, Universidade Federal, do Rio Grande do Sul, Porto Alegre, Brazil.,Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - George L Daikos
- First Department of Propaedeutic Medicine, Laikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alan Forrest
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino-Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Claudio Viscoli
- Infectious Diseases Unit, Ospedale Policlinico San Martino-Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Helen Giamarellou
- 1st Department of Internal Medicine, Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Ilias Karaiskos
- 1st Department of Internal Medicine, Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Donald Kaye
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Vincent H Tam
- University of Houston College of Pharmacy, Houston, Texas
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jian Li
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Keith S Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
16
|
Kächele M, Keller F. [Pharmacokinetics and pharmacodynamics in extracorporeal renal replacement therapy]. Med Klin Intensivmed Notfmed 2020; 116:295-300. [PMID: 32047978 DOI: 10.1007/s00063-020-00654-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/26/2022]
Abstract
Intermittent hemodialysis, continuous hemofiltration and prolonged daily dialysis are used for renal replacement therapy in the intensive care units. Independent of the replacement modality, antibiotic therapy must start with a high loading dose. Dose adjustment to the kidneys must follow 48 h later to prevent toxic accumulation. Dose recommendations on product labels are often underdosed. On continuous hemofiltration, meanwhile many intensivists administer a normal standard dose because the high filtration rate corresponds to a half-normal glomerular filtration rate. After intermittent hemodialysis, a dose similar to the loading dose will be needed. On day off dialysis, the maintenance dose must be adjusted to the failing kidney function. Immediately after prolonged daily dialysis, a loading dose should be given; with twice daily dosing the maintenance dose needs to be adjusted to kidney function. Therapeutic drug monitoring is recommended for gentamicin, vancomycin, piperacillin, meropenem and voriconazole. Due to pharmacodynamic reasons, the target concentration corresponds to the concentration producing the half-maximum effect. Accordingly, the target concentration is the normal peak for concentration-dependent action with bolus dosing. The target is the average steady-state concentration for antibiotics with time-dependent action and continuous infusion.
Collapse
Affiliation(s)
- M Kächele
- Zentrum für Innere Medizin, Innere 1, Nephrologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland.
| | - F Keller
- Zentrum für Innere Medizin, Innere 1, Nephrologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
| |
Collapse
|
17
|
Spapen H, van Laethem J, Hites M, Verdoodt A, Diltoer M, Honoré PM. Treatment of Ventilator-associated Pneumonia with High-dose Colistin Under Continuous Veno-venous Hemofiltration. J Transl Int Med 2019; 7:100-105. [PMID: 31637180 PMCID: PMC6795054 DOI: 10.2478/jtim-2019-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES High-dose colistin (COL) ensures adequate treatment of pneumonia caused by multidrug resistant gram-negative bacteria (MDR-GNB) but must be weighed against a higher risk of nephrotoxicity. Continuous veno-venous hemofiltration (CVVH) clears COL by filtering and membrane adsorption that permits to avoid dose accumulation and excessively high peak concentrations. We evaluated clinical/microbiological efficacy of the high-dose COL treatment under CVVH in patients with newly diagnosed MDR-GNB ventilator-associated pneumonia (VAP). METHODS Observational cohort study in critically ill adult patients with MDR-GNB VAP. Colistimethate sodium (CMS) was administered as a 9 million international units (MIU) of loading dose followed by 3 × 4.5 MIU daily. CVVH was performed over a highly adsorptive membrane. Clinical and microbiological efficacies were assessed at the end of therapy. In survivors, serum creatinine level was evaluated before and at the end of therapy. RESULTS Fourteen patients (8 male patients, aged 57 ± 14 years) were consecutively included. Isolated pathogens were Pseudomonas aeruginosa in 7, Klebsiella pneumoniae in 5, and other Enterobacteriaceae in 2 patients. A favorable clinical response was observed in 9 patients (64%). Full and presumed microbiological eradication was observed in 12 patients (86%). Two patients were diagnosed with Stage 1 acute kidney injury. CONCLUSIONS In patients with MDR-GNB VAP, CVVH may represent an interesting option to enable effective high-dose COL treatment.
Collapse
Affiliation(s)
- Herbert Spapen
- Intensive Care Department, University Hospital, Vrije Universiteit Brussels, Brussels, Belgium
| | - Johan van Laethem
- Department of Internal Medicine, University Hospital, Vrije Universiteit Brussels, Brussels, Belgium
| | - Maya Hites
- Department of Infectious Disease, Erasme Hospital, Brussels, Belgium
| | - An Verdoodt
- Intensive Care Department, University Hospital, Vrije Universiteit Brussels, Brussels, Belgium
| | - Marc Diltoer
- Intensive Care Department, University Hospital, Vrije Universiteit Brussels, Brussels, Belgium
| | - Patrick M. Honoré
- Intensive Care Department, Centre Hospitalier Universitaire Brugmann/Brugmann University Hospital, Brussels, Belgium
| |
Collapse
|
18
|
A Guide to Understanding Antimicrobial Drug Dosing in Critically Ill Patients on Renal Replacement Therapy. Antimicrob Agents Chemother 2019; 63:AAC.00583-19. [PMID: 31109983 DOI: 10.1128/aac.00583-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A careful management of antimicrobials is essential in the critically ill with acute kidney injury, especially if renal replacement therapy is required. Acute kidney injury may lead per se to clinically significant modifications of drugs' pharmacokinetic parameters, and the need for renal replacement therapy represents a further variable that should be considered to avoid inappropriate antimicrobial therapy. The most important pharmacokinetic parameters, useful to determine the significance of extracorporeal removal of a given drug, are molecular weight, protein binding, and distribution volume. In many cases, the extracorporeal removal of antimicrobials can be relevant, with a consistent risk of underdosing-related treatment failure and/or potential onset of bacterial resistance. It should also be taken into account that renal replacement therapies are often not standardized in critically ill patients, and their impact on plasma drug concentrations may substantially vary in relation to membrane characteristics, treatment modality, and delivered dialysis dose. Thus, in this clinical scenario, the knowledge of the pharmacokinetic and pharmacodynamic properties of different antimicrobial classes is crucial to tailor maintenance dose and/or time interval according to clinical needs. Finally, especially for antimicrobials known for a tight therapeutic range, therapeutic drug monitoring is strongly suggested to guide dosing adjustment in complex clinical settings, such as septic patients with acute kidney injury undergoing renal replacement therapy.
Collapse
|
19
|
Nation RL, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Forrest A, Paterson DL, Li J, Silveira FP. Reply to Corona and Cattaneo. Clin Infect Dis 2019; 65:870-871. [PMID: 29017285 DOI: 10.1093/cid/cix390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Samira M Garonzik
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Alan Forrest
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York
| | - David L Paterson
- University of Queensland Center for Clinical Research, Royal Brisbane and Women's Hospital, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Fernanda P Silveira
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pennsylvania
| |
Collapse
|
20
|
Möhlmann JE, van Luin M, Mascini EM, van Leeuwen HJ, de Maat MR. Monitoring of tobramycin serum concentrations in selected critically ill patients receiving selective decontamination of the digestive tract: a retrospective evaluation. Eur J Clin Pharmacol 2019; 75:831-836. [PMID: 30778624 DOI: 10.1007/s00228-019-02644-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/04/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Selective decontamination of the digestive tract (SDD) is a strategy in mechanically ventilated patients to reduce mortality. Treatment consists of enterally administered non-absorbable antibiotics, i.e., tobramycin. However, most intensive care unit (ICU) patients with SDD appear to have detectable tobramycin serum concentrations. The Rijnstate Hospital implemented a protocol for therapeutic drug monitoring (TDM) of tobramycin in patients at risk. The aim of this study was to evaluate the necessity of TDM in these patients and to optimize the current protocol. METHODS This retrospective observational study included ICU patients with SDD treatment for ≥ 7 days and renal failure. These patients were considered eligible for monitoring of tobramycin. Tobramycin serum concentrations, relevant laboratory parameters (i.e., renal function, lactate), and patient data were extracted from the National Intensive Care Evaluation database and the hospital electronic patient data system. RESULTS In 23 subjects, a total of 43 tobramycin serum concentrations was determined. The median tobramycin serum concentration was 0.33 (IQR 0.17-0.49) mg/L of which 12 (27.9%) samples had concentrations < 0.2 mg/L, 30 (69.8%) had concentrations 0.2-1.0 mg/L and 1 (2.3%) had a toxic concentration > 1.0 mg/L. In 3 (7.0%) cases, an intervention was conducted based on the tobramycin serum concentration. CONCLUSION The majority (83.7%) of samples had detectable tobramycin serum concentrations. Monitoring of tobramycin serum concentrations can be considered necessary in patients at risk. However, the current protocol should be optimized to intercept patients more precise.
Collapse
Affiliation(s)
- J E Möhlmann
- Department of Clinical Pharmacy, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands.
| | - M van Luin
- Department of Clinical Pharmacy, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - E M Mascini
- Department of Medical Microbiology and Immunology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - H J van Leeuwen
- Department of Intensive Care, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| | - M R de Maat
- Department of Clinical Pharmacy, Rijnstate Hospital, Wagnerlaan 55, 6815 AD, Arnhem, The Netherlands
| |
Collapse
|
21
|
Multicenter Population Pharmacokinetic Study of Colistimethate Sodium and Colistin Dosed as in Normal Renal Function in Patients on Continuous Renal Replacement Therapy. Antimicrob Agents Chemother 2019; 63:AAC.01957-18. [PMID: 30478168 DOI: 10.1128/aac.01957-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/12/2018] [Indexed: 01/14/2023] Open
Abstract
Intravenous colistimethate sodium (CMS) is used to treat infections with multiresistant Gram-negative bacteria. Optimal dosing in patients undergoing continuous renal replacement therapy (CRRT) is unclear. In a prospective study, we determined CMS and colistin pharmacokinetics in 10 critically ill patients requiring CRRT (8 underwent continuous venovenous hemodialysis [CVVHD]; median blood flow, 100 ml/min). Intensive sampling was performed on treatment days 1, 3, and 5 after an intravenous CMS loading dose of 9 million international units (MU) (6 MU if body weight was <60 kg) with a consecutive 3-MU (respectively, 2 MU) maintenance dose at 8 h. CMS and colistin concentrations were determined by liquid chromatography with mass spectroscopy. A model-based population pharmacokinetic analysis incorporating CRRT settings was applied to the observations. Sequential model building indicated a monocompartmental distribution for both CMS and colistin, with interindividual variability in both volume and clearance. Hematocrit was shown to affect the efficacy of drug transfer across the filter. CRRT clearance accounted for, on average, 41% of total CMS and 28% of total colistin clearance, confirming enhanced elimination of colistin compared to normal renal function. Target colistin steady-state trough concentrations of at least 2.5 mg/liter were achieved in all patients receiving 3 MU at 8 h. In conclusion, a loading dose of 9 MU followed after 8 h by a maintenance dose of 3 MU every 8 h independent of body weight is expected to achieve therapeutic colistin concentrations in patients undergoing CVVHD using low blood flows. Colistin therapeutic drug monitoring might help to further ensure optimal dosing in individual patients. (This study has been registered at ClinicalTrials.gov under identifier NCT02081560.).
Collapse
|
22
|
Nation RL, Forrest A. Clinical Pharmacokinetics, Pharmacodynamics and Toxicodynamics of Polymyxins: Implications for Therapeutic Use. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:219-249. [PMID: 31364081 DOI: 10.1007/978-3-030-16373-0_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The availability of sensitive, accurate and specific analytical methods for the measurement of polymyxins in biological fluids has enabled an understanding of the pharmacokinetics of these important antibiotics in healthy humans and patients. Colistin is administered as its inactive prodrug colistin methanesulfonate (CMS) and has especially complex pharmacokinetics. CMS undergoes conversion in vivo to the active entity colistin, but the rate of conversion varies from brand to brand and possibly from batch to batch. The extent of conversion is generally quite low and depends on the relative magnitudes of the conversion clearance and other clearance pathways for CMS of which renal excretion is a major component. Formed colistin in the systemic circulation undergoes very extensive tubular reabsorption; the same mechanism operates for polymyxin B which is administered in its active form. The extensive renal tubular reabsorption undoubtedly contributes to the propensity for the polymyxins to cause nephrotoxicity. While there are some aspects of pharmacokinetic behaviour that are similar between the two clinically used polymyxins, there are also substantial differences. In this chapter, the pharmacokinetics of colistin, administered as CMS, and polymyxin B are reviewed, and the therapeutic implications are discussed.
Collapse
Affiliation(s)
- Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Alan Forrest
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clin Pharmacokinet 2017; 56:1441-1460. [DOI: 10.1007/s40262-017-0561-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Roberts JA, Lefrant JY, Lipman J. What's new in pharmacokinetics of antimicrobials in AKI and RRT? Intensive Care Med 2017; 43:904-906. [PMID: 28386727 DOI: 10.1007/s00134-017-4789-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Jason A Roberts
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia. .,Burns, Trauma & Critical Care Research Centre, Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Butterfield St, Herston, Queensland, 4006, Australia. .,Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia. .,Centre of Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia.
| | - Jean-Yves Lefrant
- Service des réanimations, Pôle Anesthésie Réanimation Douleur Urgence, CHU Nîmes, Nîmes, France.,Faculté de Médecine de Montpellier-Nimes, Université de Montpellier, Equipe d'Accueil 2992, Montpellier, France
| | - Jeffrey Lipman
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Burns, Trauma & Critical Care Research Centre, Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Butterfield St, Herston, Queensland, 4006, Australia
| |
Collapse
|
25
|
How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int J Infect Dis 2017; 54:77-84. [DOI: 10.1016/j.ijid.2016.11.415] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 01/29/2023] Open
|
26
|
Nation RL, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Forrest A, Paterson DL, Li J, Silveira FP. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis 2016; 64:565-571. [PMID: 28011614 DOI: 10.1093/cid/ciw839] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 01/03/2023] Open
Abstract
Background Intravenous colistin is difficult to use because plasma concentrations for antibacterial effect overlap those causing nephrotoxicity, and there is large inter-patient variability in pharmacokinetics. The aim was to develop dosing algorithms for achievement of a clinically desirable average steady-state plasma colistin concentration (Css,avg) of 2mg/L. Methods Plasma concentration-time data from 214 adult critically-ill patients (creatinine clearance 0-236mL/min; 29 receiving renal replacement therapy (RRT)) were subjected to population pharmacokinetic analysis. Development of an algorithm for patients not receiving RRT was based upon the relationship between the dose of colistimethate that would be needed to achieve a desired Css,avg and creatinine clearance. The increase in colistin clearance when patients were on RRT was determined from the population analysis and guided the supplemental dosing needed. To balance potential antibacterial benefit against risk of nephrotoxicity the algorithms were designed to achieve target attainment rates of >80% for Css,avg ≥2 and <30% for Css,avg ≥4mg/L. Results When algorithm doses were applied back to individual patients not on RRT (including patients prescribed intermittent dialysis on a non-dialysis day), >80% of patients with creatinine clearance <80mL/min achieved Css,avg ≥2mg/L; but for patients with creatinine clearance ≥80mL/min target attainment was <40%, even with the maximum allowed daily dose of 360mg colistin base activity. For patients receiving RRT, target attainment rates were >80% with the proposed supplemental dosing. In all categories of patients, <30% of patients attained Css,avg ≥4mg/L. Conclusions The project has generated clinician-friendly dosing algorithms and pointed to circumstances where intravenous monotherapy may be inadequate.
Collapse
Affiliation(s)
- Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Samira M Garonzik
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Alan Forrest
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY
| | - David L Paterson
- The University of Queensland Center for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Fernanda P Silveira
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
27
|
Karaiskos I, Souli M, Galani I, Giamarellou H. Colistin: still a lifesaver for the 21st century? Expert Opin Drug Metab Toxicol 2016; 13:59-71. [DOI: 10.1080/17425255.2017.1230200] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|