1
|
Turgut BA, Örtücü S, Bezirganoğlu İ. Gene expression and characterization of an antimicrobial peptide from Medicago sativa "Sazova" cultivar. Biochem Biophys Res Commun 2025; 757:151617. [PMID: 40096787 DOI: 10.1016/j.bbrc.2025.151617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
In recent years, the discovery of new antimicrobial agents has become necessary because of the increase in antibiotic resistance, the development of herbicides and fungicides resistance. Among the antimicrobial agents, antimicrobial peptides (AMPs) stand out due to their stable structure. In this study, the aim was to identify a thermostable AMP from the seeds of M. sativa "Sazova" cultivar and to analyze gene expression during germination. Antimicrobial tests were performed for the seed peptides after heat treatment (85 °C for 10 min), revealing antimicrobial effects against S. aureus, E. coli, and C. albicans. Subsequently, the peptide band corresponding to the inhibition zone was identified as M. sativa Defensin 2.1 (MsDef2.1, MW: 5.2048 kDa). The gene expression analysis of MsDef2.1 in Sazova cultivar showed that the gene was expressed different plant organs, and the expression was decreased over time. As a result of the gene analysis of two cultivars (Sazova and LegenDairy) it was found that there are 5 base differences in the coding sequence and 3 amino acid differences between the sequences of MsDef2.1 isoforms from the LegenDairy and Sazova cultivars. The physiochemical properties, secondary, and tertiary structure of the Sazova Defensin 2.1 were predicted by using bioinformatic tools. Due to the amino acid substitutions in γ-core structures, the antimicrobial activity of the isoforms is expected to differ from each other. These findings demonstrated that the defensin MsDef2.1 can differ in M. sativa cultivars in respect of the gene and amino acid sequences and has a potential for future applications.
Collapse
Affiliation(s)
- Büşra Albayrak Turgut
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey.
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey
| | - İsmail Bezirganoğlu
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey.
| |
Collapse
|
2
|
Córdoba L, López D, Mejía M, Guzmán F, Beltrán D, Carbonell B, Medina L. Antibacterial Activity of AXOTL-13, a Novel Peptide Identified from the Transcriptome of the Salamander Ambystoma mexicanum. Pharmaceutics 2024; 16:1445. [PMID: 39598568 PMCID: PMC11597150 DOI: 10.3390/pharmaceutics16111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antimicrobial peptides are essential molecules in the innate immunity of various organisms and possess a broad spectrum of antimicrobial, antitumor, and immunomodulatory activities. Due to their multifunctionality, they are seen as an alternative for controlling bacterial infections. Although conventional antibiotics have improved health worldwide, their indiscriminate use has led to the emergence of resistant microorganisms. To discover new molecules with antimicrobial activity that could overcome the limitations of traditional antibiotics, this study aimed to identify antimicrobial peptides in Ambystoma mexicanum. Methods: In this study, hypothetical proteins encoded in the Ambystoma mexicanum transcriptome were predicted. These proteins were aligned with peptides reported in the Antimicrobial Peptide Database (APD3) using the Fasta36 program. After identifying peptide sequences with potential antibacterial activity, their expression was confirmed through conventional polymerase chain reaction (PCR) and then chemically synthesized. The antibacterial activity of the synthesized peptides was evaluated against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Results: A new antimicrobial peptide named AXOTL-13 was identified. AXOTL-13 is an amphipathic cationic alpha-helical peptide with the ability to inhibit the growth of Escherichia coli without causing hemolysis in red blood cells, with its action likely directed at the membrane, as suggested by morphological changes observed through scanning electron microscopy. Conclusions: This research is pioneering in evaluating the activity of antimicrobial peptides present in Ambystoma mexicanum and in specifically identifying one of these peptides. The findings will serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Laura Córdoba
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Daniela López
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Mariana Mejía
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Dina Beltrán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Belfran Carbonell
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| |
Collapse
|
3
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Kröner L, Lötters S, Hopp MT. Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biol Chem 2024; 0:hsz-2024-0035. [PMID: 38766708 DOI: 10.1515/hsz-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.
Collapse
Affiliation(s)
- Lorena Kröner
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| | - Stefan Lötters
- Department of Biogeography, University of Trier, D-54286 Trier, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| |
Collapse
|
5
|
Zhao L, Li L, Hu M, Fang Y, Dong N, Shan A. Heterologous expression of the novel dimeric antimicrobial peptide LIG in Pichia pastoris. J Biotechnol 2024; 381:19-26. [PMID: 38181981 DOI: 10.1016/j.jbiotec.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The antimicrobial peptide (AMP) LI is a fusion product of antimicrobial peptide LL37 produced by human neutrophils and Indolicidin secreted by bovine neutrophils. LI retained the antimicrobial activity of the parental peptides and showed high cell selectivity. In this study, the flexible linker Gly-Ser-Gly (G-S-G) was used to ligate LI into dimeric LIG, and constructed the Pichia pastoris (P. pastoris) expression vector pPIC9K-6×His-3×FLAG-LIG. The total protein expression of P. pastoris GS115 reached the highest level (189.6 mg/L) after 96 h induction with 3 % methanol at the initial pH value of 7.0. Finally, 5.9 mg/L of recombinant LIG (rLIG) was obtained after enterokinase digestion and purification. The rLIG had high antimicrobial activity and low hemolytic activity. Compared with monomer LI, GSG linked dimeric LIG, which had no significant change in antimicrobial activity and had good salt ions stability. In this study, the dimeric antimicrobial peptide LIG was successfully expressed, which provided a new idea for the expression of AMPs in the P. pastoris expression system, and had important significance for the application of AMPs.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
6
|
Liang H, Wang XT, Ge WY, Zhang R, Liu J, Chen LL, Xi XL, Guo WH, Yin DC. Andrias Davidianus Mucus-Based Bioadhesive with Enhanced Adhesion and Wound Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49931-49942. [PMID: 37856675 DOI: 10.1021/acsami.3c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The skin secretion of Andrias davidianus (SSAD) is a novel biological adhesive raw material under development. This material exhibits robust adhesion while maintaining the flexibility of the wound. It also has the potential for large-scale production, making it promising for practical application explore. Hence, in-depth research on methods to fine-tune SSAD properties is of great importance to promote its practical applications. Herein, we aim to enhance the adhesive and healing properties of SSAD by incorporating functional components. To achieve this goal, we selected 3,4-dihydroxy-l-phenylalanine and vaccarin as the functional components and mixed them with SSAD, resulting in a new bioadhesive, namely, a formulation termed "enhanced SSAD" (ESSAD). We found that the ESSAD exhibited superior adhesive properties, and its adhesive strength was improved compared with the SSAD. Moreover, ESSAD demonstrated a remarkable ability to promote wound healing. This study presents an SSAD-based bioadhesive formulation with enhanced properties, affirming the feasibility of developing SSAD-based adhesive materials with excellent performance and providing new evidence for the application of SSAD. This study also aims to show that SSAD can be mixed with other substances, and addition of effective components to SSAD can be studied to further adjust or improve its performance.
Collapse
Affiliation(s)
- Huan Liang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Rui Zhang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Jie Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xiao-Li Xi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
7
|
Pereira KE, Deslouches JT, Deslouches B, Woodley SK. In Vitro Investigation of the Antibacterial Activity of Salamander Skin Peptides. Curr Microbiol 2023; 80:214. [PMID: 37195436 DOI: 10.1007/s00284-023-03320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Given the current and future costs of antibiotic-resistant bacteria to human health and economic productivity, there is an urgent need to develop new antimicrobial compounds. Antimicrobial peptides are a promising alternative to conventional antibiotics and other antimicrobials. Amphibian skin is a rich source of bioactive compounds, but the antibacterial properties of salamander skin peptides have been neglected. Here, we examined the in vitro ability of skin peptides from 9 species of salamander representing 6 salamander families to inhibit the growth of ESKAPE pathogens, which are bacteria that have developed resistance to conventional antibiotics. We also examined whether the skin peptides caused lysis of human red blood cells. Skin peptides from Amphiuma tridactylum had the greatest antimicrobial properties, completely inhibiting the growth of all bacterial strains except for Enterococcus faecium. Likewise, skin peptides from Cryptobranchus alleganiensis completely inhibited the growth of several of the bacterial strains. In contrast, skin peptide mixtures from Ambystoma maculatum, Desmognathus fuscus, Eurycea bislineata, E. longicauda, Necturus beyeri, N. maculosus, and Siren intermedia did not completely inhibit bacterial growth even at the highest concentrations. Finally, none of the skin peptide mixtures caused lysis of human red blood cells. Together, we demonstrate that salamander skin produces peptides with potent antibacterial properties. It remains to elucidate the peptide sequences and their antibacterial mechanisms.
Collapse
Affiliation(s)
- Kenzie E Pereira
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Berthony Deslouches
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Hardman RH, Reinert LK, Irwin KJ, Oziminski K, Rollins-Smith L, Miller DL. Disease state associated with chronic toe lesions in hellbenders may alter anti-chytrid skin defenses. Sci Rep 2023; 13:1982. [PMID: 36737574 PMCID: PMC9898527 DOI: 10.1038/s41598-023-28334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Hellbenders (Cryptobranchus alleganiensis) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans (Bsal) poses a new threat if introduced into North America. Ozark hellbenders also suffer a high prevalence of toe lesions of unknown etiology, with changes in host immunocompetence hypothesized to contribute. Antimicrobial peptides (AMPs) secreted from dermal granular glands may play a role in hellbender health. We collected skin secretions from free-ranging hellbenders and enriched them for small cationic peptides used for growth inhibition assays against Bd and Bsal. Generalized linear mixed models revealed the presence of active toe lesions as the strongest and only significant predictor of decreased Bd inhibition by skin peptides. We also found skin secretions were more inhibitory of Bsal than Bd. MALDI-TOF mass spectrometry revealed candidate peptides responsible for anti-chytrid activity. Results support the hypothesis that hellbender skin secretions are important for innate immunity against chytrid pathogens, and decreased production or release of skin peptides may be linked to other sub-lethal effects of disease associated with toe lesions.
Collapse
Affiliation(s)
- Rebecca H Hardman
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA. .,Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, 33701, USA.
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kelly J Irwin
- Arkansas Game and Fish Commission, Benton, AR, 72015, USA
| | - Kendall Oziminski
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA
| | - Louise Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Debra L Miller
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA.,School of Natural of Resources, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
9
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
10
|
Medina L, Guzmán F, Álvarez C, Delgado JP, Carbonell-M B. Ramosin: The First Antibacterial Peptide Identified on Bolitoglossa ramosi Colombian Salamander. Pharmaceutics 2022; 14:pharmaceutics14122579. [PMID: 36559073 PMCID: PMC9782819 DOI: 10.3390/pharmaceutics14122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The discovery and improvements of antimicrobial peptides (AMPs) have become an alternative to conventional antibiotics. They are usually small and heat-stable peptides, exhibiting inhibitory activity against Gram-negative and Gram-positive bacteria. In this way, studies on broad-spectrum AMPs found in amphibians with the remarkable capability to regenerate a wide array of tissues are of particular interest in the search for new strategies to treat multidrug-resistant bacterial strains. In this work, the use of bioinformatic approaches such as sequence alignment with Fasta36 and prediction of antimicrobial activity allowed the identification of the Ramosin peptide from the de novo assembled transcriptome of the plethodontid salamander Bolitoglossa ramosi obtained from post-amputation of the upper limb tissue, heart, and intestine samples. BLAST analysis revealed that the Ramosin peptide sequence is unique in Bolitoglossa ramosi. The peptide was chemically synthesized, and physicochemical properties were characterized. Furthermore, the in vitro antimicrobial activity against relevant Gram-positive and Gram-negative human pathogenic bacteria was demonstrated. Finally, no effect against eukaryotic cells or human red blood cells was evidenced. This is the first antibacterial peptide identified from a Colombian endemic salamander with interesting antimicrobial properties and no hemolytic activity.
Collapse
Affiliation(s)
- Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
- Correspondence:
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Claudio Álvarez
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Jean Paul Delgado
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Belfran Carbonell-M
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín 050010, Colombia
| |
Collapse
|
11
|
Barros ALAN, Hamed A, Marani M, Moreira DC, Eaton P, Plácido A, Kato MJ, Leite JRSA. The Arsenal of Bioactive Molecules in the Skin Secretion of Urodele Amphibians. Front Pharmacol 2022; 12:810821. [PMID: 35095522 PMCID: PMC8795703 DOI: 10.3389/fphar.2021.810821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
Urodele amphibians (∼768 spp.), salamanders and newts, are a rich source of molecules with bioactive properties, especially those isolated from their skin secretions. These include pharmacological attributes, such as antimicrobial, antioxidant, vasoactive, immune system modulation, and dermal wound healing activities. Considering the high demand for new compounds to guide the discovery of new drugs to treat conventional and novel diseases, this review summarizes the characteristics of molecules identified in the skin of urodele amphibians. We describe urodele-derived peptides and alkaloids, with emphasis on their biological activities, which can be considered new scaffolds for the pharmaceutical industry. Although much more attention has been given to anurans, bioactive molecules produced by urodeles have the potential to be used for biotechnological purposes and stand as viable alternatives for the development of therapeutic agents.
Collapse
Affiliation(s)
- Ana L A N Barros
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Medicina Tropical, PPGMT, Núcleo de Medicina Tropical, NMT, Faculdade de Medicina, UnB, Brasília, Brazil
| | - Abdelaaty Hamed
- Instituto de Química, IQ, Universidade de São Paulo, São Paulo, Brazil.,Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, Egypt
| | - Mariela Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Argentina
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Joseph Banks Laboratories, The Bridge, School of Chemistry, University of Lincoln, Lincoln, United Kingdom
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Bioprospectum, Lda, UPTEC, Porto, Portugal
| | - Massuo J Kato
- Instituto de Química, IQ, Universidade de São Paulo, São Paulo, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Medicina Tropical, PPGMT, Núcleo de Medicina Tropical, NMT, Faculdade de Medicina, UnB, Brasília, Brazil.,Bioprospectum, Lda, UPTEC, Porto, Portugal
| |
Collapse
|
12
|
Vasconcelos IAD, Souza JOD, de Castro JS, Santana CJCD, Magalhães ACM, Castro MDS, Pires Júnior OR. Salamanders and caecilians, neglected from the chemical point of view. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1977326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Carlos José Correia de Santana
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Mariana de Souza Castro
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
13
|
An Evaluation of Immersive and Handling Methods for Collecting Salamander Skin Peptides. J HERPETOL 2021. [DOI: 10.1670/20-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021; 8:48. [PMID: 34496967 PMCID: PMC8425997 DOI: 10.1186/s40779-021-00343-2] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Qi-Yu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Bin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Yue-Ming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xiang-Yu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Gang Shao
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, Zhejiang, China
| | - Jun-Jie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xu-Rui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cai-Yun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
15
|
Influence of Frying Methods on Quality Characteristics and Volatile Flavor Compounds of Giant Salamander (Andrias davidianus) Meatballs. J FOOD QUALITY 2021. [DOI: 10.1155/2021/8450072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effects of deep fat frying and hot air frying on texture, color difference, sensory score, yield, fat content, and volatile flavor compounds of giant salamander meatballs before and after frying were investigated. The results showed that, compared with the deep fat frying group, hot air-fried giant salamander meatballs had higher hardness, elasticity, and L
(
), but lower a
, b
value, fat content, and yield (
). There was little distinction in sensory score, cohesiveness, and chewiness between the two frying methods (
). Gas chromatography ion migration chromatography (GC-IMS) was used for flavor compound analysis, and 50 flavor compounds were analyzed, containing 22 aldehydes, 11 ketones, 6 olefins, 4 acids, 3 esters, 3 alcohols, and 1 phenol. Compared with the samples before frying, the relative contents of aldehydes and ketones of fried giant salamander meatballs increased significantly, while the relative contents of esters and alkenes decreased significantly. Principal component analysis showed that the GC-IMS spectra of volatile flavor compounds before and after deep fat frying and hot air frying varied greatly, and the cumulative contribution rate of the two principal components reached 86.1%, indicating that the GC-IMS technology might be used to distinguish giant salamander meatballs before and after frying, or with different frying methods. These results may offer a note for development and quality control of the precooked giant salamander meatballs in the future.
Collapse
|
16
|
Quality Characteristics and Moisture Mobility of Giant Salamander (Andrias davidianus) Jerky during Roasting Process. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9970797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Quality attributes and water mobility of giant salamander jerkies (GSJs) during roasting process (160°C, for 0, 20, 40, 60, and 80 min) were investigated. The results showed that
values and shear force increased of GSJs roasting from 20 to 80 min, while
, yield, and moisture content decreased significantly (
). Sensory assessment showed that GSJs at a roasting time of 40–60 min had higher scores. GSJs contained great amount of healthy unsaturated fatty acids (including DHA and EPA), and the total amino acids and essential amino acids were among 59.33–71.77 g·100 g−1 and 25.94–31.40 g·100 g−1, respectively. The mobility of the immobilized moisture and free moisture were shrunk dramatically during roasting. The proton density weighted images also exhibited the moisture shrinkage during roasting. In addition, T22 and T23 were positively correlated with MRI signal, moisture content, and yield of GSJs, but negatively correlated with shear force and overall acceptability, respectively. Thus, in view of various quality attributes and sensory evaluation, a roasting time of 40–60 min was favored for nutritive GSJs production. LF-NMR and MRI might be employed to profile the quality characteristics during roasting as a rapid and nondestructive analytical tool.
Collapse
|
17
|
Zhang D, Guo Y, Wang Y. Immunomodulatory Effect of a New Ingredients Group Extracted from Astragalus Through Membrane Separation Technique. Drug Des Devel Ther 2021; 15:1595-1607. [PMID: 33883882 PMCID: PMC8055285 DOI: 10.2147/dddt.s309422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Astragalus is a commonly used traditional Chinese medicine in China, which has been widely applied to enhance the immunomodulatory function of the body. The main bioactive components are complicated. To explore the role of the components, various techniques have been applied in Astragalus extraction. Membrane separation technique featured with green processing condition and high efficiency is of signification interest in the application of Astragalus treatment. Methods In this study, a new ingredients group A4 was separated from Astragalus using membrane separation technique. The quantification and identification of A4 were achieved by UV-vis spectrometry and UPLC-MS measurements. Pathological approaches along with serum metabolomics were utilized to study the immunoprotective effects of the extracts and explore the underlying mechanisms on metabolic activity. Results It was observed that A4 could promote the secretion of IL-2 and IFN-γ, stimulate the activated CD4+CD25+ and CD8+ CD25+ T lymphocytes in splenocytes and protect rat spleen to some extent. Seven crucial biomarkers that related to immunity regulations were screened out and identified through serum metabonomic analysis coupled with nuclear magnetic resonance. The enrichment analysis revealed that A4 alleviated the immune dysfunction by modulating amino acid metabolism and energy metabolism for the first time. Conclusion The new ingredients group A4 isolated from the Astragalus membrane can reduce the immune dysfunction by regulating the amino acid metabolism and energy metabolism of rats.
Collapse
Affiliation(s)
- Di Zhang
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yafei Guo
- Department of Traditional Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, People's Republic of China
| | - Yingli Wang
- Department of Traditional Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, People's Republic of China
| |
Collapse
|
18
|
Pereira KE, Woodley SK. Skin defenses of North American salamanders against a deadly salamander fungus. Anim Conserv 2021. [DOI: 10.1111/acv.12666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- K. E. Pereira
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| | - S. K. Woodley
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| |
Collapse
|
19
|
The transcriptome analysis of the whole-body of the gastropod mollusk Limax flavus and screening of putative antimicrobial peptide and protein genes. Genomics 2020; 112:3991-3999. [PMID: 32650091 DOI: 10.1016/j.ygeno.2020.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/23/2023]
Abstract
The gastropod mollusk Limax flavus, one of the most widespread pests in China, is used to treat infectious diseases in traditional Chinese medicine. However, little genomic information is available for this non-model species. In this study, the whole-body transcriptome of L. flavus was sequenced using next generation sequencing technology. A total of 6.81 Gb clean reads were obtained, which were assembled into 150,766 transcripts with 132,206 annotated unigenes. Functionally classification assigned 30,542 unigenes to 56 Gene Ontology terms, 16,745 unigenes were divided into 26 euKaryotic Ortholog Groups of proteins categories, and 13,854 unigenes were assigned to 230 Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, we identified 17,251 simple sequence repeats and several kinds of antimicrobial peptide and protein (AMPs) genes. The transcriptome data of L. flavus will provide a valuable genomic resource for further studies on this species, and the AMPs identified in L. flavus will support its medical potential.
Collapse
|
20
|
Isolation, purification, and structural identification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106923] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Pei J, Chen D, Jin W, Geng J, Wang W, Zhang S, Yue T, Zhang H. Structure and mode of action of a novel antibacterial peptide from the blood of Andrias davidianus. Lett Appl Microbiol 2019; 69:312-317. [PMID: 31529504 DOI: 10.1111/lam.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
Andrias davidianus is widely recognized in traditional medicine as a cure-all to treat a plethora of ailments. In a previous study, a novel antibacterial peptide named andricin B was isolated from A. davidianus blood. In this study, we investigated andricin B structure and its mode of action. Circular dichroism spectra suggested that andricin B adopts a random coil state in aqueous solution and a more rigid conformation in the presence of bacteria. Moreover propidium iodide/fluorescein diacetate double staining indicated that bacteria treated with andricin B were not immediately eliminated. Rather, there is a gradual bacterial death, followed by a sublethal stage. Scanning electronic microscope imaging indicates that andricin B might form pores on cell membranes, leading to the release of cytoplasmic contents. These results were consistent with flow cytometry analysis. Furthermore, Fourier transform infrared spectroscopy suggests that andricin B induces changes in the chemical properties in the areas surrounding these "pores" on the cell membranes. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study suggested the new perspectives about the mode of action of antimicrobial peptide (AMP) active against sensitive bacteria. The AMP was able to be in a random coiled state in aqueous solution but to change to a more rigid one in the presence of sensitive bacteria. Exposure to AMP might not lead to immediate death of treated bacteria, rather bacteria concentration decreased gradually flattening at a sublethal stage. These findings will help people to understand better how the AMPs activate against sensitive bacteria.
Collapse
Affiliation(s)
- J Pei
- Shaanxi Key Laboratory of Biology and Bioresources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - D Chen
- Shaanxi Key Laboratory of Biology and Bioresources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - W Jin
- Shaanxi Key Laboratory of Biology and Bioresources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - J Geng
- Shaanxi Key Laboratory of Biology and Bioresources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - W Wang
- Shaanxi Key Laboratory of Biology and Bioresources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - S Zhang
- Shaanxi Key Laboratory of Biology and Bioresources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - T Yue
- College of Food Science, Northwest University, Xi'an, Shaanxi, China
| | - H Zhang
- College of Food Science, Qilu University of Technology, Shandong, China
| |
Collapse
|
22
|
Jin WG, Pei J, Du YN, Pan J, Gao R, Chen DJ, Wu HT, Zhu BW. Characterization and Functional Properties of Gelatin Extracted from Chinese Giant Salamander (Andrias Davidianus) Skin. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1652716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wen-Gang Jin
- National Engineering Research Center for Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Jinjin Pei
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Yi-Nan Du
- National Engineering Research Center for Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Ruichang Gao
- College of Food and Biological Technology, Jiangsu University, Zhenjiang, P.R. China
| | - De-Jing Chen
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Hai-Tao Wu
- National Engineering Research Center for Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Bei-Wei Zhu
- National Engineering Research Center for Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| |
Collapse
|