1
|
Taesoongnern K, Thirapanmethee K, Chomnawang MT. Molecular sequence typing of carbapenem-resistant Acinetobacter baumannii clinical isolates: A comprehensive global update. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105762. [PMID: 40349940 DOI: 10.1016/j.meegid.2025.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/01/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The emergence and spread of antimicrobial resistance (AMR) pose significant challenges to public health worldwide. Understanding the dynamics of AMR within bacterial populations is crucial for devising effective strategies to mitigate its impact. Clonal lineages, representing genetically related group of bacteria, play a vital role in shaping the landscape of AMR dissemination. This review endeavors to provide a comprehensive update on the molecular sequence typing of carbapenem-resistant Acinetobacter baumannii (CRAB) clinical isolates across various geographical regions, with particular emphasis on the application of multilocus sequence typing (MLST). CRAB poses a silent threat in healthcare settings, emerging as a public health concern globally corporate with limited treatment options due to the resistance to carbapenems, the last-line antibiotics, leading to increased mortality rates. This review will serve as invaluable resources, offering in-depth analysis and interpretation of epidemiological data related to CRAB. Through meticulous examination of this data, healthcare professionals will be equipped with a nuanced understanding of the spread and prevalence of this pathogen across diverse geographic regions. Additionally, by incorporating evidence-based strategies informed by epidemiological insights, stakeholders can enhance their ability to effectively combat this formidable pathogen, thereby safeguarding public health and promoting optimal patient outcomes.
Collapse
Affiliation(s)
- Kamonwan Taesoongnern
- Biopharmaceutical Sciences Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Antimicrobial Resistance Interdisciplinary Center (AMRIC), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Krit Thirapanmethee
- Antimicrobial Resistance Interdisciplinary Center (AMRIC), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Antimicrobial Resistance Interdisciplinary Center (AMRIC), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Fernández-Cuenca F, Rodríguez-Pallares S, López-Cerero L, Gutiérrez-Fernández J, Bautista MF, Sánchez Gómez JA, Sánchez-Yebra Romera W, Delgado M, Recacha E, Pascual A. Regional distribution of carbapenemase-producing Acinetobacter baumannii isolates in southern Spain (Andalusia). Eur J Clin Microbiol Infect Dis 2025; 44:1069-1076. [PMID: 39961948 PMCID: PMC12062160 DOI: 10.1007/s10096-025-05047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/16/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVES This is the first study conducted in southern Spain to determine i) the population structure (PS) of carbapenem-resistant (CR) Acinetobacter baumannii isolates by multilocus sequencing typing (MLST) and core genome MLST (cgMLST) and ii) the association between the sequence type ST and the blaOXA-51 variant, capsule polysaccharide locus (KL) and lipooligosaccharide outer core locus (OCL) types. METHODS Of 336 isolates submitted to the Andalusian reference laboratory (PIRASOA; December 2017-2020), 73 were subjected to WGS (MiSeq). The following analyses were performed: bacterial identification (ribosomal MLST), carbapenemase gene detection (Resfinder 4.0), PS delineation (MLST by MLSTfinder 2.0 and cgMLST by Ridom SeqSphere+), and KL types and OCL types (Kaptive tool). RESULTS The carbapenemases detected were blaOXA-23 (n = 41), blaOXA-58 (n = 26), blaOXA-24 (n = 5), blaOXA-72 (n = 1) and blaNDM-1 (n = 2). The PS revealed one major ST2 clone (n = 54) and seven minor ST clones by MLST, and 41 lineages by cgMLST. Thirty-five lineages were detected only in a single hospital whereas five lineages were observed in several hospitals and provinces. blaOXA-66 was the most frequent blaOXA-51 variant and was mainly associated with the ST2 clone. Eleven KL types and 3 OCL types were assigned, with KL2 (n = 27), KL7 (n = 16) and OCL1 being the most frequent. CONCLUSIONS The PS of CR A. baumannii in Andalusia is characterized by a dominant ST2/blaOXA-23 clone and several lineages, showing local spread of lineages in most hospitals, and intercenter or interregional spread of a few lineages. Single-locus blaOXA-51-like typing and KL typing may be useful as complementary preliminary typing tool.
Collapse
Affiliation(s)
- Felipe Fernández-Cuenca
- University Hospital Virgen Macarena, Seville, Spain
- Institute of Biomedicine of Seville, Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Salud Rodríguez-Pallares
- Servicio de Microbiología e Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lorena López-Cerero
- University Hospital Virgen Macarena, Seville, Spain.
- Institute of Biomedicine of Seville, Seville, Spain.
- University of Seville, Seville, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | | | - Mercedes Delgado
- University Hospital Virgen Macarena, Seville, Spain
- Institute of Biomedicine of Seville, Seville, Spain
- University of Seville, Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Recacha
- University Hospital Virgen Macarena, Seville, Spain
- Institute of Biomedicine of Seville, Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Pascual
- University Hospital Virgen Macarena, Seville, Spain
- Institute of Biomedicine of Seville, Seville, Spain
- University of Seville, Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Lukovic B, Kabic J, Dragicevic M, Kuljanin S, Dimkic I, Jovcic B, Gajic I. Genetic basis of antimicrobial resistance, virulence features and phylogenomics of carbapenem-resistant Acinetobacter baumannii clinical isolates. Infection 2025; 53:39-50. [PMID: 38856809 DOI: 10.1007/s15010-024-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE The worldwide emergence and clonal spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern. In the present study, we determined the mechanisms of antimicrobial resistance, virulence gene repertoire and genomic relatedness of CRAB isolates circulating in Serbian hospitals. METHODS CRAB isolates were analyzed using whole-genome sequencing (WGS) for the presence of antimicrobial resistance-encoding genes, virulence factors-encoding genes, mobile genetic elements and genomic relatedness. Antimicrobial susceptibility testing was done by disk diffusion and broth microdilution methods. RESULTS Eleven isolates exhibited an MDR resistance phenotype, while four of them were XDR. MIC90 for meropenem and imipenem were > 64 µg/mL and 32 µg/mL, respectively. While all CRABs harbored blaOXA-66 variant of blaOXA-51 gene, those assigned to STPas2, STPas636 and STPas492 had blaADC-73,blaADC-74 and blaADC-30 variants, respectively. The following acquired carbapenemases-encoding genes were found: blaOXA-72 (n = 12), blaOXA-23 (n = 3), and blaNDM-1(n = 5), and were mapped to defined mobile genetic elements. MLST analysis assigned the analyzed CRAB isolates to three Pasteur sequence types (STs): STPas2, STPas492, and STPas636. The Majority of strains belonged to International Clone II (ICII) and carried tested virulence-related genes liable for adherence, biofilm formation, iron uptake, heme biosynthesis, zinc utilization, serum resistance, stress adaptation, intracellular survival and toxin activity. CONCLUSION WGS elucidated the resistance and virulence profiles of CRABs isolated from clinical samples in Serbian hospitals and genomic relatedness of CRAB isolates from Serbia and globally distributed CRABs.
Collapse
Affiliation(s)
- Bojana Lukovic
- College of Health Sciences, Academy of Applied Studies Belgrade, Cara Dusana 254, Belgrade, 11080, Serbia.
| | - Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Dragicevic
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Ivica Dimkic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Branko Jovcic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
He Z, Huang Y, Li W, Zhang H, Cao R, Ali MR, Dai Y, Lu H, Wang W, Niu Q, Sun B, Li Y. Characterization and genomic analysis of the highly virulent Acinetobacter baumannii ST1791 strain dominating in Anhui, China. Antimicrob Agents Chemother 2025; 69:e0126224. [PMID: 39641569 PMCID: PMC11784083 DOI: 10.1128/aac.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The multidrug-resistant Acinetobacter baumannii clonal complex 92 is spreading worldwide due to its high-frequency gene mutation and recombination, posing a significant threat to global medical and health safety. Between November 2021 and April 2022, a total of 132 clinical A. baumannii isolates were collected from a tertiary hospital in China. Their growth ability and virulence of these isolates were assessed using growth curve analyses and the Galleria mellonella infection model. The genetic characteristics of the isolates were further examined through whole-genome sequencing. ST1791O/ST2P isolates represented the largest proportion of isolates in our collection and exhibited the highest growth rate and strongest virulence among all sequence types (STs) analyzed. Whole-genome sequences from 14,159 clinical isolates were collected from the National Center for Biotechnology Information database, and only nine ST1791O/ST2P isolates were detected. Comparative genomic analysis revealed that ST1791O/ST2P carried 11 unique genes, 5 of which were located within the capsular polysaccharide synthesis (cps) gene cluster. Single nucleotide polymorphisms (SNPs) between ST1791O/ST2P and other isolates were primarily found in the cps gene cluster. Among the other isolates, ST195O/ST2P and ST208O/ST2P exhibited the smallest SNP differences from ST1791O/ST2P, while ST195O/ST2P and ST1486O/ST2P had high homology. The ST1791O/ST2P strain in Anhui, China, displayed significant homology with ST195O/ST2P, ST208O/ST2P, and ST1486O/ST2P isolates. Compared to other isolates in this study, ST1791O/ST2P exhibited strong growth ability and virulence. Therefore, preventing the further spread of ST1791O/ST2P should be a top public health priority.
Collapse
Affiliation(s)
- Zhien He
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Huang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huanhuan Zhang
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Ruobing Cao
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Md Roushan Ali
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huaiwei Lu
- Department of Clinical Laboratory, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanying Wang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuhong Niu
- School of Life Science, Nanyang Normal University, Nanyang, Henan, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
5
|
Liu L, Huang Y, Wang Y, Jiang Y, Liu K, Pei Z, Li Z, Zhu Y, Liu D, Li X. Molecular Epidemiology and Genetic Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolates from the ICU of a Tertiary Hospital in East China. Infect Drug Resist 2024; 17:5925-5945. [PMID: 39759767 PMCID: PMC11699857 DOI: 10.2147/idr.s491858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant Acinetobacter baumannii (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB. Methods A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS. Results All CRAB strains were 100% resistant to ciprofloxacin, ceftazidime, piperacillin/tazobactam, and ticarcillin/clavulanic acid. A total of 48 antimicrobial resistance genes (ARGs) were found in the 39 CRAB strains, including blaOXA-66, blaOXA-23, blaADC-30, blaADC-73, gyrA, ant(3″)-IIa, aph(3″)-Ib, aph(6)-Id, tetB, tetR, sul1, sul2, LpxC and LpxA which confered resistance to carbapenems, cephalosporins, fluoroquinolones, aminoglycosides, tetracycline and sulfonamides. There were 128 VFGs, including genes encoding the AdeFGH efflux pump, lipopolysaccharide (LpsBLC), outer membrane protein A (OmpA), penicillin-binding protein (PbpG), biofilm-associated proteins (bap, pgaBCD, CsuABCDE), type VI secretion system protein (Tss), quorum sensing protein (AbaI/AbaR). Six clonal lineages were identified by Oxford MLST method, whereas one sequence type (ST2) was identified using the Pasteur MLST method. ANI analysis, heat map of SNP analysis, and phylogenetic tree based on core SNP revealed six clusters, and the strain classification results were consistent with these different methods. Ten clonal lineages were identified by cgMLST. Conclusion The CRAB strains were ST2 clones accompanied by severe resistance to commonly used antibiotics and abundant ARGs and VFGs in genotype. Strict measures should be implemented to prevent and control transmissions and infections. CgMLST and SNPs analyses showed excellent discriminatory power in homology analysis.
Collapse
Affiliation(s)
- Lili Liu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yuan Huang
- Department of Science and Education, Anqing Municipal Hospital, Anqing City, Anhui Province, People’s Republic of China
| | - Yaping Wang
- Department of Clinical Laboratory, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yunlan Jiang
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Kang Liu
- Department of Clinical Laboratory, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Zhongxia Pei
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Zhiping Li
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yuqiong Zhu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Dan Liu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Xiaoyue Li
- Subdean Office, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| |
Collapse
|
6
|
Hummel D, Juhasz J, Kamotsay K, Kristof K, Xavier BB, Koster SD, Szabo D, Kocsis B. Genomic Investigation and Comparative Analysis of European High-Risk Clone of Acinetobacter baumannii ST2. Microorganisms 2024; 12:2474. [PMID: 39770677 PMCID: PMC11728346 DOI: 10.3390/microorganisms12122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is a major concern in healthcare institutions worldwide. Several reports described the dissemination of A. baumannii high-risk clones that are responsible for a high number of difficult-to-treat infections. In our study, 19 multidrug-resistant A. baumannii strains from Budapest, Hungary, were investigated based on whole-genome sequencing (WGS). The obtained results were analysed together with data from 433 strains of A. baumannii from the Pathogenwatch database. WGS analysis of 19 A. baumannii strains detected that 12 belonged to ST2 and seven belonged to ST636. Among ST2 strains, 11 out of 12 carried either blaOXA-23 or blaOXA-58 genes; however, all strains of ST636 uniformly carried blaOXA-72 gene. All strains of ST2 and ST636 carried blaOXA-66 and blaADC-25 genes. Based on core genome multilocus sequence typing (cgMLST), 10 strains of ST2 belonged to cgMLST906, one strain to cgMLST458, and one strain to cgMLST1320; by contrast, all strains of ST636 belonged to cgMLST1178. Certain virulence determinants were present in all strains of both ST2 and ST636, namely, Ata, Bap, BfmRS, T2SS and PNAG. Interestingly, OmpA was present in all strains of ST2, but it was absent in all strains of ST636. Comparative analysis of 19 strains of this study and the collection of 433 isolates from Pathogenwatch database, proved a diverse clonal distribution of high-risk A. baumannii clones in Europe. The major clone in Europe is ST2, which is present all over the continent. However, ST636 has been mainly reported in Eastern Europe. Interestingly, cgMLSTs of ST2 correspond to the production of different beta-lactamases, namely, OXA-82 in cgMLST116, OXA-72 in cgMLST506, and cgMLST556, PER-1 in cgMLST456 and cgMLST1041. Our study demonstrates that the ST2 high-risk clone of A. baumannii is the most widespread in Europe; however, based on cgMLST analysis, a detailed detection of beta-lactamase production can be determined.
Collapse
Affiliation(s)
- David Hummel
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Janos Juhasz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Katalin Kamotsay
- Central Microbiology Laboratory, National Institute of Hematology and Infectious Disease, Central Hospital of Southern-Pest, 1097 Budapest, Hungary
| | - Katalin Kristof
- Institute of Laboratory Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Antwerpen, Belgium
- Department of Medical Microbiology and Infection Control, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Sien De Koster
- Microbiology Department, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary
- Department of Neurosurgical and Neurointervention, Semmelweis University, 1085 Budapest, Hungary
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
7
|
Domingues R, Oliveira R, Silva S, Araújo D, Almeida C, Cho GS, Franz CMAP, Saavedra MJ, Azeredo J, Oliveira H. Molecular Detection of Carbapenemases in Acinetobacter baumannii Strains of Portugal and Association With Sequence Types, Capsular Types, and Virulence. Clin Ther 2024; 46:e9-e15. [PMID: 39384436 DOI: 10.1016/j.clinthera.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Carbapenem-resistant Acinetobacter baumannii (CRAB) is an important nosocomial pathogen. The capsular type (K-type) is considered a major virulence factor, contributing to the evasion of host defenses. The global spread and dissemination dynamics between K-types, sequence types (ST), antibiotic resistance genes, and virulence factors remain largely unknown in Portugal. METHODS A collection of 96 CRAB clinical samples collected between 2005 and 2019 in the northern region of Portugal were tested for antimicrobial susceptibility profile and screened by polymerase chain reaction for resistance genetic determinants. A subset of 26 representative isolates was subjected to whole-genome sequencing to assess K types, ST types, and genomic relatedness. The pathogenicity of distinct K-types was also tested using Galleria mellonella model. FINDINGS For the 96 CRAB isolates analyzed, high antimicrobial resistance (>90%) was observed to the carbapenems, fluoroquinolones, and miscellaneous agents. Greater antimicrobial susceptibility (∼30%-57%) was observed for aminoglycosides, particularly tobramycin, and amikacin. Genotypically, 75 strains (78.5%) carried blaOXA-23-like, 18 strains (18.8%) carried blaIMP-like, and 11 strains (14.9%) carried blaOXA-40-like carbapenem resistance genes, respectively. Associations between OXA and ST/capsular locus (KL) types were observed over the years (eg, OXA-40-like/ST46Past/KL120 and OXA-23-like/ST2Past/KL2). ST2Past of clonal complex II was present in most strains, a dominant drug-resistant lineage in the United States and Europe. KL7 was also the most prevalent KL-type (38.5%), followed by KL2 (34.6%), KL120 (23.1%), and KL9 (3.8%). Virulence assessment for different K-types in a Galleria mellonella model revealed a significantly increased virulence for KL120 when compared with KL7, KL9, and KL2. IMPLICATIONS There are specific CRAB serotypes circulating in Portugal, accounting by the low diversity of acquired carbapenemase genes (OXA-23-like and OXA-40-like), ST types (ST2 and ST46) and KL types (KL2, KL7, KL9, and KL120) identified. The high prevalent of ST2, especially when associated with KL2 and blaOXA-23-like, suggest that antibiotic resistance has been driven by clonal expansion of clonal complex II. Such findings provide useful information on the diversity of multidrug-resistant bacterium that might be relevant for antibacterial interventions.
Collapse
Affiliation(s)
- Rita Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Silva
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal; INIAV, IP - National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Daniela Araújo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal; INIAV, IP - National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Carina Almeida
- INIAV, IP - National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Maria José Saavedra
- Department of Veterinary Sciences, A2B Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences and Inov4Agro, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; CECAV - Animal and Veterinary Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Boonyalai N, Peerapongpaisarn D, Thamnurak C, Oransathid W, Wongpatcharamongkol N, Oransathid W, Lurchachaiwong W, Griesenbeck JS, Waters NC, Demons ST, Ruamsap N, Vesely BA. Screening of the Pandemic Response Box library identified promising compound candidate drug combinations against extensively drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:21709. [PMID: 39289446 PMCID: PMC11408719 DOI: 10.1038/s41598-024-72603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Infections caused by antimicrobial-resistant Acinetobacter baumannii pose a significant threat to human health, particularly in the context of hospital-acquired infections. As existing antibiotics lose efficacy against Acinetobacter isolates, there is an urgent need for the development of novel antimicrobial agents. In this study, we assessed 400 structurally diverse compounds from the Medicines for Malaria Pandemic Response Box for their activity against two clinical isolates of A. baumannii: A. baumannii 5075, known for its extensive drug resistance, and A. baumannii QS17-1084, obtained from an infected wound in a Thai patient. Among the compounds tested, seven from the Pathogen box exhibited inhibitory effects on the in vitro growth of A. baumannii isolates, with IC50s ≤ 48 µM for A. baumannii QS17-1084 and IC50s ≤ 17 µM for A. baumannii 5075. Notably, two of these compounds, MUT056399 and MMV1580854, shared chemical scaffolds resembling triclosan. Further investigations involving drug combinations identified five synergistic drug combinations, suggesting potential avenues for therapeutic development. The combination of MUT056399 and brilacidin against A. baumannii QS17-1084 and that of MUT056399 and eravacycline against A. baumannii 5075 showed bactericidal activity. These combinations significantly inhibited biofilm formation produced by both A. baumannii strains. Our findings highlight the drug combinations as promising candidates for further evaluation in murine wound infection models against multidrug-resistant A. baumannii. These compounds hold potential for addressing the critical need for effective antibiotics in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Dutsadee Peerapongpaisarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wilawan Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nantanat Wongpatcharamongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wirote Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Woradee Lurchachaiwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Division of Global Health Protection, Thailand MoPH-US CDC Collaboration, Nonthaburi, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Samandra T Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
9
|
Saikia S, Gogoi I, Oloo A, Sharma M, Puzari M, Chetia P. Co-production of metallo-β-lactamase and OXA-type β-lactamases in carbapenem-resistant Acinetobacter baumannii clinical isolates in North East India. World J Microbiol Biotechnol 2024; 40:167. [PMID: 38630176 DOI: 10.1007/s11274-024-03977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii poses a significant threat to public health globally, especially due to its ability to produce multiple carbapenemases, leading to treatment challenges. This study aimed to investigate the antibiotic resistance pattern of carbapenem-resistant A. baumannii isolates collected from different clinical settings in North East India, focusing on their genotypic and phenotypic resistance profiles. A total of 172 multidrug-resistant A. baumannii isolates were collected and subjected to antibiotic susceptibility test using the Kirby-Bauer disk diffusion method. Various phenotypic tests were performed to detect extended-spectrum β-lactamase (ESBL), metallo-β-lactamase (MBL), class C AmpC β-lactamase (AmpC), and carbapenem hydrolyzing class D β-lactamase (CHDL) production among the isolates. Overexpression of carbapenemase and cephalosporinase genes was detected among the isolates through both phenotypic and genotypic investigation. The antibiotic resistance profile of the isolates revealed that all were multidrug-resistant; 25% were extensively drug-resistant, 9.30% were pan-drug-resistant, whereas 91.27% were resistant to carbapenems. In the genotypic investigation, 80.81% of isolates were reported harbouring at least one metallo-β-lactamase encoding gene, with blaNDM being the most prevalent at 70.34%, followed by blaIMP at 51.16% of isolates. Regarding class D carbapenemases, blaOXA-51 and blaOXA-23 genes were detected in all the tested isolates, while blaOXA-24, blaOXA-48, and blaOXA-58 were found in 15.11%, 6.97%, and 1.74% isolates respectively. Further analysis showed that 31.97% of isolates co-harboured ESBL, MBL, AmpC, and CHDL genes, while 31.39% of isolates co-harboured ESBL, MBL, and CHDL genes with or without ISAba1 leading to extensively drug-resistant or pan drug-resistant phenotypes. This study highlights the complex genetic profile and antimicrobial-resistant pattern of the isolates circulating in North East India, emphasizing the urgent need for effective infection control measures and the development of alternative treatment strategies to combat these challenging pathogens.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Indrani Gogoi
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Amos Oloo
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Mohan Sharma
- Integrated Molecular Diagnostic and Research Laboratory (BSL-2), District Hospital Tuensang, Tuensang, Nagaland, 798612, India
| | - Minakshi Puzari
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Pankaj Chetia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
10
|
Santerre Henriksen A, Jeannot K, Oliver A, Perry JD, Pletz MW, Stefani S, Morrissey I, Longshaw C, ARTEMIS Study Investigators WillingerBirgitLeysseneDavidCattoenChristianAlauzetCorentineBoyerPierreDuboisVéroniqueJeannotKatyCorvecStephaneLavigneJean-PhilippeGuillardThomasGontierAudrey MerensNaasThierryRohdeHolgerZiesingStefanImirzaliogluCanHunfeldKlaus-PeterJungJetteGatermannSörenPletzMathiasBiancoGabrieleGiammancoAnnaCarcioneDavideRaponiGiammarcoMatinatoCaterinaDomenicoEnea Gino DiGaibaniPaoloMarcheseAnnaArenaFabioNiccolaiClaudiaStefaniStefaniaPitartCristinaBarriosJose LuisCercenadoEmiliaBouGermanLopezAlicia BetetaCantonRafaelHontangasJose LopezGracia-AhufingerIreneOliverAntonioLopez-CereroLorenaLarrosaNievesWarehamDavidPerryJohnCaseyAnnaNahlJasvirHughesDanielCoyneMichaelListerMichelleAttwoodMarie. In vitro activity of cefiderocol against European Pseudomonas aeruginosa and Acinetobacter spp., including isolates resistant to meropenem and recent β-lactam/β-lactamase inhibitor combinations. Microbiol Spectr 2024; 12:e0383623. [PMID: 38483164 PMCID: PMC10986614 DOI: 10.1128/spectrum.03836-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and β-lactam/β-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than β-lactam/β-lactamase inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), β-lactam/β-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-45.0%) or ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acinetobacter spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n = 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common β-lactamase genes were metallo-β-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired β-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent β-lactam/β-lactamase inhibitor combinations common in first-line treatment of European non-fermenters. IMPORTANCE This was the first study in which the in vitro activity of cefiderocol and non-licensed β-lactam/β-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and β-lactam/β-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and β-lactam/β-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with β-lactam/β-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.
Collapse
Affiliation(s)
| | - Katy Jeannot
- Laboratory of Bacteriology, University Hospital of Besançon, University of Franche-Comté, Besançon, France
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma de Mallorca, Spain
| | - John D. Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ian Morrissey
- Antimicrobial Focus Ltd., Sawbridgeworth, United Kingdom
| | | | - ARTEMIS Study InvestigatorsWillingerBirgitLeysseneDavidCattoenChristianAlauzetCorentineBoyerPierreDuboisVéroniqueJeannotKatyCorvecStephaneLavigneJean-PhilippeGuillardThomasGontierAudrey MerensNaasThierryRohdeHolgerZiesingStefanImirzaliogluCanHunfeldKlaus-PeterJungJetteGatermannSörenPletzMathiasBiancoGabrieleGiammancoAnnaCarcioneDavideRaponiGiammarcoMatinatoCaterinaDomenicoEnea Gino DiGaibaniPaoloMarcheseAnnaArenaFabioNiccolaiClaudiaStefaniStefaniaPitartCristinaBarriosJose LuisCercenadoEmiliaBouGermanLopezAlicia BetetaCantonRafaelHontangasJose LopezGracia-AhufingerIreneOliverAntonioLopez-CereroLorenaLarrosaNievesWarehamDavidPerryJohnCaseyAnnaNahlJasvirHughesDanielCoyneMichaelListerMichelleAttwoodMarie
- Medical Affairs, Shionogi B.V., London, United Kingdom
- Laboratory of Bacteriology, University Hospital of Besançon, University of Franche-Comté, Besançon, France
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma de Mallorca, Spain
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Antimicrobial Focus Ltd., Sawbridgeworth, United Kingdom
| |
Collapse
|
11
|
Wang M, Ge L, Chen L, Komarow L, Hanson B, Reyes J, Cober E, Alenazi T, Zong Z, Xie Q, Liu Z, Li L, Yu Y, Gao H, Kanj SS, Figueroa J, Herc E, Cordova E, Weston G, Ananth Tambyah P, Garcia-Diaz J, Kaye KS, Dhar S, Munita JM, Salata RA, Vilchez S, Stryjewski ME, Villegas Botero MV, Iovleva A, Evans SR, Baum K, Hill C, Kreiswirth BN, Patel R, Paterson DL, Arias CA, Bonomo RA, Chambers HF, Fowler VG, Satlin MJ, van Duin D, Doi Y. Clinical Outcomes and Bacterial Characteristics of Carbapenem-resistant Acinetobacter baumannii Among Patients From Different Global Regions. Clin Infect Dis 2024; 78:248-258. [PMID: 37738153 PMCID: PMC10874260 DOI: 10.1093/cid/ciad556] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.
Collapse
Affiliation(s)
- Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China,Shanghai, China
| | - Lizhao Ge
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Lauren Komarow
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Blake Hanson
- Center for Infectious Diseases and Microbial Genomics, UTHealth, McGovern School of Medicine at Houston, Houston, Texas, USA
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Eric Cober
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Thamer Alenazi
- College of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Qing Xie
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhengyin Liu
- Infectious Disease Section, Department of Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hainv Gao
- Department of Infectious Diseases, Shulan Hangzhou Hospital, Hangzhou, China
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jairo Figueroa
- Department of Infectious Diseases, Hospital Universitario Erasmo Meoz ESE, Cúcuta, Colombia
| | - Erica Herc
- Division of Infectious Diseases, Department of Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ezequiel Cordova
- Infectious Diseases Unit, Hospital Cosme Argerich de Buenos Aires, Buenos Aires, Argentina
| | - Gregory Weston
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Paul Ananth Tambyah
- Infectious Diseases Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Julia Garcia-Diaz
- Division of Infectious Diseases, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Keith S Kaye
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Allergy, Immunology and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Sorabh Dhar
- Division of Infectious Disease, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jose M Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Instituto de Ciencias e Innovación en Medicina, Facultad de Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Robert A Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Samuel Vilchez
- Center for Infectious Disease Research, Department of Microbiology and Parasitology, School of Medicine, National Autonomous University of Nicaragua, Leon, Nicaragua
| | - Martin E Stryjewski
- Department of Medicine and Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | | | - Alina Iovleva
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott R Evans
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China,Shanghai, China
- Department of Biostatics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Keri Baum
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carol Hill
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David L Paterson
- Department of Infectious Diseases, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Center for Infectious Diseases Research, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Western Reserve University VA Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Henry F Chambers
- Department of Medicine, University of California SanFrancisco, San Francisco, California, USA
| | - Vance G Fowler
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael J Satlin
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - David van Duin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
12
|
Sabour S, Bantle K, Bhatnagar A, Huang JY, Biggs A, Bodnar J, Dale JL, Gleason R, Klein L, Lasure M, Lee R, Nazarian E, Schneider E, Smith L, Snippes Vagnone P, Therrien M, Tran M, Valley A, Wang C, Young EL, Lutgring JD, Brown AC. Descriptive analysis of targeted carbapenemase genes and antibiotic susceptibility profiles among carbapenem-resistant Acinetobacter baumannii tested in the Antimicrobial Resistance Laboratory Network-United States, 2017-2020. Microbiol Spectr 2024; 12:e0282823. [PMID: 38174931 PMCID: PMC10845962 DOI: 10.1128/spectrum.02828-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacillus that can cause severe and difficult-to-treat healthcare-associated infections. A. baumannii can harbor mobile genetic elements carrying genes that produce carbapenemase enzymes, further limiting therapeutic options for infections. In the United States, the Antimicrobial Resistance Laboratory Network (AR Lab Network) conducts sentinel surveillance of carbapenem-resistant Acinetobacter baumannii (CRAB). Participating clinical laboratories sent CRAB isolates to the AR Lab Network for characterization, including antimicrobial susceptibility testing and molecular detection of class A (Klebsiella pneumoniae carbapenemase), class B (Active-on-Imipenem, New Delhi metallo-β-lactamase, and Verona integron-encoded metallo-β-lactamase), and class D (Oxacillinase, blaOXA-23-like, blaOXA-24/40-like, blaOXA-48-like, and blaOXA-58-like) carbapenemase genes. During 2017‒2020, 6,026 CRAB isolates from 45 states were tested for targeted carbapenemase genes; 1% (64 of 5,481) of CRAB tested for targeted class A and class B genes were positive, but 83% (3,351 of 4,041) of CRAB tested for targeted class D genes were positive. The number of CRAB isolates carrying a class A or B gene increased from 2 of 312 (<1%) tested in 2017 to 26 of 1,708 (2%) tested in 2020. Eighty-three percent (2,355 of 2,846) of CRAB with at least one of the targeted carbapenemase genes and 54% (271 of 500) of CRAB without were categorized as extensively drug resistant; 95% (42 of 44) of isolates carrying more than one targeted gene had difficult-to-treat susceptibility profiles. CRAB isolates carrying targeted carbapenemase genes present an emerging public health threat in the United States, and their rapid detection is crucial to improving patient safety.IMPORTANCEThe Centers for Disease Control and Prevention has classified CRAB as an urgent public health threat. In this paper, we used a collection of >6,000 contemporary clinical isolates to evaluate the phenotypic and genotypic properties of CRAB detected in the United States. We describe the frequency of specific carbapenemase genes detected, antimicrobial susceptibility profiles, and the distribution of CRAB isolates categorized as multidrug resistant, extensively drug-resistant, or difficult to treat. We further discuss the proportion of isolates showing susceptibility to Food and Drug Administration-approved agents. Of note, 84% of CRAB tested harbored at least one class A, B, or D carbapenemase genes targeted for detection and 83% of these carbapenemase gene-positive CRAB were categorized as extensively drug resistant. Fifty-four percent of CRAB isolates without any of these carbapenemase genes detected were still extensively drug-resistant, indicating that infections caused by CRAB are highly resistant and pose a significant risk to patient safety regardless of the presence of one of these carbapenemase genes.
Collapse
Affiliation(s)
- Sarah Sabour
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katie Bantle
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amelia Bhatnagar
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer Y. Huang
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Angela Biggs
- Maryland Department of Health, Baltimore, Maryland, USA
| | | | | | - Rachel Gleason
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Liore Klein
- Maryland Department of Health, Baltimore, Maryland, USA
| | - Megan Lasure
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Rachel Lee
- Texas Department of State Health Services, Austin, Texas, USA
| | | | - Emily Schneider
- Washington State Department of Health Public Health Laboratories, Shoreline, Washington, USA
| | - Lori Smith
- Utah Public Health Laboratory, Taylorsville, Utah, USA
| | | | | | - Michael Tran
- Washington State Department of Health Public Health Laboratories, Shoreline, Washington, USA
| | - Ann Valley
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Chun Wang
- Texas Department of State Health Services, Austin, Texas, USA
| | - Erin L. Young
- Utah Public Health Laboratory, Taylorsville, Utah, USA
| | - Joseph D. Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Allison C. Brown
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Baleivanualala SC, Isaia L, Devi SV, Howden B, Gorrie CL, Matanitobua S, Sharma S, Wilson D, Kumar S, Maharaj K, Beatson S, Boseiwaqa LV, Dyet K, Crump JA, Hill PC, Ussher JE. Molecular and clinical epidemiology of carbapenem resistant Acinetobacter baumannii ST2 in Oceania: a multicountry cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100896. [PMID: 38116498 PMCID: PMC10730321 DOI: 10.1016/j.lanwpc.2023.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 12/21/2023]
Abstract
Background Carbapenem resistant Acinetobacter baumannii (CRAb) is categorised by the World Health Organization (WHO) as a pathogen of critical concern. However, little is known about CRAb transmission within the Oceania region. This study addresses this knowledge gap by using molecular epidemiology to characterise the phylogenetic relationships of CRAb isolated in hospitals in Fiji, Samoa, and other countries within the Oceania region including Australia and New Zealand, and India from South Asia. Methods In this multicountry cohort study, we analysed clinical isolates of CRAb collected from the Colonial War Memorial Hospital (CWMH) in Fiji from January through December 2019 (n = 64) and Tupua Tamasese Mea'ole Hospital (TTMH) in Samoa from November 2017 through June 2021 (n = 32). All isolates were characterised using mass spectrometry, antimicrobial susceptibility testing, and whole-genome sequencing. For CWMH, data were collected on clinical and demographic characteristics of patients with CRAb, duration of hospital stay, mortality and assessing the appropriateness of meropenem use from the treated patients who had CRAb infections. To provide a broader geographical context, CRAb strains from Fiji and Samoa were compared with CRAb sequences from Australia collected in 2016-2018 (n = 22), New Zealand in 2018-2021 (n = 13), and India in 2019 (n = 58), a country which has close medical links with Fiji. Phylogenetic relationships of all these CRAb isolates were determined using differences in core genome SNPs. Findings Of CRAb isolates, 49 (77%) of 64 from Fiji and all 32 (100%) from Samoa belonged to CRAb sequence type 2 (ST2). All ST2 isolates from both countries harboured blaOXA-23, blaOXA-66 and ampC-2 genes, mediating resistance to β-lactam antimicrobials, including cephalosporins and carbapenems. The blaOXA-23 gene was associated with two copies of ISAba1 insertion element, forming the composite transposon Tn2006, on the chromosome. Two distinct clusters (group 1 and group 2) of CRAb ST2 were detected in Fiji. The first group shared common ancestral linkage to all CRAb ST2 collected from Fiji's historic outbreak in 2016/2017, Samoa, Australia and 54% of total New Zealand isolates; they formed a single cluster with a median (range) SNP difference of 13 (0-102). The second group shared common ancestral linkage to 3% of the total CRAb ST2 isolated from India. Fifty eight of the 64 patients with CRAb infections at the CWMH had their first positive CRAb sample collected 72 h or more following admission. Meropenem use was deemed inappropriate in 15 (48%) of the 31 patients that received treatment with meropenem in Fiji. Other strains of CRAb ST1, ST25, ST107, and ST1112 were also detected in Fiji. Interpretation We identified unrecognised outbreaks of CRAb ST2 in Fiji and Samoa that linked to strains in other parts of Oceania and South Asia. The existence of Tn2006, containing the blaOXA-23 and ISAba1 insertion element, within CRAb ST2 from Fiji and Samoa indicates the potential for high mobility and dissemination. This raises concerns about unmitigated prolonged outbreaks of CRAb ST2 in the two major hospitals in Fiji and Samoa. Given the magnitude of this problem, there is a need to re-evaluate the current strategies used for infection prevention and control, antimicrobial stewardship, and public health measures locally and internationally. Moreover, a collaborative approach to AMR surveillance within the Oceania region with technical, management and budgetary support systems is required to prevent introduction and control transmission of these highly problematic strains within the island nation health systems. Funding This project was funded by an Otago Global Health Institute seed grant and Maurice Wilkins Centre of Research Excellence (CoREs) grant (SC0000169653, RO0000002300).
Collapse
Affiliation(s)
- Sakiusa C. Baleivanualala
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
| | - Lupeoletalalelei Isaia
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
- Tupua Tamasese Mea'ole Hospital, Apia, Samoa
| | - Swastika V. Devi
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
| | - Benjamin Howden
- Microbiological Diagnostic Unit, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Claire L. Gorrie
- Microbiological Diagnostic Unit, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | | | | | - Donald Wilson
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
| | | | | | - Scott Beatson
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Kristin Dyet
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| | - John A. Crump
- Otago Global Health Institute, University of Otago, Dunedin 9054, New Zealand
| | - Philip C. Hill
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
- Otago Global Health Institute, University of Otago, Dunedin 9054, New Zealand
| | - James E. Ussher
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
- Southern Community Laboratories, Dunedin Hospital, Dunedin 9016, New Zealand
| |
Collapse
|
14
|
Prity FT, Tobin LA, Maharajan R, Paulsen IT, Cain AK, Hamidian M. The evolutionary tale of eight novel plasmids in a colistin-resistant environmental Acinetobacter baumannii isolate. Microb Genom 2023; 9:mgen001010. [PMID: 37171842 PMCID: PMC10272872 DOI: 10.1099/mgen.0.001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 05/13/2023] Open
Abstract
Acinetobacter baumannii is an important opportunistic pathogen known for its high levels of resistance to many antibiotics, particularly those considered last resorts such as colistin and carbapenems. Plasmids of this organism are increasingly associated with the spread of clinically important antibiotic resistance genes. Although A. baumannii is a ubiquitous organism, to date, most of the focus has been on studying strains recovered from clinical samples ignoring those isolated in the environment (soil, water, food, etc.). Here, we analysed the genetic structures of eight novel plasmids carried by an environmental colistin-resistant A. baumannii (strain E-072658) recovered in a recycled fibre pulp in a paper mill in Finland. It was shown that E-072658 carries a new variant of the mcr-4 colistin resistance gene (mcr-4.7) in a novel Tn3-family transposon (called Tn6926) carried by a novel plasmid p8E072658. E-072658 is also resistant to sulphonamide compounds; consistent with this, the sul2 sulphonamide resistance gene was found in a pdif module. E-072658 also carries six additional plasmids with no antibiotic resistance genes, but they contained several pdif modules shared with plasmids carried by clinical strains. Detailed analysis of the genetic structure of all eight plasmids carried by E-072658 showed a complex evolutionary history revealing genetic exchange events within the genus Acinetobacter beyond the clinical or environmental origin of the strains. This work provides evidence that environmental strains might act as a source for some of the clinically significant antibiotic resistance genes.
Collapse
Affiliation(s)
- Farzana T. Prity
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Liam A. Tobin
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ram Maharajan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
15
|
Strateva TV, Sirakov I, Stoeva TJ, Stratev A, Peykov S. Phenotypic and Molecular Characteristics of Carbapenem-Resistant Acinetobacter baumannii Isolates from Bulgarian Intensive Care Unit Patients. Microorganisms 2023; 11:microorganisms11040875. [PMID: 37110301 PMCID: PMC10141887 DOI: 10.3390/microorganisms11040875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is designated as an urgent public health threat, both due to its remarkable multidrug resistance and propensity for clonal spread. This study aimed to explore the phenotypic and molecular characteristics of antimicrobial resistance in CRAB isolates (n = 73) from intensive care unit (ICU) patients in two university hospitals in Bulgaria (2018–2019). The methodology included antimicrobial susceptibility testing, PCR, whole-genome sequencing (WGS), and phylogenomic analysis. The resistance rates were as follows: imipenem, 100%; meropenem, 100%; amikacin, 98.6%; gentamicin, 89%; tobramycin, 86.3%; levofloxacin, 100%; trimethoprim–sulfamethoxazole, 75.3%; tigecycline, 86.3%; colistin, 0%; and ampicillin–sulbactam, 13.7%. All isolates harbored blaOXA-51-like genes. The frequencies of distribution of other antimicrobial resistance genes (ARGs) were: blaOXA-23-like, 98.6%; blaOXA-24/40-like, 2.7%; armA, 86.3%; and sul1, 75.3%. The WGS of selected extensively drug-resistant A. baumannii (XDR-AB) isolates (n = 3) revealed the presence of OXA-23 and OXA-66 carbapenem-hydrolyzing class D β-lactamases in all isolates, and OXA-72 carbapenemase in one of them. Various insertion sequencies, such as ISAba24, ISAba31, ISAba125, ISVsa3, IS17, and IS6100, were also detected, providing increased ability for horizontal transfer of ARGs. The isolates belonged to the widespread high-risk sequence types ST2 (n = 2) and ST636 (n = 1) (Pasteur scheme). Our results show the presence of XDR-AB isolates, carrying a variety of ARGs, in Bulgarian ICU settings, which highlights the crucial need for nationwide surveillance, especially in the conditions of extensive antibiotic usage during COVID-19.
Collapse
|
16
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
17
|
Kabic J, Novovic K, Kekic D, Trudic A, Opavski N, Dimkic I, Jovcic B, Gajic I. Comparative genomics and molecular epidemiology of colistin-resistant Acinetobacter baumannii. Comput Struct Biotechnol J 2022; 21:574-585. [PMID: 36659926 PMCID: PMC9816908 DOI: 10.1016/j.csbj.2022.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the prevalence and resistance mechanisms of colistin-resistant Acinetobacter baumannii (ColRAB) isolates in Serbia, assess their genetic relatedness to other circulating A. baumannii isolates in the neighbouring European countries, and analyse the global genomic epidemiology of ColRAB isolates. A total of 784 isolates of A. baumannii were recovered from hospitalised patients in Serbia between 2018 and 2021. The antimicrobial susceptibility testing was performed using disk diffusion and broth microdilution. All ColRAB isolates were subjected to DNA isolation and whole-genome sequencing (WGS). Overall, 3.94 % (n = 30) isolates were confirmed as ColRAB. Results of mutational and transcriptional analysis of genes associated with colistin resistance indicate the central role of the two-component regulating system, PmrAB, and increased expression of the pmrC gene in ColRAB. Most of the isolates (n = 29, 96.6 %) belonged to international clone II, with the most common sequence type being STPas2 (n = 23, 76.6 %). Based on the WGS analysis, ColRAB isolates belonging to the same ST isolated in various countries were grouped into the same clusters, indicating the global dissemination of several high-risk clonal lineages. Phylogenomic analysis of ColRAB isolates, together with all previously published A. baumannii genomes from South-Eastern European countries, showed that colistin resistance arose independently in several clonal lineages. Comparative genomic analysis revealed multiple genes with various roles (transcriptional regulation, transmembrane transport, outer membrane assembly, etc.), which might be associated with colistin resistance in A. baumannii. The obtained findings serve as the basis for further studies, contributing to a better understanding of colistin resistance mechanisms in A. baumannii.
Collapse
Affiliation(s)
- Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Katarina Novovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Anika Trudic
- Department of Microbiology, Faculty of Medicine, University of Novi Sad, 21000, Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, 21204, Sremska Kamenica, Serbia
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Ivica Dimkic
- Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Branko Jovcic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
- Correspondence to: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Faculty of Biology, University of Belgrade Studentski trg 16, 11000 Belgrade, Serbia.
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Correspondence to: Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade Dr Subotica 1, 11000 Belgrade, Serbia.
| |
Collapse
|
18
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
19
|
In Vitro Activity of Sulbactam-Durlobactam against Global Isolates of Acinetobacter baumannii- calcoaceticus Complex Collected from 2016 to 2021. Antimicrob Agents Chemother 2022; 66:e0078122. [PMID: 36005804 PMCID: PMC9487466 DOI: 10.1128/aac.00781-22] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sulbactam-durlobactam is a β-lactam-β-lactamase inhibitor combination designed to treat serious Acinetobacter baumannii-calcoaceticus complex (ABC) infections, including carbapenem-non-susceptible and multidrug-resistant (MDR) isolates. The current study characterized the in vitro activity of sulbactam-durlobactam against a collection of 5,032 ABC clinical isolates collected in 33 countries across the Asia/South Pacific region, Europe, Latin America, the Middle East, and North America from 2016 to 2021. The sulbactam-durlobactam MIC50 and MIC90 were 1 and 2 μg/mL, respectively, for all ABC isolates tested. The addition of durlobactam (at a fixed concentration of 4 μg/mL) to sulbactam decreased its MIC50 by 8-fold (from 8 to 1 μg/mL) and its MIC90 by 32-fold (from 64 to 2 μg/mL) for all ABC isolates. The in vitro activity of sulbactam-durlobactam was maintained across individual ABC species, years, global regions of collection, specimen sources, and resistance phenotypes, including MDR and extensively drug-resistant (XDR) isolates. At 4 μg/mL (preliminary sulbactam-durlobactam susceptible MIC breakpoint), sulbactam-durlobactam inhibited 98.3% of all ABC isolates and >96% of sulbactam-, imipenem-, ciprofloxacin-, amikacin-, and minocycline-non-susceptible isolates; as well as colistin-resistant, MDR, and XDR isolates. Most imipenem-non-susceptible ABC isolates (96.8%, 2,488/2,570) were carbapenem-resistant A. baumannii (CRAB); 96.9% (2,410/2,488) of CRAB isolates were sulbactam-durlobactam-susceptible. More than 80% of ABC isolates had sulbactam-durlobactam MIC values that were ≥2 doubling-dilutions (4-fold) lower than sulbactam alone. Only 1.7% (84/5,032) of ABC isolates from 2016 to 2021 had sulbactam-durlobactam MIC values of >4 μg/mL. Of the 84 isolates, 94.0% were A. baumannii, 4.8% were A. pittii, and 1.2% were A. nosocomialis. In summary, sulbactam-durlobactam demonstrated potent antibacterial activity against a 2016 to 2021 collection of geographically diverse clinical isolates of ABC isolates, including carbapenem-non-susceptible and MDR isolates.
Collapse
|
20
|
Whole-Genome Sequencing of ST2 A. baumannii Causing Bloodstream Infections in COVID-19 Patients. Antibiotics (Basel) 2022; 11:antibiotics11070955. [PMID: 35884209 PMCID: PMC9311945 DOI: 10.3390/antibiotics11070955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
A total of 43 A. baumannii strains, isolated from 43 patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and by bacterial sepsis, were analyzed by antimicrobial susceptibility testing. All strains were resistant to almost three different classes of antibiotics, including carbapenems and colistin. The whole-genome sequencing (WGS) of eight selected A. baumannii isolates showed the presence of different insertion sequences (ISs), such as ISAba13, ISAba26, IS26, ISVsa3, ISEc29, IS6100 and IS17, giving to A. baumannii a high ability to capture and mobilize antibiotic resistance genes. Resistance to carbapenems is mainly mediated by the presence of OXA-23, OXA-66 and OXA-82 oxacillinases belonging to OXA-51-like enzymes. The presence of AmpC cephalosporinase, ADC-25, was identified in all A. baumannii. The pathogenicity of A. baumannii was exacerbated by the presence of several virulence factors. The multi-locus sequence typing (MLST) analysis showed that all strains belong to sequence type 2 (ST) international clone.
Collapse
|
21
|
Ušjak D, Novović K, Filipić B, Kojić M, Filipović N, Stevanović MM, Milenković MT. In vitro colistin susceptibility of pandrug-resistant Acinetobacter baumannii is restored in the presence of selenium nanoparticles. J Appl Microbiol 2022; 133:1197-1206. [PMID: 35612566 DOI: 10.1111/jam.15638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the synergistic activity of colistin and selenium nanoparticles (SeNPs) against pandrug-resistant (PDR) Acinetobacter baumannii. METHODS AND RESULTS Chequerboard and time-kill assays were employed to explore the potential synergistic interactions between colistin and SeNPs against A. baumannii isolates (8), previously determined as colistin-resistant (MIC range 16-256 μg ml-1 ). Also, whole-genome sequencing (WGS) and gene expression analyses were used to elucidate the mechanisms of colistin resistance. Exceptionally strong synergistic activity (FICI range 0.004-0.035) of colistin and SeNPs against colistin-resistant isolates was revealed. Colistin (0.5 or 1 μg ml-1 ) used in combination with SeNPs (0.5 μg ml-1 ) was able to reduce initial inoculum during the first 4 h of incubation, in contrast to colistin (0.5, 1 or 2 μg ml-1 ) alone. CONCLUSIONS These findings propose colistin/SeNPs combination as a new option to fight PDR A. baumannii, the therapeutic possibilities of which should be proved in future in vivo studies. SIGNIFICANCE AND IMPACT OF STUDY Here we present the first evidence of synergy between colistin and selenium compounds against bacteria in general. Also, WGS and gene expression analyses provide some new insights into A. baumannii colistin resistance mechanisms.
Collapse
Affiliation(s)
- Dušan Ušjak
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Katarina Novović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.,Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Magdalena M Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marina T Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Alahadeb JI. Inhibitory potentials of Streptomyces exfoliatus strain 'MUJA10' against bacterial pathogens isolated from rural areas in Riyadh, Saudi Arabia. PLoS One 2022; 17:e0266297. [PMID: 35421124 PMCID: PMC9009647 DOI: 10.1371/journal.pone.0266297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Healthcare-associated infections are resulting in human morbidity and mortality worldwide. These infections are directly proportional to increased multidrug resistance (MDR), which limits antibiotic treatment and make the treatment of infections challenging. Streptomyces spp. are well known to produce various biologically active compounds. Therefore, these are considered as promising biological control agents against wide range of bacterial pathogens. This study was conducted to isolate and identify the most efficient antibiotic-producing Streptomyces St 45 isolate against Staphylococcus aureus ATCC29737, Salmonella typhimurium ATCC25566, E. coli 0157h7 ATCC25922 and Bacillus subtilis. A total 40 soil and 10 water (from wells) samples were processed using standard microbiological techniques at King Faisal Research Centre, Riyadh, Saudi Arabia. The selected Streptomyces St 45 isolate was grown to produce biologically active metabolites, and the minimum concentration (MIC) was determined. Sixty isolates with antibacterial properties were selected. The 16s rRNA gene analysis was used to identify the strongest Streptomyces St 45 strain. The highest zone of inhibition (ZOI) was provided by 'MUJA10' strain of S. exfoliatus against Staphylococcus aureus ATCC29737 (51.33 ± 2.15 mm). The MIC value of 'MUJA10' metabolite of S. exfoliatus strain against Salmonella typhimurium ATCC25566 and E. coli 0157h7 ATCC25922 was 0.125 mg/ml. However, Bacillus subtilis had a MIC of 0.625 mg/ml and Staphylococcus aureus ATCC29737 had a MIC of 2.5 mg/ml. In conclusion, Streptomyces exfoliatus strain 'MUJA10' obtained from soil exhibited high inhibitory potential against human pathogens. The 16s rRNA gene analysis revealed that Streptomyces St 45 isolate was similar to Streptomyces exfoliatus A156.7 with 98% similarity and confirmed as Streptomyces exfoliates 'MUJA10' at gene bank with gene accession number OL720257.
Collapse
Affiliation(s)
- Jawaher Ibrahim Alahadeb
- Department of Biology, College of Education (Majmaah), Majmaah University, ALmajmaah, Saudi Arabia
| |
Collapse
|
23
|
Thoma R, Seneghini M, Seiffert SN, Vuichard Gysin D, Scanferla G, Haller S, Flury D, Boggian K, Kleger GR, Filipovic M, Nolte O, Schlegel M, Kohler P. The challenge of preventing and containing outbreaks of multidrug-resistant organisms and Candida auris during the coronavirus disease 2019 pandemic: report of a carbapenem-resistant Acinetobacter baumannii outbreak and a systematic review of the literature. Antimicrob Resist Infect Control 2022; 11:12. [PMID: 35063032 PMCID: PMC8777447 DOI: 10.1186/s13756-022-01052-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Despite the adoption of strict infection prevention and control measures, many hospitals have reported outbreaks of multidrug-resistant organisms (MDRO) during the Coronavirus 2019 (COVID-19) pandemic. Following an outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB) in our institution, we sought to systematically analyse characteristics of MDRO outbreaks in times of COVID-19, focussing on contributing factors and specific challenges in controlling these outbreaks. METHODS We describe results of our own CRAB outbreak investigation and performed a systematic literature review for MDRO (including Candida auris) outbreaks which occurred during the COVID-19 pandemic (between December 2019 and March 2021). Search terms were related to pathogens/resistance mechanisms AND COVID-19. We summarized outbreak characteristics in a narrative synthesis and contrasted contributing factors with implemented control measures. RESULTS The CRAB outbreak occurred in our intensive care units between September and December 2020 and comprised 10 patients (thereof seven with COVID-19) within two distinct genetic clusters (both ST2 carrying OXA-23). Both clusters presumably originated from COVID-19 patients transferred from the Balkans. Including our outbreak, we identified 17 reports, mostly caused by Candida auris (n = 6) or CRAB (n = 5), with an overall patient mortality of 35% (68/193). All outbreaks involved intensive care settings. Non-adherence to personal protective equipment (PPE) or hand hygiene (n = 11), PPE shortage (n = 8) and high antibiotic use (n = 8) were most commonly reported as contributing factors, followed by environmental contamination (n = 7), prolonged critical illness (n = 7) and lack of trained HCW (n = 7). Implemented measures mainly focussed on PPE/hand hygiene audits (n = 9), environmental cleaning/disinfection (n = 9) and enhanced patient screening (n = 8). Comparing potentially modifiable risk factors and control measures, we found the largest discrepancies in the areas of PPE shortage (risk factor in 8 studies, addressed in 2 studies) and patient overcrowding (risk factor in 5 studies, addressed in 0 studies). CONCLUSIONS Reported MDRO outbreaks during the COVID-19 pandemic were most often caused by CRAB (including our outbreak) and C. auris. Inadequate PPE/hand hygiene adherence, PPE shortage, and high antibiotic use were the most commonly reported potentially modifiable factors contributing to the outbreaks. These findings should be considered for the prevention of MDRO outbreaks during future COVID-19 waves.
Collapse
Affiliation(s)
- Reto Thoma
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marco Seneghini
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Salomé N. Seiffert
- Division of Human Microbiology, Center for Laboratory Medicine, St. Gallen, Switzerland
| | - Danielle Vuichard Gysin
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Giulia Scanferla
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Sabine Haller
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Domenica Flury
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Gian-Reto Kleger
- Division of Intensive Care Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Miodrag Filipovic
- Division of Intensive Care Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Oliver Nolte
- Division of Human Microbiology, Center for Laboratory Medicine, St. Gallen, Switzerland
| | - Matthias Schlegel
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
24
|
Chukamnerd A, Singkhamanan K, Chongsuvivatwong V, Palittapongarnpim P, Doi Y, Pomwised R, Sakunrang C, Jeenkeawpiam K, Yingkajorn M, Chusri S, Surachat K. Whole-genome analysis of carbapenem-resistant Acinetobacter baumannii from clinical isolates in Southern Thailand. Comput Struct Biotechnol J 2022; 20:545-558. [PMID: 36284706 PMCID: PMC9582705 DOI: 10.1016/j.csbj.2021.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
The worldwide spread of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a healthcare challenge for some decades. To understand its molecular epidemiology in Southern Thailand, we conducted whole-genome sequencing (WGS) of 221 CRAB clinical isolates. A comprehensive bioinformatics analysis was performed using several tools to assemble, annotate, and identify sequence types (STs), antimicrobial resistance (AMR) genes, mobile genetic elements (MGEs), and virulence genes. ST2 was the most prevalent ST in the CRAB isolates. For the detection of AMR genes, almost all CRAB isolates carried the blaOXA-23 gene, while certain isolates harbored the blaNDM-1 or blaIMP-14 genes. Also, various AMR genes were observed in these CRAB isolates, particularly aminoglycoside resistance genes (e.g., armA, aph(6)-Id, and aph(3″)-Ib), fosfomycin resistance gene (abaF), and tetracycline resistance genes (tet(B) and tet(39)). For plasmid replicon typing, RepAci1 and RepAci7 were the predominant replicons found in the CRAB isolates. Many genes encoding for virulence factors such as the ompA, adeF, pgaA, lpxA, and bfmR genes were also identified in all CRAB isolates. In conclusion, most CRAB isolates contained a mixture of AMR genes, MGEs, and virulence genes. This study provides significant information about the genetic determinants of CRAB clinical isolates that could assist the development of strategies for improved control and treatment of these infections.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology, Fujita Health University, Aichi, Japan
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
25
|
Shapiro AB, Moussa SH, McLeod SM, Durand-Réville T, Miller AA. Durlobactam, a New Diazabicyclooctane β-Lactamase Inhibitor for the Treatment of Acinetobacter Infections in Combination With Sulbactam. Front Microbiol 2021; 12:709974. [PMID: 34349751 PMCID: PMC8328114 DOI: 10.3389/fmicb.2021.709974] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Durlobactam is a new member of the diazabicyclooctane class of β-lactamase inhibitors with broad spectrum activity against Ambler class A, C, and D serine β-lactamases. Sulbactam is a first generation β-lactamase inhibitor with activity limited to a subset of class A enzymes that also has direct-acting antibacterial activity against Acinetobacter spp. The latter feature is due to sulbactam’s ability to inhibit certain penicillin-binding proteins, essential enzymes involved in bacterial cell wall synthesis in this pathogen. Because sulbactam is also susceptible to cleavage by numerous β-lactamases, its clinical utility for the treatment of contemporary Acinetobacter infections is quite limited. However, when combined with durlobactam, the activity of sulbactam is effectively restored against these notoriously multidrug-resistant strains. This sulbactam-durlobactam combination is currently in late-stage development for the treatment of Acinectobacter infections, including those caused by carbapenem-resistant isolates, for which there is a high unmet medical need. The following mini-review summarizes the molecular drivers of efficacy of this combination against this troublesome pathogen, with an emphasis on the biochemical features of each partner.
Collapse
|