1
|
Wu Z, Xu Y, Zhou W, Shi L, Shi W, Pu L, Jiang J. Rapid detection of Klebsiella pneumoniae based on one-tube RPA-CRISPR/Cas12a system. Clin Chim Acta 2025; 573:120281. [PMID: 40194617 DOI: 10.1016/j.cca.2025.120281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Klebsiella pneumoniae (KP) is a prevalent pathogen implicated in both community-acquired and nosocomial infections, often leading to severe clinical outcomes. The conventional methods for KP identification are characterized by intricacy and suboptimal efficiency. In this research, we have engineered a novel One-Tube RPA- CRISPR/Cas12a system, integrating recombinase polymerase amplification (RPA) method with the CRISPR/Cas12a diagnostic platform, to facilitate the detection of K. pneumoniae. To minimize the likelihood of aerosol-based contamination, the RPA components are positioned at the base of the tube, while the CRISPR/Cas12a components are placed at the tube's cap. The systems are combined post-RPA amplification through a brief centrifugation step, ensuring that RPA reactions are conducted independently to produce an adequate amount of target DNA before interaction with the CRISPR/Cas12a system. This method was validated using both fluorescent and lateral flow strip assays, achieving a limit of detection (LOD) of 100 copies/μL and 101 copies/μL respectively. The specificity for KP detection was found to be 100 %. Furthermore, the system demonstrated a positivity rate of 78 % (18/23) when directly extracting DNA from sputum samples, corroborated by culture and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). The simplicity and rapidity of the assay are augmented by a straightforward sample processing without extraction. The complete assay duration from specimen receipt to result is approximately 40 min, significantly reducing the turnaround time (TAT). Collectively, this system presents a streamlined, expeditious, and highly specific diagnostic approach for the detection of Klebsiella pneumoniae strains.
Collapse
Affiliation(s)
- Zhiyun Wu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yin Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Wei Zhou
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Luoluo Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Lei Pu
- Department of Burns, The Southwest Hospital of AMU No. 30, Gaotanyan Zhengjie, Shapingba District, Chongqing, China.
| | - Jingting Jiang
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003 Jiangsu, China.
| |
Collapse
|
2
|
Lee YL, Liu CE, Wang WY, Tan MC, Chen PJ, Shiau YR, Wang HY, Lai JF, Huang IW, Yang YS, Kuo SC. Antimicrobial resistance among imipenem-non-susceptible Escherichia coli and Klebsiella pneumoniae isolates, with an emphasis on novel β-lactam/β-lactamase inhibitor combinations and tetracycline derivatives: The Taiwan surveillance of antimicrobial resistance program, 2020-2022. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:219-225. [PMID: 39934015 DOI: 10.1016/j.jmii.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND To determine susceptibility of imipenem-non-susceptible Escherichia coli (INS-EC) and Klebsiella pneumoniae (INS-KP) isolates collected during 2020-2022 through a national surveillance program in Taiwan to novel antibiotics, and to compare the results with those obtained during 2012-2018. METHODS Minimum inhibitory concentrations were determined by broth microdilution methods. Genes encoding carbapenemases including blaKPC, metallo-β-lactamase (MBL) genes, and blaOXA-48 were detected via multiplex PCR. Data retrieved from our 2012-2018 study were used for comparison. RESULTS Of 3260 E. coli and 1457 K. pneumoniae isolates collected during 2020-2022, 0.9 % and 9.5 %, were INS-EC and INS-KP, respectively. Cefepime-zidebactam, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam were active against 100 %, 75.9 %, 65.5 %, and 79.3 % of 29 INS-EC isolates respectively; and against 100 %, 90.6 %, 64.5 %, and 67.4 % of 138 INS- KP isolates, respectively. Susceptibility was contingent upon carbapenemase types. Susceptibility rates of cefepime-zidebactam and ceftazidime-avibactam remained constant from 2012 to 2018 through 2020-2022 but those of imipenem-relebactam and meropenem-vaborbactam decreased significantly, which may be partially attributable to the increasing prevalence of blaOXA-48. Eighteen MBL-gene-positive isolates and two blaKPC-positive isolates were resistant to ceftazidime-avibactam, whereas all were susceptible to cefepime-zidebactam. Tigecycline had a higher susceptibility rate than eravacycline and omadacycline for K. pneumoniae isolates. Lascufloxacin and delafloxacin were effective against fewer than 10 % of INS isolates. Susceptibilities to novel tetracyclines and fluoroquinolones remained similar from 2012 to 2018 through 2020-2022. CONCLUSIONS This study highlights significant resistance patterns of INS-EC and INS-KP isolates in Taiwan. The declining susceptibility rates and the rising prevalence of genetic resistance determinants highlight the importance of ongoing surveillance and antimicrobial stewardship.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; PhD Program in Medical Biotechnology, Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Eng Liu
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Yao Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Chen Tan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Pei-Jing Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Yih-Ru Shiau
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Hui-Ying Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Jui-Fen Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan.
| |
Collapse
|
3
|
Wu J, Zhang J, Wang J, Wang J, Liang X, Wei C, Long W, Yang Y, Chen Y, Liao M, Liang Y, Yu K, Zhang X. Insertion sequences in mgrB and mutations in two-component system genes confer high polymyxin resistance to carbapenem-resistant Enterobacter cloacae complex strains. Front Microbiol 2025; 16:1553148. [PMID: 40165791 PMCID: PMC11955652 DOI: 10.3389/fmicb.2025.1553148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Due to the complexity of identifying the Enterobacter cloacae complex (ECC) at the species level, little is known about the distribution of carbapenem-resistant ECC (CRECC). Plasmid-mediated mcr family genes are significant contributors to polymyxin resistance. The emergence of the mcr-9 gene has further complicated the landscape of polymyxin resistance in CRECC. Our study aimed to ascertain the prevalence of CRECC and the mcr-9 gene, and to elucidate the mechanisms underlying high-level resistance to polymyxin B (PB). In this study, we collected 212 non-replicating ECC strains, identifying 38 CRECC strains (17.9%, 38/212) and Enterobacter hormaechei (71.1%, 27/38) as the predominant endemic strains. Among these, 10 CRECC strains (36.3%, 10/38) were found to harbor the mcr-9 gene. Interestingly, the presence of mcr-9 did not significantly impact PB resistance or impose a fitness cost. While overexpression of mcr-9 can enhance PB resistance within a certain range and may incur fitness costs, it does not result in high-level PB resistance. The PB resistance of 17 CRECC strains was notably increased (from 16 to 128 mg/L), accompanied by mutations in the phoP/Q and mgrB genes. Notably, two novel insertion sequences, IS5D and IS1X2, were discovered within the mgrB gene. The inactivation of mgrB results in the loss of its negative regulatory effect on the two-component system. Protein structure predictions indicated that mutations in phoQ primarily affect the phosphatase (HAMP) and histidine kinase domains. This research significantly expands our comprehension of the complexities of PB resistance, highlighting the multifactorial nature of antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Jiming Wu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Wei
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhui Chen
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liao
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Youtao Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaixin Yu
- Department of Pathogenic Biology, Basic Medicine of Jiamusi University, Jiamusi, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Desai D, Cole SD. Complete genome sequences of two verona integron-encoded metallo-ß-lactamase (VIM)-producing enterobacterales isolated from dogs in the United States. Microbiol Resour Announc 2025; 14:e0089224. [PMID: 39907448 PMCID: PMC11895491 DOI: 10.1128/mra.00892-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
This announcement reports the complete genome sequences, created by combined Illumina and Oxford Nanopore sequencing, of two carbapenemase-producing Enterobacterales (Escherichia coli [LaAc-1-20] and Enterobacter hormaechei, strain 19632-21) isolated from dogs in the United States. Both isolates harbor a blaVIM-4 gene found on a 47 kb plasmid and on the bacterial chromosome, respectively.
Collapse
Affiliation(s)
- Dhruv Desai
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Stephen D. Cole
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
5
|
Guo J, Cai X, Wang S, Wen H, Ren J, Zhou M, Li X, Yan X, Tian S, Zhang F, Liu Y, Zhang W, Shao Y, Cao J, Liu X, Hou K, Wei D, Lin G. Standard dose could be better! A multicenter study of tigecycline in patients with liver failure. Expert Rev Anti Infect Ther 2025:1-9. [PMID: 39994071 DOI: 10.1080/14787210.2025.2472346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND High-dose (HD) tigecycline is often required for severe multidrug-resistant gram-negative infections in liver failure patients, despite package recommendations to halve the dose for those with severe liver impairment. This study evaluated the efficacy and safety of different tigecycline doses in this population. RESEARCH DESIGN AND METHODS A retrospective cohort of 192 patients with Child-Pugh grade C liver failure was divided into label-dose (LD), standard-dose (SD), and HD groups. Primary and secondary outcomes included microbial eradication, mortality, and adverse effects. RESULTS The SD group achieved higher microbial eradication than LD, with comparable efficacy to HD but fewer adverse events, such as fibrinogen requirements. High-dose treatment increased mortality risk (Hazard Ratio: 1.85, p = 0.062). Optimal microbial eradication and minimized adverse effects occurred with the SD group at 7 days of treatment. CONCLUSIONS Standard-dose tigecycline offers a balanced approach to microbial eradication and safety, making it preferable in liver failure patients.
Collapse
Affiliation(s)
- Jinlin Guo
- Department of Pharmacy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Xinfeng Cai
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shan Wang
- Department of Pharmacy, NYU Langone Hospital - Long Island, Mineola, NY, USA
| | - Hongping Wen
- Department of Pharmacy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Jing Ren
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Mi Zhou
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodan Yan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Shuangshuang Tian
- Big Data Center for Nephropathy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Fang Zhang
- Big Data Center for Nephropathy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Yanqin Liu
- Big Data Center for Nephropathy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Wenjun Zhang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yunyun Shao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianghong Cao
- Department of Intensive Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Xiaochun Liu
- Department of Pharmacy, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Kaixuan Hou
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Dan Wei
- Department of Pharmacy, Hanzhong People's Hospital, Hanzhong, Shaanxi, China
| | - Guan Lin
- Department of Pharmacy, 910 hospital of PLA, Quanzhou, Fujian, China
| |
Collapse
|
6
|
Han YL, Wang H, Zhu HZ, Lv YY, Zhao W, Wang YY, Wen JX, Hu ZD, Wang JR, Zheng WQ. Phenotypic and genomic characterization of ST11-K1 CR-hvKP with highly homologous blaKPC-2-bearing plasmids in China. mSystems 2024; 9:e0110124. [PMID: 39555910 DOI: 10.1128/msystems.01101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) strains present a significant global public health threat due to their high mortality rates. This study investigated the genomic characteristics of seven ST11-K1 CR-hvKP isolates harboring highly homologous KPC-2-encoding multidrug-resistance plasmids. The strains were isolated from a Chinese tertiary hospital between 2017 and 2020. Whole-genome sequencing and bioinformatic analysis revealed various antibiotic resistance genes (ARGs) and virulence determinants. The blaKPC-2-bearing plasmids that contain multiple antibiotic-resistance genes were also identified in these strains. ISfinder and Orifinder were applied to identify insertion sequences (IS) and conjugation-related factors among these blaKPC-2-bearing plasmids. The blaKPC-2 was highly consistent in seven blaKPC-2-bearing plasmids (ISKpn6-blaKPC-2-ISKpn27-ISYps3-IS26). In addition, we found a region composed of ISIR, Tn5393, and IS26. It was located upstream of the blaCTX-M-15 gene and presented in six blaKPC-2-bearing plasmids, with pCR-hvKP221-KPC-P3 as an exception. Conjugation experiments demonstrated the horizontal transfer of resistance plasmids pCR-hvKP128-KPC-P1 and pCR-hvKP132-KPC-P1 across species. Notably, pLVPK-like virulence plasmids carrying virulence gene clusters pCR-hvKP173-Vir-P1, and pCR-hvKP221-Vir-P1 were also detected. A fusional plasmid pCR-hvKP221-Vir-P2, which carries virulence gene clusters and ARGs, was also identified. Five CR-hvKP strains displayed enhanced biofilm formation and high virulence in vivo infection models. Phylogenetic and single nucleotide polymorphism (SNP) analyses indicated a close genetic relationship among the isolates, suggesting a subclade. These findings highlight the complex genetic profiles and potential transmission mechanisms of CR-hvKP strains. IMPORTANCE We reported seven CR-hvKP strains all carried a highly homologous blaKPC-2 integrated IncFⅡ-resistant plasmid, and two strains harbored virulence plasmids. Conjugation experiments confirmed the transferability of these plasmids, indicating a potential for resistance spread. Phylogenetic analysis clarified the relationship among the CR-hvKP isolates. This study provides insights into the phenotypic and genomic characteristics of seven ST11-K1 CR-hvKP strains. The high prevalence and potential for local outbreaks emphasize the need for effective control measures.
Collapse
Affiliation(s)
- Yu-Ling Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Hua Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong-Zhe Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Ying-Ying Lv
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan-Yan Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jun-Rui Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Wang X, Lu Z, Dou L, Ma L, He T, Gao C, Zhao X, Tao J, Luo L, Li Q, Wang Y, Shen Y, Shen J, Wang Z, Wen K. Modified Carba PBP test for rapid detection and differentiation between different classes of carbapenemases in Enterobacterales. Mikrochim Acta 2024; 192:7. [PMID: 39636434 DOI: 10.1007/s00604-024-06859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
An advanced biochemical assay named modified Carba PBP test was innovated to identify and differentiate distinct categories of clinically significant carbapenemases (Ambler classes A, B, and D) within the Enterobacterales. The mechanism of mCarba PBP hinges on two core attributes: (i) the hydrolysis of the meropenem substrate by various carbapenemases, (ii) the immobilized penicillin and free meropenem in their affinity to interact with a limited quantity of penicillin-binding protein (PBP). Specific inhibitors for class A (phenylboronic acid, PBA) and class B (ethylenediaminetetraacetic acid, EDTA) were employed to inhibit the hydrolysis activity of carbapenemase and facilitate the classification of carbapenemase classes within 25 min. A comprehensive evaluation was undertaken using 94 clinical Enterobacterales isolates, comprising 75 carbapenemase-producing strains and 19 non-carbapenemase-producing strains. Its overall specificity and sensitivity were 100% and 97.3%, respectively, including detection of all types of OXA-48-like carbapenemases. For precise carbapenemase type identification, the assay exhibited remarkable sensitivities for class A, class B, and class D detection at 94.7%, 100%, and 100%, respectively. This user-friendly test presents a promising tool for carbapenemase identification, refining the selection of β-lactam/β-endoenzyme inhibitor combinations for effectively treating infections due to carbapenemase-producing organisms.
Collapse
Affiliation(s)
- Xiaonan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhimin Lu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Licai Ma
- Beijing WDWK Biotechnology Co. Ltd, Beijing, 100095, People's Republic of China
| | - Tong He
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenxi Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiangjun Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Jin Tao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Yingbo Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Boattini M, Bianco G, Comini S, Costa C, Gaibani P. In vivo development of resistance to novel β-lactam/β-lactamase inhibitor combinations in KPC-producing Klebsiella pneumoniae infections: a case series. Eur J Clin Microbiol Infect Dis 2024; 43:2407-2417. [PMID: 39384682 PMCID: PMC11608324 DOI: 10.1007/s10096-024-04958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Understanding the dynamics that may characterize the emergence of KPC variants with resistance to novel β-lactam/β-lactamase inhibitor combinations (βL/βLICs) represents a challenge to be overcome in the appropriate use of recently introduced antibiotics. METHODS Retrospective case series describing development of multiple resistance to novel βL/βLICs in patients with KPC-producing Klebsiella pneumoniae (KPC-Kp) infections treated with these drugs. Clinical-microbiological investigation and characterization of longitudinal strains by Whole-Genome Sequencing were performed. RESULTS Four patients with KPC-Kp bloodstream infections were included. Most frequent clinical features were kidney disease, obesity, cardiac surgery as reason for admission, ICU stay, treatment with ceftazidime/avibactam, and pneumonia and/or acute kidney injury needing renal replacement therapy as KPC-Kp sepsis-associated complications. The development of resistance to ceftazidime/avibactam was observed in four longitudinal strains (three of which were co-resistant to aztreonam/avibactam and cefiderocol) following treatments with ceftazidime/avibactam (n = 3) or cefiderocol (n = 1). Resistance to meropenem/vaborbactam and imipenem/cilastatin/relebactam was observed in one case after exposure to ceftazidime/avibactam and imipenem/cilastatin/relebactam. Resistome analysis showed that resistance to novel βL/βLICs was related to specific mutations within blaKPC carbapenemase gene (D179Y mutation [KPC-33]; deletion Δ242-GT-243 [KPC-14]) in three longitudinal strains, while porin loss (truncated OmpK35 and OmpK36 porins) was observed in one case. CONCLUSION Therapy with novel βL/βLICs or cefiderocol may lead to the selection of resistant mutants in the presence of factors influencing the achievement of PK/PD targets. KPC variants are mainly associated with resistance to ceftazidime/avibactam, and some of them (e.g. KPC-14) may also be associated with reduced susceptibility to aztreonam/avibactam and/or cefiderocol. Loss of function of the OmpK35 and OmpK36 porins appears to play a role in the development of resistance to meropenem/vaborbactam and/or imipenem/relebactam, but other mechanisms may also be involved.
Collapse
Affiliation(s)
- Matteo Boattini
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy.
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy.
- Lisbon Academic Medical Centre, Lisbon, Portugal.
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, Lecce, 73100, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Jesi, 60035, Italy
| | - Cristina Costa
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, Turin, 10126, Italy
| | - Paolo Gaibani
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, Verona, Italy
| |
Collapse
|
9
|
Bassetti M, Larosa B, Vena A, Giacobbe DR. Novel agents in development for the treatment of resistant Gram-negative infections. Expert Rev Anti Infect Ther 2024; 22:965-976. [PMID: 39292619 DOI: 10.1080/14787210.2024.2407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Several novel agents are in advanced stages of clinical development, potentially expanding our treatment options against third- and fourth-generation cephalosporin-resistant and carbapenem-resistant Gram-negative bacteria (GNB), including those pathogens for which the current number of effective treatments is limited. AREAS COVERED This review focuses on agents that have completed or ongoing phase-3 studies. A PubMed search was conducted up to 31 May 2024. EXPERT OPINION Novel agents in late-stage clinical development belong to the β-lactam or β-lactam/β-lactamase inhibitor combinations class and display variable antimicrobial activity depending on the specific β-lactamases expressed by GNB, particularly carbapenemases. While many of these novel agents demonstrate in vitro activity against carbapenem-resistant GNB, their efficacy has mainly been evaluated in phase-3 randomized controlled trials (RCT) for infections caused by carbapenem-susceptible GNB. Although evidence from real-world observational studies is generally less robust than that from RCT, it could be crucial for updating clinical guidelines on treating carbapenem-resistant GNB with these new agents in the absence of dedicated RCT.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
10
|
Sow O, Cissé A, Ndiaye I, Niang EA, Kane FT, Cissé K, Gueye AB, Bawa AA, Fall C, Dieye Y, Sambe B, Seck A. Performance of Ertapenem-Supplemented MacConkey Agar (MacErt) for Detecting Carbapenemase-Producing Enterobacterales. Cureus 2024; 16:e74106. [PMID: 39712805 PMCID: PMC11661862 DOI: 10.7759/cureus.74106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Background and objectives Antimicrobial resistance (AMR) is a growing global threat, with carbapenemase-producing Enterobacterales (CPEs) representing a critical public health challenge. Rapid and accurate detection of CPEs is essential for controlling fatal bacterial AMR infections. This study evaluated the performance of MacConkey media supplemented with ertapenem (MacErt1 and MacErt2) for the detection of CPEs. Methods We formulated the media by supplementing MacConkey agar with ertapenem to final concentrations of 0.5 mg/L (MacErt1) and 1 mg/L (MacErt2). The media were assessed using a panel of 26 characterized Enterobacterales, including CPEs harboring oxacillinase (OXA)-48, OXA-181, New Delhi metallo-beta-lactamase (NDM)-5, and Klebsiella pneumoniae carbapenemase (KPC). All isolates were cultured on Mueller Hinton agar and incubated overnight at 36°C. Inocula were prepared and adjusted to a 0.5 McFarland standard. Ten microliter loops were used to streak MacErt1 and MacErt2 plates, which were then incubated overnight. After validation, MacErt1 was employed for the detection of CPEs in wastewater. A volume of 10 mL of wastewater was filtered, and the membrane was placed on MacErt agar, followed by overnight incubation. Grown colonies were identified using the Biotyper Sirius 2 MALDI-TOF (Bremen, Germany: Bruker), and the presence of carbapenem resistance genes was determined by lateral flow immunoassay (LFIA) tests and PCR. Results MacErt1 exhibited excellent sensitivity (100%) for all tested CPEs and a specificity of 77%. In contrast, MacErt2 demonstrated an overall sensitivity of 83%, primarily due to reduced sensitivity for OXA-181. However, it was 100% sensitive for detecting NDM, KPC, and OXA-48 producers. MacErt2 also maintained excellent specificity at 93%. The application of MacErt1 to wastewater samples resulted in 100% positivity and allowed the isolation of 124 CPEs among 150 examined isolates, predominantly NDM producers, followed by OXA-48-like and NDM+OXA-48-like strains. None of the isolates tested positive for blaKPC, blaVIM, or blaIMP. Conclusion This study demonstrated the efficacy of MacErt media for selectively detecting CPEs. MacErt1 exhibited 100% sensitivity for various CPEs and a specificity of 77%. MacErt2 showed 93% specificity and 100% sensitivity for NDM and KPC producers, making it suitable for targeted detection. These findings suggest that MacErt media provide an effective in-house solution for CPE surveillance, serving as a valuable tool in the ongoing battle against AMR.
Collapse
Affiliation(s)
- Ousmane Sow
- Microbiology, Institut Pasteur de Dakar, Dakar, SEN
| | | | - Issa Ndiaye
- Microbiology, Institut Pasteur de Dakar, Dakar, SEN
| | | | - Farma T Kane
- Medical Microbiology, Hôpital de Pikine, Dakar, SEN
| | | | - Adja B Gueye
- Microbiology, Institut Pasteur de Dakar, Dakar, SEN
| | | | - Cheikh Fall
- Microbiology, Institut Pasteur de Dakar, Dakar, SEN
| | - Yakhya Dieye
- Microbiology, Institut Pasteur de Dakar, Dakar, SEN
| | - Bissoume Sambe
- Epidemiology and Public Health, World Health Organization Regional Office for Africa (WCARO), Dakar, SEN
| | - Abdoulaye Seck
- Epidemiology and Public Health, Faculty of Medicine, Pharmacy, and Odonto-Stomatology, Université Cheikh Anta Diop de Dakar, Dakar, SEN
| |
Collapse
|
11
|
Ma D, Wang Y, Ye J, Ding CF, Yan Y. Direct Klebsiella pneumoniae Carbapenem Resistance and Carbapenemases Genotype Prediction by Al-MOF/TiO 2@Au Cubic Heterostructures-Assisted Intact Bacterial Cells Metabolic Analysis. Anal Chem 2024; 96:17192-17200. [PMID: 39405400 DOI: 10.1021/acs.analchem.4c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections pose a significant threat to human health. Fast and accurate prediction of K. pneumoniae carbapenem resistance and carbapenemase genotype is critical for guiding antibiotic treatment and reducing mortality rates. In this study, we present a novel method using Al-MOF/TiO2@Au cubic heterostructures for the metabolic analysis of intact bacterial cells, enabling rapid diagnosis of CRKP and its carbapenemases genotype. The Al-MOF/TiO2@Au cubic composites display strong light absorption and high surface area, facilitating the in situ effective extraction of metabolic fingerprints from intact bacterial cells. Utilizing this method, we rapidly and sensitively extracted metabolic fingerprints from 169 clinical isolates of K. pneumoniae obtained from patients. Machine learning analysis of the metabolic fingerprint changes successfully distinguishes CRKP from the sensitive strains, achieving the high area under the curve (AUC) values of 1.00 in both training and testing sets based on the 254 m/z features, respectively. Additionally, this platform enables rapid carbapenemase genotype discrimination of CRKP for precision antibiotic therapy. Our strategy holds great potential for swift diagnosis of CRKP and carbapenemase genotype discrimination, guiding effective management of CRKP bacterial infections in both hospital and community settings.
Collapse
Affiliation(s)
- Dumei Ma
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo 315211, China
| | - Yongqi Wang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiacheng Ye
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuan-Fan Ding
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo 315211, China
| | - Yinghua Yan
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo 315211, China
| |
Collapse
|
12
|
Santajit S, Tunyong W, Kong-Ngoen T, Arsheewa W, Hinthong W, Pumirat P, Sookrung N, Indrawattana N. Evaluation of blaOXA-48-like point mutation carbapenemase-producing Enterobacterales in Prapokklao Hospital, Thailand. Microbiol Spectr 2024; 12:e0019824. [PMID: 39417625 PMCID: PMC11619526 DOI: 10.1128/spectrum.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) isolates increasingly carry oxacillinase-48 (OXA-48)-like enzymes encoded by blaOXA-48-like, which can confer high levels of carbapenem resistance. This aims to determine the prevalence of CPE and genetic variation among blaOXA-48-like-carrying isolates recovered from Prapokklao Hospital in Chanthaburi Province, Thailand in 2016-2017. In total, 122 carbapenem-resistant Enterobacterales (CRE) isolates were recovered from clinical samples. CRE were evaluated using standard biochemical tests and MIC test strips. Carbapenemase production was assessed through the modified Hodge test (MHT), modified carbapenem inactivation method (mCIM), and EDTA-modified carbapenem inactivation method (eCIM). Detection of blaOXA-48-like mutations was conducted via PCR and confirmed by Sanger sequencing. Among these CRE isolates, 72 (59.02%), 44 (36.07%), 3 (2.46%), and 3 (2.46%) were Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Enterobacter cloacae, respectively. The MHT identified carbapenemase production in 108 isolates (88.52%). Based on the mCIM, 81 isolates (66.39%) were carbapenemase producers. Seventy-three isolates (59.84%) were eCIM-positive, indicating metallo-β-lactamase production. Three distinct genetic variants of the blaOXA-48-like gene were identified among the isolates, including the wild-type and two point mutation types harboring the mutations E168Q and S171A (mutation type 1) and E168Q, S171A, and R214S (mutation type 2). Multiple-sequence alignment and in silico analysis revealed variation of R214 located in the β5-β6 loop. This study identified blaOXA-48-like point mutation groups and carbapenemase production, predominantly metallo-β-lactamases, among CRE isolates, especially K. pneumoniae and E. coli. These findings highlight the importance of implementing stringent infection control measures and active antimicrobial resistance surveillance to combat the spread of difficult-to-treat, metallo-β-lactamase-producing CRE in healthcare settings. IMPORTANCE In this study, we aimed to investigate genetic variation and CPE among blaOXA-48-like carrying isolates recovered from Prapokklao Hospital, Chanthaburi Province, Thailand, during 2016-2017. A total of 122 carbapenem-resistant Enterobacterales (CRE) were recovered from clinical samples in Prapokklao Hospital. All CRE samples were confirmed by standard biochemical tests and minimum inhibitory concentration (MIC) test strips (E-test). The carbapenemase production was determined using the modified Hodge test (MHT), the modified carbapenem inactivation method (mCIM), and EDTA-CIM (eCIM). Three single mutations (E168Q, S171A, and R214S) were characterized in this study. This mutation might reflect the hydrolysis of the modified β-lactam spectrum, especially carbapenem, by OXA-48-like. Our report provides evidence of the blaOXA-48-like point mutation and carbapenemase-producing phenotype of CRE detected in this healthcare setting. Effective control measures and active surveillance of drug resistance in nosocomial pathogens are crucial for controlling diseases associated with difficult-to-treat bacteria.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si, Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si, Thammarat, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Weewan Arsheewa
- Department of Microbiology, Prapokklao Hospital, Chanthaburi, Thailand
| | - Woranich Hinthong
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubator Unit, Research Department, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand.
| | - Nitaya Indrawattana
- Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubator Unit, Research Department, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand.
| |
Collapse
|
13
|
Abera D, Negash AA, Fentaw S, Mekonnen Y, Cataldo RJ, Wami AA, Mihret A, Abegaz WE. High prevalence of colonization with extended-spectrum β-lactamase-producing and multidrug-resistant Enterobacterales in the community in Addis Ababa Ethiopia: risk factors, carbapenem resistance, and molecular characterization. BMC Microbiol 2024; 24:402. [PMID: 39390409 PMCID: PMC11465526 DOI: 10.1186/s12866-024-03552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Globally, extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales are major causes of hospital-acquired infections and there are increasing concerns about their role in community-acquired infections. OBJECTIVE We aimed to investigate the prevalence of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and Carbapenemase-producing-Carbapenemresistant-Enterobacterales (CP-CRE) and associated factors in community settings in Gulele sub city, Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted among 261 healthy individuals. Stool samples were collected and processed using standard microbiological methods. Antimicrobial susceptibility and phenotypic ESBL and carbapenemase tests were performed. Antibiotic resistance genes were detected by Polymerase Chain Reaction (PCR). RESULTS The colonization rate of ESBL-PE and CP-CRE were 31.4% (82/261, 95% CI: 25.91-37.48) and 0.8% (2/261, 95% CI: 0.13-3.1), respectively by phenotypic method. Molecular detection of genes for ESBL-PE was 27.9% (73/261, 95% CI:22.7-33.9), and for CP-CRE was 0.8% (2/261, 95% CI: 0.13-3.1). The most prevalent genes were blaTEM [76.7% (56/73)] and blaCTX-M [45.2% (33/73)]. Previous antibiotic use (AOR:2.04, 95%CI: 1.35-4.41, P:0.041) and age between 42 and 53 years old (AOR:3.00, 95%CI:1.12-7.48, P:0.019) were significantly associated with ESBL-PE colonization. CONCLUSION Intestinal colonization by ESBL-PE harboring the associated antibiotic resistance genes was substantially high but with low CP-CRE. Continued surveillance of community-level carriage of antimicrobial resistance Enterobacterales is warranted.
Collapse
Affiliation(s)
- Dessie Abera
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Mekonnen
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
Wu X, Li X, Yu J, Fan C, Shen M, Li X. Investigation of in vitro susceptibility and resistance mechanisms to amikacin among diverse carbapenemase-producing Enterobacteriaceae. BMC Med Genomics 2024; 17:240. [PMID: 39354545 PMCID: PMC11446084 DOI: 10.1186/s12920-024-02016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE This study aims to assess the in vitro drug susceptibility of various Carbapenemase-Producing Enterobacteriaceae (CPE) genotypes and elucidate the underlying mechanisms of amikacin resistance. METHODS A total of 72 unique CPE strains were collected from the Second Hospital of Jiaxing between 2019 and 2022, including 51 strains of Klebsiella pneumoniae, 11 strains of Escherichia coli, 6 strains of Enterobacter cloacae, 2 strains of Klebsiella aerogenes, 1 strain of Citrobacter freundii, and 1strain of Citrobacter werkmanii. Among these strains, 24 carried blaKPC gene, 20 carried blaNDM gene, 23 carried blaOXA-48-like gene, and 5 carried both blaKPC and blaNDM. We measured the in vitro activity of amikacin and other common antibiotics. Strains carrying blaOXA-48-like gene were selected for whole genome sequencing (WGS) via next-generation sequencing to identify genes related to antimicrobial resistance (AMR) and virulence factor (VF). RESULTS Out of the 72 CPE strains tested, 41.7% exhibited resistance to amikacin. The drug resistance rates for K. pneumoniae, E. coli, and Enterobacter spp. were 51.0%, 27.3%, and 10.0%, respectively. The majority of the CPE strains (> 90%) displayed resistance to cephalosporins and carbapenems, while most of them were sensitive to polymyxin B and tigecycline (97.2% and 94.4%). The amikacin resistance rate was 100% for strains carrying blaOXA-48, 20.8% for those with blaKPC, 5.0% for those with blaNDM, and 20.0% for those with both blaKPC and blaNDM. These differences were statistically significant (P < 0.05). Through sequencing, we detected aminoglycoside resistance genes rmtF and aac(6')-Ib, VF genes iucABCD and rmpA2 in OXA-48-producing multidrug resistance and highly virulent strains. These genes were located on a IncFIB- and IncHI1B-type plasmid, respectively. Both plasmids were highly homologous to the plasmid from OXA-232 strains in Zhejiang province and Shanghai province. Integration of these resistance genes into the IncFIB plasmid, facilitated by the IS6 and/or Tn3 transposons, resulted in OXA232-producing K. pneumoniae with amikacin resistance. CONCLUSION This study identified significant amikacin resistance in CPE strains, particularly in those carrying the blaOXA-48 gene. Resistance genes rmtF and aac(6')-Ib were identified on plasmids. These results highlight the need for careful monitoring of amikacin resistance.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Xiaosi Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China.
| | - Junjie Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Chenliang Fan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China.
| | - Mengli Shen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Fu Y, Zhu Y, Zhao F, Yao B, Yu Y, Zhang J, Chen Q. In vitro Synergistic and Bactericidal Effects of Aztreonam in Combination with Ceftazidime/ Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam Against Dual-Carbapenemase-Producing Enterobacterales. Infect Drug Resist 2024; 17:3851-3861. [PMID: 39247757 PMCID: PMC11380864 DOI: 10.2147/idr.s474150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Our aim was to elucidate the resistance mechanisms and assess the combined synergistic and bactericidal activities of aztreonam in combination with ceftazidime/avibactam (CZA), meropenem/vaborbactam (MEV), and imipenem/relebactam (IMR) against Enterobacterales strains producing dual carbapenemases. Methods Species identification, antimicrobial susceptibility testing and determination of carbapenemase type were performed for these strains. Plasmid sizes, plasmid conjugation abilities and the localization of carbapenemase genes were investigated. Whole-genome sequencing was performed for all strains and their molecular characteristics were analyzed. In vitro synergistic and bactericidal activities of the combination of aztreonam with CZA, MEV and IMR against these strains were determined using checkerboard assay and time-kill curve assay. Results A total of 12 Enterobacterales strains producing dual-carbapenemases were collected, including nine K. pneumoniae, two P. rettgeri, and one E. hormaechei. The most common dual-carbapenemase gene pattern observed was bla (KPC-2+NDM-5) (n=4), followed by bla KPC-2+IMP-26 (n=3), bla (KPC-2+NDM-1) (n=2), bla (KPC-2+IMP-4) (n=1), bla (NDM-1+IMP-4) (n=1) and bla (KPC-2+KPC-2) (n=1). In each strain, the carbapenemase genes were found to be located on two distinct plasmids which were capable of conjugating from the original strain to the receipt strain E. coli J53. The results of the checkerboard synergy analysis consistently revealed good synergistic effects of the combination of ATM with CZA, MEV and IMR. Except for one strain, all strains exhibited significant synergistic activity and bactericidal activity between 2 and 8 hours. Conclusion Dual-carbapenemase-producing Enterobacterales posed a significant threat to clinical anti-infection treatment. However, the combination of ATM with innovative β-lactam/β-lactamase inhibitor compounds had proven to be an effective treatment option.
Collapse
Affiliation(s)
- Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yufeng Zhu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Clinical Laboratory, Hangzhou Xixi Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Clinical Laboratory, Zhejiang University Sir Run Run Shaw Alar Hospital, Alar, Xinjiang province, People's Republic of China
| | - Bingyan Yao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qiong Chen
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
16
|
Canabal R, González-Bello C. Chemical sensors for the early diagnosis of bacterial resistance to β-lactam antibiotics. Bioorg Chem 2024; 150:107528. [PMID: 38852309 DOI: 10.1016/j.bioorg.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
β-Lactamases are bacterial enzymes that inactivate β-lactam antibiotics and, as such, are the most prevalent cause of antibiotic resistance in Gram-negative bacteria. The ever-increasing production and worldwide dissemination of bacterial strains producing carbapenemases is currently a global health concern. These enzymes catalyze the hydrolysis of carbapenems - the β-lactam antibiotics with the broadest spectrum of activity that are often considered as drugs of last resort. The incidence of carbapenem-resistant pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii and carbapenemase or extended spectrum beta-lactamase (ESBL)-producing Enterobacterales, which are frequent in clinical settings, is worrisome since, in some cases, no therapies are available. These include all metallo-β-lactamases (VIM, IMP, NDM, SMP, and L1), and serine-carbapenemases of classes A (KPC, SME, IMI, and GES), and of classes D (OXA-23, OXA-24/40, OXA-48 and OXA-58). Consequently, the early diagnosis of bacterial strains harboring carbapenemases is a pivotal task in clinical microbiology in order to track antibiotic bacterial resistance and to improve the worldwide management of infectious diseases. Recent research efforts on the development of chromogenic and fluorescent chemical sensors for the specific and sensitive detection and quantification of β-lactamase production in multidrug-resistant pathogens are summarized herein. Studies to circumvent the main limitations of the phenotypic and molecular methods are discussed. Recently reported chromogenic and fluorogenic cephalosporin- and carbapenem-based β-lactamase substrates will be reviewed as alternative options to the currently available nitrocefin and related compounds, a chromogenic cephalosporin-based reagent widely used in clinical microbiology laboratories. The scope of these new chemical sensors, along with the synthetic approaches to synthesize them, is also summarized.
Collapse
Affiliation(s)
- Rafael Canabal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Park W, Park M, Chun J, Hwang J, Kim S, Choi N, Kim SM, Kim S, Jung S, Ko KS, Kweon DH. Delivery of endolysin across outer membrane of Gram-negative bacteria using translocation domain of botulinum neurotoxin. Int J Antimicrob Agents 2024; 64:107216. [PMID: 38795926 DOI: 10.1016/j.ijantimicag.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The emergence of multidrug-resistant pathogens has outpaced the development of new antibiotics, leading to renewed interest in endolysins. Endolysins have been investigated as novel biocontrol agents for Gram-positive bacteria. However, their efficacy against Gram-negative species is limited by the barrier presented by their outer membrane, which prevents endolysin access to the peptidoglycan substrate. Here, we used the translocation domain of botulinum neurotoxin to deliver endolysin across the outer membrane of Gram-negative bacteria. The translocation domain selectively interacts with and penetrates membranes composed of anionic lipids, which have been used in nature to deliver various proteins into animal cells. In addition to the botulinum neurotoxin translocation domain, we have fused bacteriophage-derived receptor binding protein to endolysins. This allows the attached protein to efficiently bind to a broad spectrum of Gram-negative bacteria. By attaching these target-binding and translocation machineries to endolysins, we aimed to develop an engineered endolysin with broad-spectrum targeting and enhanced antibacterial activity against Gram-negative species. To validate our strategy, we designed engineered endolysins using two well-known endolysins, T5 and LysPA26, and tested them against 23 strains from six species of Gram-negative bacteria, confirming that our machinery can act broadly. In particular, we observed a 2.32 log reduction in 30 min with only 0.5 µM against an Acinetobacter baumannii isolate. We also used the SpyTag/SpyCatcher system to easily attach target-binding proteins, thereby improving its target-binding ability. Overall, our newly developed endolysin engineering strategy may be a promising approach to control multidrug-resistant Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jihwan Chun
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Nayoon Choi
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Soo Min Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - SeungJoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea
| | - Sangwon Jung
- Research Center, MVRIX, Anyang, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University College of Biotechnology and Bioengineering, Suwon, Republic of Korea; Research Center, MVRIX, Anyang, Republic of Korea.
| |
Collapse
|
18
|
Zhang J, Xu J, Shen S, Ding L, Yang W, Tang C, Shi Q, Zhao H, Guo Y, Han R, Hu F. Comparison of three colloidal gold immunoassays and GeneXpert Carba-R for the detection of Klebsiella pneumoniae blaKPC-2 variants. J Clin Microbiol 2024; 62:e0015424. [PMID: 38809033 PMCID: PMC11250111 DOI: 10.1128/jcm.00154-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.
Collapse
Affiliation(s)
- Jinghao Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Jieli Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
- Department of Laboratory Medicine, GuiPing People's Hospital, Guangxi, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Weiwei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Chengkang Tang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Joint Laboratory of Hospital & Enterprise for Pathogen Diagnosis of Drug-resistant Bacterial Infections and Innovative Drug R & D, Shanghai, China
| |
Collapse
|
19
|
Chao CM, Yu WL. Ceftolozane/tazobactam: Literature review of its activity on Taiwanese isolates before its launch in Taiwan (2012-2021). Heliyon 2024; 10:e33114. [PMID: 39040254 PMCID: PMC11260915 DOI: 10.1016/j.heliyon.2024.e33114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Ceftolozane, a novel cephalosporin, combined with tazobactam, a known β-lactamase inhibitor, shows robust antipseudomonal activity, although it doesn't cover carbapenemases. Our review of data from 2012 to 2021 in Taiwan highlights TOL/TAZ's in-vitro performance. TOL/TAZ is most effective against Pseudomonas aeruginosa (91.3-94.4 % susceptible, with an MIC <4 μg/mL). It also demonstrates good activity against Enterobacterales, including Escherichia coli (88-94.3 % susceptible), Klebsiella pneumoniae (72.6-84.1 % susceptible), Citrobacter koseri (93.3 % susceptible), Klebsiella oxytoca (98.1-100 % susceptible), and Proteus mirabilis (100 % susceptible). However, its efficacy varies among species typically associated with chromosomally-mediated AmpC production, such as Morganella morganii (100 % susceptible), Serratia marcescens (81.3-90.0 % susceptible), Enterobacter cloacae species complex (76.6-76.7 % susceptible), Klebsiella aerogenes (66.7-89.6% susceptible), and Citrobacter freundii (60.0 % susceptible). For carbapenem-nonsusceptible isolates, TOL/TAZ is less effective against K. pneumoniae and E. coli (susceptibility <10 %) but remains useful for P. aeruginosa (susceptibility 81.3-91.8 %). In conclusion, TOL/TAZ shows potent activity against P. aeruginosa and carbapenem-susceptible Enterobacterales in Taiwan.
Collapse
Affiliation(s)
- Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
| | - Wen-Liang Yu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan City, Taiwan
- Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
20
|
Lee YL, Wang WY, Ko WC, Hsueh PR. Global epidemiology and antimicrobial resistance of Enterobacterales harbouring genes encoding OXA-48-like carbapenemases: insights from the results of the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme 2018-2021. J Antimicrob Chemother 2024; 79:1581-1589. [PMID: 38758189 DOI: 10.1093/jac/dkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES The recent emergence of carbapenem-resistant Enterobacterales poses a major and escalating threat to global public health. This study aimed to analyse the global distribution and antimicrobial resistance of Enterobacterales harbouring variant OXA-48-like carbapenemase-related genes. METHODS Enterobacterales isolates were collected from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme during 2018-2021. Comprehensive antimicrobial susceptibility testing and β-lactamase gene detection were also conducted, along with statistical analysis of the collected data. RESULTS Among the 72 244 isolates, 1934 Enterobacterales isolates were identified to harbour blaOXA-48-like genes, predominantly Klebsiella spp. (86.9%). High rates of multidrug resistance were observed, with only ceftazidime/avibactam and tigecycline showing favourable susceptibility. A discrepancy between the genotype and phenotype of carbapenem resistance was evident: 16.8% (233 out of 1384) of the Enterobacterales isolates with blaOXA-48-like genes exhibited susceptibility to meropenem. Specifically, 37.4% (64/95) of Escherichia coli strains with blaOXA-48-like genes displayed meropenem susceptibility, while the corresponding percentages for Klebsiella pneumoniae and Enterobacter cloacae complex were 25.2% (160/1184) and 0% (0/36), respectively (P < 0.05). Geographical analysis revealed that the highest prevalence of blaOXA-48-like genes occurred in Asia, the Middle East and Eastern Europe. The proportion of K. pneumoniae isolates harbouring blaOXA-232 increased from 23.9% in 2018 to 56.0% in 2021. By contrast, the proportion of blaOXA-48 decreased among K. pneumoniae isolates during 2018-2021. CONCLUSIONS This study underscores the widespread and increasing prevalence of blaOXA-48-like genes in Enterobacterales and emphasizes the need for enhanced surveillance, improved diagnostic methods and tailored antibiotic stewardship to combat the spread of these resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- PhD Program in Medical Biotechnology, Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Yao Wang
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Chin Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
21
|
Fernandes-Pineda M, Martínez-Buitrago E, Bravo JH, Matta-Cortés L, Ospina-Galindez JA, Paredes-Amaya CC. Characterization of carbapenemase-producing Enterobacterales from rectal swabs of patients in the intensive care units of a tertiary hospital in Cali-Colombia. Heliyon 2024; 10:e33368. [PMID: 39027427 PMCID: PMC11254587 DOI: 10.1016/j.heliyon.2024.e33368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Carbapenemase-producing Enterobacterales (CPE) represents a significant threat to global health. This study aimed to characterize clinically and molecularly the CPE isolated from rectal swabs of patients in the intensive care units (ICUs) of a tertiary hospital in Cali, Colombia. Methods This was a cross-sectional observational study. Rectal swabs from patients admitted to the ICUs were collected. Bacterial identification and carbapenemase production were determined using phenotypic and molecular methods. Demographic and clinical data were extracted from electronic medical records. Results The study included 223 patients. Thirty-six patients (36/223, 16.14 %) were found to be colonized or infected by CPE. Factors such as prolonged stay in the ICU, previous exposure to carbapenem antibiotics, use of invasive procedures, and admission due to trauma were associated with CPE. Klebsiella pneumoniae (52.5 %) was the most prevalent microorganism, and the dominant carbapenemases identified were KPC (57.8 %) and NDM (37.8 %). Conclusion Distinguishing carbapenemase subtypes can provide crucial insights for controlling dissemination in ICUs in Cali, Colombia.
Collapse
Affiliation(s)
| | | | - José H. Bravo
- Department of Medical Sciences, Faculty of Health Sciences, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Lorena Matta-Cortés
- Department of Internal Medicine, Faculty of Health, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
22
|
Lin YT, Lin HH, Tseng KH, Lee TF, Huang YT, Hsueh PR. Comparison of ERIC carbapenem-resistant Enterobacteriaceae test, BD Phoenix CPO detect panel, and NG-test CARBA 5 for the detection of main carbapenemase types of carbapenem-resistant Enterobacterales. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00105-1. [PMID: 38876942 DOI: 10.1016/j.jmii.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND This study aimed to assess the performance of three commercial panels, the ERIC Carbapenem-Resistant Enterobacteriaceae Test (ERIC CRE test), the NG-Test CARBA 5 (NG CARBA 5), and the BD Phoenix CPO Detect Panel (CPO panel), for the detection of main types of carbapenemases among carbapenem-resistant Enterobacterales (CRE). METHODS We collected 502 isolates of carbapenem-resistant Enterobacterales (CRE) demonstrating intermediate or resistant profiles to at least one carbapenem antibiotic (ertapenem, imipenem, meropenem, or doripenem). Carbapenemase genes and their specific types were identified through multiplex PCR and sequencing methods. Subsequently, the ERIC CRE test, CPO panel, and NG CARBA 5 assay were conducted on these isolates, and the results were compared with those obtained from multiplex PCR. RESULTS The results indicated that the ERIC CRE test exhibited an overall sensitivity and specificity of 98.1% and 93.6%, respectively, which were comparable to 99.1% and 90.6% for the NG CARBA 5. However, the CPO panel demonstrated a sensitivity of only 56.2% in identifying Ambler classes, exhibiting the poorest sensitivity for class A. Moreover, while the ERIC CRE test outperformed the NG CARBA 5 in identifying multi-gene isolates with multiple carbapenemase-encoding genes, the CPO panel failed to accurately classify these isolates. CONCLUSIONS Our findings support the utilization of the ERIC CRE test as one of the methods for detecting carbapenemases in clinical laboratories. Nonetheless, further optimization is imperative for the CPO panel to enhance its accuracy in determining carbapenemase classification and address limitations in detecting multi-gene isolates.
Collapse
Affiliation(s)
- Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsiu-Hsien Lin
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kun-Hao Tseng
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Mikita K, Tajima M, Haque A, Kato Y, Iwata S, Suzuki K, Hasegawa N, Yano H, Matsumoto T. Development of a Simple Method to Detect the Carbapenemase-Producing Genes blaNDM, blaOXA-48-like, blaIMP, blaKPC, and blaVIM Using a LAMP Method with Lateral Flow DNA Chromatography. Diagnostics (Basel) 2024; 14:1027. [PMID: 38786325 PMCID: PMC11119924 DOI: 10.3390/diagnostics14101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Infections by carbapenemase-producing Enterobacterales constitute a global public health threat. The rapid and efficient diagnosis of Enterobacterales infection is critical for prompt treatment and infection control, especially in hospital settings. We developed a novel loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography to identify five major groups of carbapenemase-producing genes (blaNDM, blaOXA-48-like, blaIMP, blaKPC, and blaVIM). This method uses DNA-DNA hybridization-based detection in which LAMP products can be easily visualized as colored lines. No specific technical expertise, expensive equipment, or special facilities are required for this method, allowing its broad application. Here, 73 bacteria collections including strains with carbapenemase-producing genes were tested. Compared to sequencing results, LAMP DNA chromatography for five carbapenemase-producing genes had a sensitivity and specificity of 100% and >97%, respectively. This newly developed method can be a valuable rapid diagnostic test to guide appropriate treatments and infection control measures, especially in resource-limited settings.
Collapse
Affiliation(s)
- Kei Mikita
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan; (M.T.); (N.H.)
| | - Moe Tajima
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan; (M.T.); (N.H.)
| | - Anwarul Haque
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-8520, Japan; (A.H.); (Y.K.); (T.M.)
| | - Yasuyuki Kato
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-8520, Japan; (A.H.); (Y.K.); (T.M.)
| | - Satoshi Iwata
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8606, Japan;
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan; (M.T.); (N.H.)
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara 634-8522, Japan;
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-8520, Japan; (A.H.); (Y.K.); (T.M.)
| |
Collapse
|
24
|
Lee YL, Liu CE, Tang HJ, Huang YT, Chen YS, Hsueh PR. Epidemiology and antimicrobial susceptibility profiles of Enterobacterales causing bloodstream infections before and during COVID-19 pandemic: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART) in Taiwan, 2018-2021. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00072-0. [PMID: 38632023 DOI: 10.1016/j.jmii.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/01/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has contributed to the spread of antimicrobial resistance, including carbapenem-resistant Enterobacterales. METHODS This study utilized data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance program in Taiwan. Enterobacterales from patients with bloodstream infections (BSIs) were collected and subjected to antimicrobial susceptibility testing and β-lactamase gene detection using a multiplex PCR assay. Statistical analysis was conducted to compare susceptibility rates and resistance genes between time periods before (2018-2019) and during the COVID-19 pandemic (2020-2021). RESULTS A total of 1231 Enterobacterales isolates were collected, predominantly Escherichia coli (55.6%) and Klebsiella pneumoniae (29.2%). The proportion of nosocomial BSIs increased during the COVID-19 pandemic (55.5% vs. 61.7%, p < 0.05). Overall, susceptibility rates for most antimicrobial agents decreased, with Enterobacterales from nosocomial BSIs showing significantly lower susceptibility rates than those from community-acquired BSIs. Among 123 Enterobacterales isolates that underwent molecular resistance mechanism detection, ESBL, AmpC β-lactamase, and carbapenemase genes were detected in 43.1%, 48.8% and 16.3% of the tested isolates, respectively. The prevalence of carbapenemase genes among carbapenem-resistant Enterobacterales increased during the pandemic, although the difference was not statistically significant. Two novel β-lactamase inhibitor combinations, imipenem-relebactam and meropenem-vaborbactam, preserved good efficacy against Enterobacterales. However, imipenem-relebactam showed lower in vitro activity against imipenem-non-susceptible Enterobacterales than that of meropenem-vaborbactam. CONCLUSIONS The COVID-19 pandemic appears to be associated with a general decrease in antimicrobial susceptibility rates among Enterobacterales causing BSIs in Taiwan. Continuous surveillance is crucial to monitor antimicrobial resistance during the pandemic and in the future.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Ph.D Program in Medical Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Eng Liu
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Ph.D Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
25
|
Johnson CL, Setterfield MA, Hassanain WA, Wipat A, Pocock M, Faulds K, Graham D, Keegan N. Multiplex detection of the big five carbapenemase genes using solid-phase recombinase polymerase amplification. Analyst 2024; 149:1527-1536. [PMID: 38265775 DOI: 10.1039/d3an01747h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Five carbapenemase enzymes, coined the 'big five', have been identified as the biggest threat to worldwide antibiotic resistance based on their broad substrate affinity and global prevalence. Here we show the development of a molecular detection method for the gene sequences from the five carbapenemases utilising the isothermal amplification method of recombinase polymerase amplification (RPA). We demonstrate the successful detection of each of the big five carbapenemase genes with femtomolar detection limits using a spatially separated multiplex amplification strategy. The approach uses tailed oligonucleotides for hybridisation, reducing the complexity and cost of the assay compared to classical RPA detection strategies. The reporter probe, horseradish peroxidase, generates the measureable output on a benchtop microplate reader, but more notably, our study leverages the power of a portable Raman spectrometer, enabling up to a 19-fold enhancement in the limit of detection. Significantly, the development approach employed a solid-phase RPA format, wherein the forward primers targeting each of the five carbapenemase genes are immobilised to a streptavidin-coated microplate. The adoption of this solid-phase methodology is pivotal for achieving a successful developmental pathway when employing this streamlined approach. The assay takes 2 hours until result, including a 40 minutes RPA amplification step at 37 °C. This is the first example of using solid-phase RPA for the detection of the big five and represents a milestone towards the developments of an automated point-of-care diagnostic for the big five using RPA.
Collapse
Affiliation(s)
- Christopher L Johnson
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
| | - Matthew A Setterfield
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Anil Wipat
- ICOS, School of Computing, Urban Sciences Building, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Matthew Pocock
- ICOS, School of Computing, Urban Sciences Building, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Neil Keegan
- Diagnostic and Therapeutic Technologies, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
| |
Collapse
|
26
|
Acosta-España JD. Unmasking carbapenemases molecular patterns in Ecuador: An analysis of Gram-negative bacteria, 2014-2022. New Microbes New Infect 2024; 56:101211. [PMID: 38187215 PMCID: PMC10767208 DOI: 10.1016/j.nmni.2023.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
|
27
|
Yu J, Lin HH, Tseng KH, Lin YT, Chen WC, Tien N, Cho CF, Liang SJ, Ho LC, Hsieh YW, Hsu KC, Ho MW, Hsueh PR, Cho DY. Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from flagged blood cultures by combining rapid Sepsityper MALDI-TOF mass spectrometry with machine learning. Int J Antimicrob Agents 2023; 62:106994. [PMID: 37802231 DOI: 10.1016/j.ijantimicag.2023.106994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
This study investigated combination of the Rapid Sepsityper Kit and a machine learning (ML)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) approach for rapid prediction of methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Klebsiella pneumoniae (CRKP) from positive blood culture bottles. The study involved 461 patients with monomicrobial bloodstream infections. Species identification was performed using the conventional MALDI-TOF MS Biotyper system and the Rapid Sepsityper protocol. The data underwent preprocessing steps, and ML models were trained using preprocessed MALDI-TOF data and corresponding labels. The interpretability of the model was enhanced using SHapely Additive exPlanations values to identify significant features. In total, 44 S. aureus isolates comprising 406 MALDI-TOF MS files and 126 K. pneumoniae isolates comprising 1249 MALDI-TOF MS files were evaluated. This study demonstrated the feasibility of predicting MRSA among S. aureus and CRKP among K. pneumoniae isolates using MALDI-TOF MS and Sepsityper. Accuracy, area under the receiver operating characteristic curve, and F1 score for MRSA/methicillin-susceptible S. aureus were 0.875, 0.898 and 0.904, respectively; for CRKP/carbapenem-susceptible K. pneumoniae, these values were 0.766, 0.828 and 0.795, respectively. In conclusion, the novel ML-based MALDI-TOF MS approach enables rapid identification of MRSA and CRKP from flagged blood cultures within 1 h. This enables earlier initiation of targeted antimicrobial therapy, reducing deaths due to sepsis. The favourable performance and reduced turnaround time of this method suggest its potential as a rapid detection strategy in clinical microbiology laboratories, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jiaxin Yu
- AI Centre, China Medical University Hospital, Taichung, Taiwan
| | - Hsiu-Hsien Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Hao Tseng
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Tzu Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chia-Fong Cho
- AI Centre, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Jye Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Lu-Ching Ho
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan; School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yow-Wen Hsieh
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan; School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kai Cheng Hsu
- AI Centre, China Medical University Hospital, Taichung, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Mao-Wang Ho
- Department of Medicine, China Medical University, Taichung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Ren Hsueh
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
28
|
Catalano A, Iacopetta D, Ceramella J, Pellegrino M, Giuzio F, Marra M, Rosano C, Saturnino C, Sinicropi MS, Aquaro S. Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic. Viruses 2023; 15:1843. [PMID: 37766250 PMCID: PMC10537211 DOI: 10.3390/v15091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Antibacterial resistance is a renewed public health plague in modern times, and the COVID-19 pandemic has rekindled this problem. Changes in antibiotic prescribing behavior, misinformation, financial hardship, environmental impact, and governance gaps have generally enhanced the misuse and improper access to antibiotics during the COVID-19 pandemic. These determinants, intersected with antibacterial resistance in the current pandemic, may amplify the potential for a future antibacterial resistance pandemic. The occurrence of infections with multidrug-resistant (MDR), extensively drug-resistant (XDR), difficult-to-treat drug-resistant (DTR), carbapenem-resistant (CR), and pan-drug-resistant (PDR) bacteria is still increasing. The aim of this review is to highlight the state of the art of antibacterial resistance worldwide, focusing on the most important pathogens, namely Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae, and their resistance to the most common antibiotics.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| |
Collapse
|
29
|
Celik C, Kalin G, Cetinkaya Z, Ildiz N, Ocsoy I. Recent Advances in Colorimetric Tests for the Detection of Infectious Diseases and Antimicrobial Resistance. Diagnostics (Basel) 2023; 13:2427. [PMID: 37510171 PMCID: PMC10377832 DOI: 10.3390/diagnostics13142427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Diagnosis of infection-causing microorganisms with sensitive, rapid, selective and economical diagnostic tests is critical to start the right treatment. With these tests, the spread of infections can be prevented. In addition to that, the detection of antimicrobial resistance also makes a significant contribution to public health. In recent years, different types of diagnostic tests have been developed as alternatives to traditional diagnostic tests used in clinics. In particular, colorimetric tests, which minimize the need for an instrument, have advantages owing to their cost effectiveness, rapid response and naked-eye detection and practical use. In this review, we especially focused on pH indicators and nanomaterial-based colorimetric tests in detection of infection-causing microorganisms and antimicrobial resistance.
Collapse
Affiliation(s)
- Cagla Celik
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum 19000, Turkey;
| | - Gamze Kalin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey;
| | | | - Nilay Ildiz
- Medical Imaging Department, Vocational School of Health Services, Bandırma Onyedi Eylul University, Bandirma 10200, Turkey;
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
30
|
Zhuo J, Liang B, Zhang H, Chi Y, Cai Y. An overview of gram-negative bacteria with difficult-to-treat resistance: definition, prevalence, and treatment options. Expert Rev Anti Infect Ther 2023; 21:1203-1212. [PMID: 37811630 DOI: 10.1080/14787210.2023.2267765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Difficult-to-treat resistance (DTR) is a newly proposed resistance phenotype characterized by resistance to all first-line drugs. The emergence of DTR as a new resistance phenotype has significant implications for clinical practice. This new concept has the potential to be widely used instead of traditional phenotypes. AREAS COVERED This study carried out a detailed analysis about the definition, application, and evolution of various resistance phenotypes. We collected all the research articles on Gram-negative bacteria with difficult-to-treat resistance (GNB-DTR), analyzed the DTR in each region and each bacterial species. The advantages and doubts of DTR, the dilemma of GNB-DTR infections and the potential therapeutic strategies are summarized in the review. EXPERT OPINION Available studies show that the prevalence of GNB-DTR is not optimistic. Unlike traditional resistance phenotypes, DTR is more closely aligned with the clinical treatment perspective and can help with the prompt selection of an appropriate treatment plan. Currently, potential treatment options for GNB-DTR include a number of second-line drugs and novel antibiotics. However, the definition of first-line drugs is inherently dynamic. Therefore, the DTR concept based on first-line drugs needs to be continuously updated and refined, considering the emergence of new antibiotics, resistance characteristics, and pathogen prevalence in different regions.
Collapse
Affiliation(s)
- Jiaju Zhuo
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Huan Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Domingues S, Lima T, Saavedra MJ, Da Silva GJ. An Overview of Cefiderocol's Therapeutic Potential and Underlying Resistance Mechanisms. Life (Basel) 2023; 13:1427. [PMID: 37511802 PMCID: PMC10382032 DOI: 10.3390/life13071427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat (DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales remains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is relatively stable compared to most commonly found carbapenamases. However, some resistant mechanisms to cefiderocol have already been identified and reduced susceptibility has developed during patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we summarize the current available treatments against the former resistant bacteria, and we revise and discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores, the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.
Collapse
Affiliation(s)
- Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tiago Lima
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria José Saavedra
- CITAB-Inov4Agro, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-AL4AnimalS, Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
32
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
33
|
Agosta M, Bencardino D, Argentieri M, Pansani L, Sisto A, Ciofi Degli Atti ML, D'Amore C, Bagolan P, Iacobelli BD, Magnani M, Raponi M, Perno CF, Andreoni F, Bernaschi P. Clonal Spread of Hospital-Acquired NDM-1-Producing Klebsiella pneumoniae and Escherichia coli in an Italian Neonatal Surgery Unit: A Retrospective Study. Antibiotics (Basel) 2023; 12:antibiotics12040642. [PMID: 37107005 PMCID: PMC10135170 DOI: 10.3390/antibiotics12040642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
This article reports a rapid and unexpected spread of colonization cases of NDM-1 carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in a neonatal surgical unit (NSU) at Bambino Gesù Children's Hospital in Rome, Italy. Between the 16th of November 2020 and the 18th of January 2021, a total of 20 NDM-1 carbapenemase-producing K. pneumoniae (n = 8) and E. coli (n = 12) were isolated from 17 out of 230 stool samples collected from neonates admitted in the aforementioned ward and time period by an active surveillance culture program routinely in place to monitor the prevalence of colonization/infection with multidrug-resistant Gram-negative microorganisms. All strains were characterized by antimicrobial susceptibility testing, detection of resistance determinants, PCR-based replicon typing (PBRT) and multilocus-sequence typing (MLST). All isolates were highly resistant to most of the tested antibiotics, and molecular characterization revealed that all of them harbored the blaNDM-1 gene. Overall, IncA/C was the most common Inc group (n = 20/20), followed by IncFIA (n = 17/20), IncFIIK (n = 14/20) and IncFII (n = 11/20). MLST analysis was performed on all 20 carbapenemase-producing Enterobacterales (CPE) strains, revealing three different Sequence Types (STs) among E. coli isolates, with the prevalence of ST131 (n = 10/12; 83%). Additionally, among the 8 K. pneumoniae strains we found 2 STs with the prevalence of ST37 (n = 7/8; 87.5%). Although patient results were positive for CPE colonization during their hospital stay, infection control interventions prevented their dissemination in the ward and no cases of infection were recorded in the same time period.
Collapse
Affiliation(s)
- Marilena Agosta
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, 00163 Rome, Italy
| | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Fano, Italy
| | - Marta Argentieri
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, 00163 Rome, Italy
| | - Laura Pansani
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, 00163 Rome, Italy
| | - Annamaria Sisto
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, 00163 Rome, Italy
| | | | - Carmen D'Amore
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Pietro Bagolan
- Neonatal Surgery Unit, Medical and Surgical Department of the Fetus-Newborn-Infant, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Barbara Daniela Iacobelli
- Neonatal Surgery Unit, Medical and Surgical Department of the Fetus-Newborn-Infant, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Fano, Italy
| | - Massimiliano Raponi
- Health Directorate, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, 00163 Rome, Italy
| | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Fano, Italy
- Clinical Pathology Unit, Azienda Sanitaria Territoriale, 61029 Urbino, Italy
| | - Paola Bernaschi
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, 00163 Rome, Italy
| |
Collapse
|
34
|
He L, Yang H, Sun J, Zhai L, Ji J, Ma X, Tang D, Mu Y, Wang L, Iqbal Z, Yang Z. Synthesis and β-Lactamase Inhibition Activity of Diazabicyclooctane Derivatives in Combination with Imipenem. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
35
|
Lee YL, Ko WC, Hsueh PR. Geographic patterns of global isolates of carbapenem-resistant Klebsiella pneumoniae and the activity of ceftazidime/avibactam, meropenem/vaborbactam, and comparators against these isolates: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2020. Int J Antimicrob Agents 2022; 60:106679. [PMID: 36241011 DOI: 10.1016/j.ijantimicag.2022.106679] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a growing threat to public health. This study was conducted to determine the prevalence of carbapenem-resistant Klebsiella pneumoniae (CR-KP) and the associated carbapenemase genes using data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2020. Minimum inhibitory concentrations (MICs) were determined using the broth microdilution method, and carbapenemase genes were detected using multiplex polymerase chain reaction (PCR). Clinical and Laboratory Standards Institute breakpoints were used for interpretation of susceptibility. A total of 6753 K. pneumoniae isolates were collected from 57 countries in six regions worldwide. Of these, 1118 (16.6%) were CR-KP isolates. Among 1079 of the tested CR-KP isolates, 1017 (94.3%) had at least one of the class A (41.0%, 417/1017), B (39.3%, 400/1017), and D (38.8%, 395/1017) carbapenemase genes. The resistance patterns and associated genes differed significantly between the participating countries. India, Greece, and Argentina had the highest rates of carbapenem resistance. Susceptibility to the β-lactamase inhibitor combination, ceftazidime/avibactam was greater than that to meropenem/vaborbactam in all K. pneumoniae (93.7% vs. 90.3%, P < 0.05), CR-KP (63.3% vs. 41.5%, P < 0.05), CR-KP with genes for Klebsiella pneumoniae carbapenemase-like carbapenemase (99.5% vs. 96.0%, P < 0.05), oxacillinase-like carbapenemase (98.7% vs. 4.6%, P < 0.05), and CR-KP without carbapenemase genes (93.5% vs. 79.0%, P < 0.05). CR-KP was the only exception with class B carbapenemase, with susceptibility rates of 1.4% and 9.4% to ceftazidime/avibactam and meropenem/vaborbactam, respectively (P < 0.05). Overall, surveillance results are important for guiding empirical antimicrobial therapy in different regions and for monitoring the global transmission of CR-KP with varying resistance mechanisms.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
36
|
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y, Shen A, Sun H, Li L. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol Res 2022; 266:127249. [DOI: 10.1016/j.micres.2022.127249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
37
|
Sadek M, Saad AM, Nordmann P, Poirel L. Genomic Characterization of an Extensively Drug-Resistant Extra-Intestinal Pathogenic (ExPEC) Escherichia coli Clinical Isolate Co-Producing Two Carbapenemases and a 16S rRNA Methylase. Antibiotics (Basel) 2022; 11:1479. [PMID: 36358134 PMCID: PMC9686471 DOI: 10.3390/antibiotics11111479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
An extensively drug-resistant Escherichia coli clinical isolate (N1606) belonging to Sequence Type 361 was recovered from the urine of a patient hospitalized in Switzerland. The strain showed resistance to virtually all β-lactams including the latest generation antibiotics cefiderocol and aztreonam-avibactam. Whole genome sequencing revealed that it possessed two carbapenemase-encoding genes, namely blaNDM-5 and blaKPC-3, and a series of additional β-lactamase genes, including blaCTX-M-15 and blaSHV-11 encoding extended-spectrum β-lactamases (ESBLs), blaCMY-145 encoding an AmpC-type cephalosporinase, and blaOXA-1 encoding a narrow-spectrum class D ß-lactamase. Most of these resistance genes were located on plasmids (IncFII-FIA, IncX3, IncIγ, IncFII). That strain exhibited also a four amino-acid insertion in its penicillin-binding protein 3 (PBP3) sequence, namely corresponding to YRIN. Complete genome analysis revealed that this E. coli isolate carried virulence factors (sitA, gad, hra, terC, traT, and cia) and many other non-β-lactam resistance determinants including rmtB, tet(A), dfrA17 (two copies), aadA1, aadA5 (two copies), sul1 (two copies), qacE (two copies), qepA, mdf(A), catA1, erm(B), mph(A), and qnrS1, being susceptible only to tigecycline, colistin and fosfomycin. In conclusion, we described here the phenotypic and genome characteristics of an extensively drug-resistant (XDR) E. coli ST361 being recognized as an emerging clone worldwide.
Collapse
Affiliation(s)
- Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt
| | - Alaaeldin Mohamed Saad
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- INSERM European Unit (IAME), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- INSERM European Unit (IAME), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
38
|
Lee YL, Ko WC, Hsueh PR. In vitro activity of imipenem/relebactam, meropenem/vaborbactam and comparators against Enterobacterales from patients with intra-abdominal infections: Results of the study for Monitoring Antimicrobial Resistance Trends (SMART) in Taiwan, 2020. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY AND INFECTION 2022. [DOI: 10.1016/j.jmii.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Kang CI. Antibiotics for multidrug-resistant gram-negative bacteria. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2022. [DOI: 10.5124/jkma.2022.65.8.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Increase in antimicrobial-resistant bacteria continues to be challenge to physicians. Particularly, multidrug-resistant (MDR) gram-negative bacilli (GNB), such as extended-spectrum beta-lactamase (ESBL)-producers and carbapenem-resistant pathogens, are becoming a major human health problem globally.Current Concepts: Gram-negative bacteria have developed resistance via mechanisms encoding AmpC beta-lactamases, ESBLs, and carbapenemases. The therapeutic options available for these pathogens are extremely limited. Infection by MDR bacteria is associated with ineffective antimicrobial therapy, which poses a major threat to the survival of patients with serious infections. Physicians should be familiar with the local epidemiology of MDR bacterial infections and the available therapeutic options. Carbapenems are considered as the drugs of choice for treating ESBL or AmpC-producers. However, increased use of carbapenems in response to an increased prevalence of MDR pathogens could be associated with the rapid emergence of carbapenem resistance. Therefore, there is an ongoing quest for carbapenem-sparing regimens for the treatment of MDR-GNB. Treatment of MDR-GNB infections need not be limited to carbapenems as novel antimicrobial agents are now available.Discussion and Conclusion: This comprehensive review aims to describe therapeutic options available for MDR-GNB infections in Korea, a country with a high prevalence of MDR pathogens. Recently developed antimicrobial agents that should be urgently introduced in Korea include ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and cefiderocol. These drugs have been shown to be effective against carbapenem-resistant Enterobacterales, carbapenem-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii.
Collapse
|
40
|
Sellera FP, Cardoso B, Fuentes-Castillo D, Esposito F, Sano E, Fontana H, Fuga B, Goldberg DW, Seabra LAV, Antonelli M, Sandri S, Kolesnikovas CKM, Lincopan N. Genomic Analysis of a Highly Virulent NDM-1-Producing Escherichia coli ST162 Infecting a Pygmy Sperm Whale ( Kogia breviceps) in South America. Front Microbiol 2022; 13:915375. [PMID: 35755998 PMCID: PMC9231830 DOI: 10.3389/fmicb.2022.915375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Carbapenemase-producing Enterobacterales are rapidly spreading and adapting to different environments beyond hospital settings. During COVID-19 lockdown, a carbapenem-resistant NDM-1-positive Escherichia coli isolate (BA01 strain) was recovered from a pygmy sperm whale (Kogia breviceps), which was found stranded on the southern coast of Brazil. BA01 strain belonged to the global sequence type (ST) 162 and carried the blaNDM–1, besides other medically important antimicrobial resistance genes. Additionally, genes associated with resistance to heavy metals, biocides, and glyphosate were also detected. Halophilic behavior (tolerance to > 10% NaCl) of BA01 strain was confirmed by tolerance tests of NaCl minimal inhibitory concentration, whereas halotolerance associated genes katE and nhaA, which encodes for catalase and Na+/H+ antiporter cytoplasmic membrane, respectively, were in silico confirmed. Phylogenomics clustered BA01 with poultry- and human-associated ST162 lineages circulating in European and Asian countries. Important virulence genes, including the astA (a gene encoding an enterotoxin associated with human and animal infections) were detected, whereas in vivo experiments using the Galleria mellonella infection model confirmed the virulent behavior of the BA01 strain. WHO critical priority carbapenemase-producing pathogens in coastal water are an emerging threat that deserves the urgent need to assess the role of the aquatic environment in its global epidemiology.
Collapse
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes A V Seabra
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | | | | | | | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Bouiller K, Zayet S, Lalloz PE, Potron A, Gendrin V, Chirouze C, Klopfenstein T. Efficacy and Safety of Oral Fosfomycin-Trometamol in Male Urinary Tract Infections with Multidrug-Resistant Enterobacterales. Antibiotics (Basel) 2022; 11:198. [PMID: 35203801 PMCID: PMC8868337 DOI: 10.3390/antibiotics11020198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Antimicrobial drugs to treat male urinary tract infection (UTI) with multidrug-resistant Enterobacterales are limited. We studied oral fosfomycin-trometamol (FT) in this situation. The objective was to assess the clinical cure rate in patients presenting UTIs treated with oral FT. METHODS We conducted a single-center observational retrospective study from January 2017 to August 2018. The primary endpoint was clinical cure; and the secondary endpoints were incidence of recurrences, oral FT safety, and microbiological cure. RESULTS Sixteen male patients were included, presenting 21 UTI episodes. Fourteen patients (88%) have at least one underlying urologic disorder. We described 4 episodes of acute UTI and 17 episodes of chronic bacterial prostatitis (CBP). Sixteen out of twenty-one Enterobacterales were extended spectrum beta-lactamase (ESBL)-producers and all the patients presented a resistance to fluoroquinolones and trimethoprim/sulfamethoxazole. In acute UTI, the regimen was a daily dose of oral FT for a mean duration of 2.5 weeks (+/-7.0 days). Clinical and microbiological recovery was achieved in all patients, with no recurrence after 5.3 months follow-up on average (+/-10.4 days). In CBP, the regimen was one oral dose of fosfomycin every 24-48 h, for a mean duration of 5.5 weeks/UTI episodes (+/-15.3 days). Clinical and microbiological recovery was found in 16/17 cases. Seven of the twelve patients with CBP had relapsed and 3/12 had had a new episode of infection after an average follow-up of 5.8 months. Only 6/21 of patients presented minor or moderate adverse effects, such as digestive disorders. CONCLUSIONS FT could be an alternative option to carbapenems in the treatment of multidrug-resistant Enterobacterales infections for male UTIs.
Collapse
Affiliation(s)
- Kévin Bouiller
- Department of Infectious and Tropical Diseases, CHRU, 25000 Besançon, France; (K.B.); (P.-E.L.); (C.C.)
- Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, 25000 Besançon, France
| | - Souheil Zayet
- Tropical and Infectious Diseases Department, Hospital Nord Franche-Comté, 90400 Trévenans, France; (V.G.); (T.K.)
| | - Paul-Emile Lalloz
- Department of Infectious and Tropical Diseases, CHRU, 25000 Besançon, France; (K.B.); (P.-E.L.); (C.C.)
| | - Anaïs Potron
- Bacteriology Laboratory, CHRU, 25000 Besançon, France;
| | - Vincent Gendrin
- Tropical and Infectious Diseases Department, Hospital Nord Franche-Comté, 90400 Trévenans, France; (V.G.); (T.K.)
| | - Catherine Chirouze
- Department of Infectious and Tropical Diseases, CHRU, 25000 Besançon, France; (K.B.); (P.-E.L.); (C.C.)
- Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, 25000 Besançon, France
| | - Timothée Klopfenstein
- Tropical and Infectious Diseases Department, Hospital Nord Franche-Comté, 90400 Trévenans, France; (V.G.); (T.K.)
| |
Collapse
|