1
|
Deschner F, Mostert D, Daniel JM, Voltz A, Schneider DC, Khangholi N, Bartel J, Pessanha de Carvalho L, Brauer M, Gorelik TE, Kleeberg C, Risch T, Haeckl FPJ, Herraiz Benítez L, Andreas A, Kany AM, Jézéquel G, Hofer W, Müsken M, Held J, Bischoff M, Seemann R, Brötz-Oesterhelt H, Schneider T, Sieber S, Müller R, Herrmann J. Natural products chlorotonils exert a complex antibacterial mechanism and address multiple targets. Cell Chem Biol 2025; 32:586-602.e15. [PMID: 40203831 DOI: 10.1016/j.chembiol.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance is a threat to human health rendering current first-line antibiotics ineffective. New agents overcoming resistance mechanisms are urgently needed to guarantee successful treatment of human disease in the future. Chlorotonils, a natural product class with yet unknown mode of action, were shown to have broad-spectrum activity against multi-resistant Gram-positive bacteria and the malaria parasite Plasmodium falciparum, with promising activity and safety in murine infection models. Here, we report that chlorotonils can target the cell membrane, cell wall, and protein biosynthesis. They can be characterized by a rapid onset of action via interference with ion homeostasis leading to membrane depolarization, however, without inducing severe barrier failure or cellular lysis. Further characterization confirmed binding of chlorotonils to bacterial membrane lipids eventually leading to uncontrolled potassium transport. Additionally, we identified functional inhibition of the peptidoglycan biosynthesis protein YbjG and methionine aminopeptidase MetAP as secondary targets of chlorotonils.
Collapse
Affiliation(s)
- Felix Deschner
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Dietrich Mostert
- Center for Functional Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Jan-Martin Daniel
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Voltz
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Dana Carina Schneider
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany
| | - Navid Khangholi
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | | | - Madita Brauer
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Tatiana E Gorelik
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Christian Kleeberg
- Institute for Inorganic and Analytical Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Timo Risch
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Laura Herraiz Benítez
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Anastasia Andreas
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Andreas Martin Kany
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Gwenaëlle Jézéquel
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Walter Hofer
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Jana Held
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute of Tropical Medicine, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Markus Bischoff
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute for Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Ralf Seemann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany; Cluster or Excellence "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Tanja Schneider
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Sieber
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Center for Functional Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Rolf Müller
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany.
| |
Collapse
|
2
|
Knaab TC, Moritz A, Pessanha de Carvalho L, Klein S, Lungerich B, Lohse K, Kruse L, Mombo-Ngoma G, Orta L, Thibaud JL, de Villiers KA, Fidock DA, Burckhardt BB, Held J, Wittlin S, Kurz T. TKK130 is a 3-Hydroxy-Propanamidine (HPA) with Potent Antimalarial In Vivo Activity and a High Barrier to Resistance. J Med Chem 2025; 68:95-107. [PMID: 39723908 DOI: 10.1021/acs.jmedchem.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Malaria continues to pose a significant burden on populations in endemic areas and requires innovative treatment options. Here, we report the synthesis and preclinical evaluation of the novel 3-hydroxypropanamidine (HPA) 2 (TKK130), which shows excellent antiplasmodial in vitro activity against drug-sensitive and -resistant Plasmodium falciparum strains. Moreover, in various human cell lines, the compound shows no cytotoxicity and excellent parasite selectivity. The compound inhibits synthetic hemozoin (β-hematin) formation, with IC50 values lower than chloroquine (CQ), and its in vitro rate of activity is comparable with the fast-acting antimalarial drug dihydroartemisinin. Furthermore, selection studies reveal a very low propensity for resistance development. Based on initial in vivo pharmacokinetic snapshot data, 2 (TKK130) has a long-lasting, linear pharmacokinetic profile. In vivo, this novel HPA exhibits curative activity in the Plasmodium bergheimouse model and potent activity in theP. falciparum SCID mouse model after oral administration.
Collapse
Affiliation(s)
- Tanja C Knaab
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alena Moritz
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, 48149 Muenster, Germany
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Saskia Klein
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Beate Lungerich
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katharina Lohse
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Linn Kruse
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Medicales de Lambaréné, Lambaréné, B.P 242 Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine and Department of Medicine, University Medical Centre Hamburg-Eppendorf, D-20359 Hamburg, Germany
| | - Lily Orta
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Thibaud
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, 48149 Muenster, Germany
| | - Jana Held
- Institute of Tropical Medicine, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- German Center for Infection Research, Partner Site Tubingen, 72074 Tuebingen, Germany
- Centre de Recherches Medicales de Lambaréné, Lambaréné, B.P 242 Lambaréné, Gabon
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel 4002, Switzerland, University of Basel, Basel CH-4003, Switzerland
| | - Thomas Kurz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Sakura T, Ishii R, Yoshida E, Kita K, Kato T, Inaoka DK. Accelerating Antimalarial Drug Discovery with a New High-Throughput Screen for Fast-Killing Compounds. ACS Infect Dis 2024; 10:4115-4126. [PMID: 39561299 DOI: 10.1021/acsinfecdis.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The urgent need for rapidly acting compounds in the development of antimalarial drugs underscores the significance of such compounds in overcoming resistance issues and improving patient adherence to antimalarial treatments. The present study introduces a high-throughput screening (HTS) approach using 1536-well plates, employing Plasmodium falciparum lactate dehydrogenase (PfLDH) combined with nitroreductase (NTR) and fluorescent probes to evaluate inhibition of the growth of the asexual blood stage of malaria parasites. This method was adapted to efficiently assess the speed of action profiling (SAP) in a 384-well plate format, streamlining the traditionally time-consuming screening process. By successfully screening numerous compounds, this approach identified fast-killing hits early in the screening process, addressing challenges associated with artemisinin-based combination therapies. The high-throughput SAP method is expected to be of value in continuously monitoring fast-killing properties during structure-activity relationship studies, expediting the identification and development of novel, rapidly acting antimalarial drugs within phenotypic drug discovery campaigns.
Collapse
Affiliation(s)
- Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Ryuta Ishii
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Eri Yoshida
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Infection Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Teruhisa Kato
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan
- Exploratory Research for Drug Discovery, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Infection Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Duffy S, Sleebs BE, Avery VM. An adaptable, fit-for-purpose screening approach with high-throughput capability to determine speed of action and stage specificity of anti-malarial compounds. Antimicrob Agents Chemother 2024; 68:e0074624. [PMID: 39264187 PMCID: PMC11459970 DOI: 10.1128/aac.00746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
A revamped in vitro compound identification and activity profiling approach is required to meet the large unmet need for new anti-malarial drugs to combat parasite drug resistance. Although compound hit identification utilizing high-throughput screening of large compound libraries is well established, the ability to rapidly prioritize such large numbers for further development is limited. Determining the speed of action of anti-malarial drug candidates is a vital component of malaria drug discovery, which currently occurs predominantly in lead optimization and development. This is due in part to the capacity of current methods which have low throughput due to the complexity and labor intensity of the approaches. Here, we provide an adaptable screening paradigm utilizing automated high content imaging, including the development of an automated schizont maturation assay, which collectively can identify anti-malarial compounds, classify activity into fast and slow acting, and provide an indication of the parasite stage specificity, with high-throughput capability. By frontloading these critical biological parameters much earlier in the drug discovery pipeline, it has the potential to reduce lead compound attrition rates later in the development process. The capability of the approach in its alternative formats is demonstrated using three Medicines for Malaria Venture open access compound "boxes," namely Pathogen Box (malaria set-125 compounds), Global Health Priority Box [Malaria Box 2 (80 compounds) and zoonotic neglected diseases (80 compounds)], and the Pandemic Response Box (400 compounds). From a total of 685 compounds tested, 79 were identified as having fast ring-stage-specific activity comparable to that of artemisinin and therefore of high priority for further consideration and development.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, School of Environment and Science, Griffith University, Griffith, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Australia
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Australia
| | - Vicky M. Avery
- Discovery Biology, School of Environment and Science, Griffith University, Griffith, Australia
| |
Collapse
|
5
|
Hellingman A, Sifoniou K, Buser T, Thommen BT, Walz A, Passecker A, Collins J, Hupfeld M, Wittlin S, Witmer K, Brancucci NMB. Next Generation Chemiluminescent Probes for Antimalarial Drug Discovery. ACS Infect Dis 2024; 10:1286-1297. [PMID: 38556981 PMCID: PMC11019541 DOI: 10.1021/acsinfecdis.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Malaria is caused by parasites of the Plasmodium genus and remains one of the most pressing human health problems. The spread of parasites resistant to or partially resistant to single or multiple drugs, including frontline antimalarial artemisinin and its derivatives, poses a serious threat to current and future malaria control efforts. In vitro drug assays are important for identifying new antimalarial compounds and monitoring drug resistance. Due to its robustness and ease of use, the [3H]-hypoxanthine incorporation assay is still considered a gold standard and is widely applied, despite limited sensitivity and the dependence on radioactive material. Here, we present a first-of-its-kind chemiluminescence-based antimalarial drug screening assay. The effect of compounds on P. falciparum is monitored by using a dioxetane-based substrate (AquaSpark β-D-galactoside) that emits high-intensity luminescence upon removal of a protective group (β-D-galactoside) by a transgenic β-galactosidase reporter enzyme. This biosensor enables highly sensitive, robust, and cost-effective detection of asexual, intraerythrocytic P. falciparum parasites without the need for parasite enrichment, washing, or purification steps. We are convinced that the ultralow detection limit of less than 100 parasites of the presented biosensor system will become instrumental in malaria research, including but not limited to drug screening.
Collapse
Affiliation(s)
- Angela Hellingman
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Kleopatra Sifoniou
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Tamara Buser
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Basil T. Thommen
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Annabelle Walz
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Armin Passecker
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | | | | | - Sergio Wittlin
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| | - Kathrin Witmer
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
- NEMIS
Technologies AG, 8804 Au, ZH, Switzerland
| | - Nicolas M. B. Brancucci
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University
of Basel, 4001 Basel, Switzerland
| |
Collapse
|
6
|
Schäfer TM, Pessanha de Carvalho L, Inoue J, Kreidenweiss A, Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin Drug Discov 2024; 19:209-224. [PMID: 38108082 DOI: 10.1080/17460441.2023.2284820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.
Collapse
Affiliation(s)
| | | | - Juliana Inoue
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|