1
|
Chen J, Ma C, Li J, Niu X, Fan Y. Collagen-mediated cardiovascular calcification. Int J Biol Macromol 2025; 301:140225. [PMID: 39864707 DOI: 10.1016/j.ijbiomac.2025.140225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions. The content and type of collagen are the result of a dynamic balance between synthesis and degradation. Unregulated processes can lead to adverse outcomes. During cardiovascular calcification, collagen not only serves as a scaffold for ectopic mineral deposition but also acts as a signal transduction pathway that mediates calcification by guiding the aggregation and nucleation of matrix vesicles and promoting the proliferation, migration and phenotypic changes of cells involved in the lesion. This review provides an overview of collagen subtypes in the cardiovascular system under physiological conditions and discusses their distribution. Additionally, we introduce pathological changes and mechanisms of collagen in blood vessels and heart valves. Then, the formation process and characteristic stages of cardiovascular calcification are described. Finally, we highlight the role of collagen in cardiovascular calcification, explore strategied for mediating calcification, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Junlin Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China.
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
2
|
Boase NRB, Gillies ER, Goh R, Kieltyka RE, Matson JB, Meng F, Sanyal A, Sedláček O. Stimuli-Responsive Polymers at the Interface with Biology. Biomacromolecules 2024; 25:5417-5436. [PMID: 39197109 DOI: 10.1021/acs.biomac.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
There has been growing interest in polymeric systems that break down or undergo property changes in response to stimuli. Such polymers can play important roles in biological systems, where they can be used to control the release of therapeutics, modulate imaging signals, actuate movement, or direct the growth of cells. In this Perspective, after discussing the most important stimuli relevant to biological applications, we will present a selection of recent exciting developments. The growing importance of stimuli-responsive polysaccharides will be discussed, followed by a variety of stimuli-responsive polymeric systems for the delivery of small molecule drugs and nucleic acids. Switchable polymers for the emerging area of therapeutic response measurement in theranostics will be described. Then, the diverse functions that can be achieved using hydrogels cross-linked covalently, as well as by various dynamic approaches will be presented. Finally, we will discuss some of the challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Nathan R B Boase
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Elizabeth R Gillies
- Department of Chemistry; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Rubayn Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Roxanne E Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Amitav Sanyal
- Department of Chemistry and Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Türkiye
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| |
Collapse
|
3
|
Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation. Mol Biol Rep 2022; 49:12063-12075. [DOI: 10.1007/s11033-022-08013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022]
|
4
|
Liu C, Liu C, Liu Z, Shi Z, Liu S, Wang X, Wang X, Huang F. Injectable thermogelling bioadhesive chitosan-based hydrogels for efficient hemostasis. Int J Biol Macromol 2022; 224:1091-1100. [DOI: 10.1016/j.ijbiomac.2022.10.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
5
|
Zhang S, Luo X, Guo C, Huang K, Ding S, Li L, Zhou C, Li H. Tissue engineered bone via templated hBMSCs mineralization and its application for bone repairing. BIOMATERIALS ADVANCES 2022; 139:212937. [PMID: 35882130 DOI: 10.1016/j.bioadv.2022.212937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
To develop bone implants, a novel tissue-engineered bone was constructed via templated human bone mesenchymal stem cells (hBMSCs) mineralization. Firstly, an osteoid-like template (Os-template) with aligned collagen fibers was prepared and followed by seeding hBMSCs to mimic the process of bone formation. After being cultured over weeks, the cells produced collagen fibers in an orderly aligned osteomorphic fashion. Further, a novel tissue-engineered bone with mineralized collagen fiber (mOs-ECM) was subsequently achieved after cell mineralization, showing a high degree of osteomimicry in terms of both composition and structure. When applied to the rat cranial bone defect model, the mOs-ECM significantly promoted the new bone formation and fused with the host bone. The study indicated that microscopic cell mineralization could be guided by artificially designed templates and successfully fabricated a macroscopic implant with a pronounced effect on bone repairing.
Collapse
Affiliation(s)
- Shuyun Zhang
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; College of Life Science and Technology, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Xueshi Luo
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Chuang Guo
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Ke Huang
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Shan Ding
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China
| | - Lihua Li
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China.
| | - Changren Zhou
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Miao F, Liu T, Zhang X, Wang X, Wei Y, Hu Y, Lian X, Zhao L, Chen W, Huang D. Engineered bone tissues using biomineralized gelatin methacryloyl/sodium alginate hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:137-154. [PMID: 34517778 DOI: 10.1080/09205063.2021.1980360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
At present, the treatment of bone defect is one of the most concerned problems in biomedical fields. Despite the wide variety of scaffolds, there is a challenge to select materials that can mimic the structural integrity and biocompatibility of natural bone. In our study, gelatin methacryloyl (GelMA) and sodium alginate (Alg) were used to prepare three-dimensional (3D) GelMA/Alg hybrid hydrogel, which can simulate the structure and biological function of natural extracellular matrix due to their high water content and porous structure. The interconnected and homogeneous pores of the scaffold facilitate the transport of nutrients during the bone regeneration. Then hydroxyapatite (HA) coated GelMA/Alg (GelMA/Alg-HA) hydrogel was obtained by sequential mineralization. The mineralized hydrogel was obtained by immersing hydrogel alternately in a solution of calcium and phosphorus at 37 °C. The hydrogel was modified with a coating of HA under a mild condition. The calcium crosslinked Alg could provide nucleation sites for HA crystals. And the sequential mineralization will improve the physical properties and osteoinductivity of the hydrogels by introducing HA, which is similar to the mineral component of natural bone. Analytical results confirmed that the HA particles were uniformly distributed in the surface of the hydrogels and the mineral contents were about 40% after three cycles. The compressive strength was improved from 22.43 ± 6.39 to 131.03 ± 9.26 kPa. In addition, MC3T3-E1 cell co-culture experiments shown that the mineralized GelMA/Alg-HA hybrid hydrogel possess good biocompatibility, which is conducive to the growth of new bone tissue and bone repair.
Collapse
Affiliation(s)
- Fenyan Miao
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi-Zheda Institute of New Materials and Chemical Engineering, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Tingting Liu
- Department of Laboratory Diagnosis, the 971th Hospital, Qingdao, PR China
| | - Xiumei Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Xuefeng Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi-Zheda Institute of New Materials and Chemical Engineering, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi-Zheda Institute of New Materials and Chemical Engineering, Taiyuan, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi-Zheda Institute of New Materials and Chemical Engineering, Taiyuan, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi-Zheda Institute of New Materials and Chemical Engineering, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi-Zheda Institute of New Materials and Chemical Engineering, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
7
|
Sungkhaphan P, Thavornyutikarn B, Kaewkong P, Pongkittiphan V, Pornsuwan S, Singhatanadgit W, Janvikul W. Antibacterial and osteogenic activities of clindamycin-releasing mesoporous silica/carboxymethyl chitosan composite hydrogels. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210808. [PMID: 34540258 PMCID: PMC8441126 DOI: 10.1098/rsos.210808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/03/2021] [Indexed: 05/27/2023]
Abstract
Conventional treatment of jaw bone infection is often ineffective at controlling bacterial infection and enhancing bone regeneration. Biodegradable composite hydrogels comprised of carboxymethyl chitosan (CMCS) and clindamycin (CDM)-loaded mesoporous silica nanoparticles (MCM-41), possessing dual antibacterial activity and osteogenic potency, were developed in the present study. CDM was successfully loaded into both untreated and plasma-treated MCM-41 nanoparticles, denoted as (p)-MCM-41, followed by the incorporation of each of CDM-loaded (p)-MCM-41 into CMCS. The resulting CDM-loaded composite hydrogels, (p)-MCM-41-CDM-CMCS, demonstrated slow degradation rates (about 70% remaining weight after 14-day immersion), while the CDM-free composite hydrogel entirely disintegrated after 4-day immersion. The plasma treatment was found to improve drug loading capacity and slow down initial drug burst effect. The prolonged releases of CDM from both (p)-MCM-41-CDM-CMCS retained their antibacterial effect against Streptococcus sanguinis for at least 14 days in vitro. In vitro assessment of osteogenic activity showed that the CDM-incorporated composite hydrogel was cytocompatible to human mesenchymal stem cells (hMSCs) and induced hMSC mineralization via p38-dependent upregulated alkaline phosphatase activity. In conclusion, novel (p)-MCM-41-CDM-CMCS hydrogels with combined controlled release of CDM and osteogenic potency were successfully developed for the first time, suggesting their potential clinical benefit for treatment of intraoral bone infection.
Collapse
Affiliation(s)
- Piyarat Sungkhaphan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Boonlom Thavornyutikarn
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Pakkanun Kaewkong
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Veerachai Pongkittiphan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Weerachai Singhatanadgit
- Faculty of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Wanida Janvikul
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| |
Collapse
|
8
|
Biomimetic Mineralization of Tannic Acid-Supplemented HEMA/SBMA Nanocomposite Hydrogels. Polymers (Basel) 2021; 13:polym13111697. [PMID: 34067423 PMCID: PMC8197008 DOI: 10.3390/polym13111697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/27/2023] Open
Abstract
This study developed a tannic acid (TA)-supplemented 2-hydroxyethyl methacrylate-co-sulfobetaine methacrylate (HEMA-co-SBMA) nanocomposite hydrogel with mineralization and antibacterial functions. Initially, hybrid hydrogels were synthesized by incorporating SBMA into the HEMA network and the influence of SBMA on the chemical structure, water content, mechanical properties, and antibacterial characteristics of the hybrid HEMA/SBMA hydrogels was examined. Then, nanoclay (Laponite XLG) was introduced into the hybrid HEMA/SBMA hydrogels and the effects evaluated of the nanoclay on the chemical structure, water content, and mechanical properties of these supplemented hydrogels. The 50/50 hybrid HEMA/SBMA hydrogel with 30 mg/mL nanoclay showed outstanding mechanical properties (3 MPa) and water content (60%) compared to pure polyHEMA hydrogels. TA then went on to be incorporated into these hybrid nanocomposite hydrogels and its effects investigated on biomimetic mineralization. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) showed that bone-like spheroidal precipitates with a Ca/P ratio of 1.67% were observed after 28 days within these mineralized hydrogels. These mineralized hydrogels demonstrated an almost 1.5-fold increase in compressive moduli compared to the hydrogels without mineralization. These multifunctional hydrogels display good mechanical and biomimetic properties and may have applications in bone regeneration therapies.
Collapse
|
9
|
Adamski R, Siuta D. Mechanical, Structural, and Biological Properties of Chitosan/Hydroxyapatite/Silica Composites for Bone Tissue Engineering. Molecules 2021; 26:molecules26071976. [PMID: 33807434 PMCID: PMC8037072 DOI: 10.3390/molecules26071976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this work was to fabricate novel bioactive composites based on chitosan and non-organic silica, reinforced with calcium β-glycerophosphate (Ca-GP), sodium β-glycerophosphate pentahydrate (Na-GP), and hydroxyapatite powder (HAp) in a range of concentrations using the sol–gel method. The effect of HAp, Na-GP, and Ca-GP contents on the mechanical properties, i.e., Young’s modulus, compressive strength, and yield strain, of hybrid composites was analyzed. The microstructure of the materials obtained was visualized by SEM. Moreover, the molecular interactions according to FTIR analysis and biocompatibility of composites obtained were examined. The CS/Si/HAp/Ca-GP developed from all composites analyzed was characterized by the well-developed surface of pores of two sizes: large ones of 100 μm and many smaller pores below 10 µm, the behavior of which positively influenced cell proliferation and growth, as well as compressive strength in a range of 0.3 to 10 MPa, Young’s modulus from 5.2 to 100 MPa, and volumetric shrinkage below 60%. This proved to be a promising composite for applications in tissue engineering, e.g., filling small bone defects.
Collapse
|
10
|
Preparation and pore-forming mechanism of hydrogen bond and ionic bond double-driven chitosan-based mesoporous carbon. Int J Biol Macromol 2021; 179:519-531. [PMID: 33689772 DOI: 10.1016/j.ijbiomac.2021.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 01/27/2023]
Abstract
Using chitosan as the carbon source, F127 as the template, and sodium tripolyphosphate as cross-linking agent, a hydrogen bond and ionic bond double-driven mesoporous carbon material was prepared via the sol-hydrothermal method and its formation mechanism was discussed. According to the results from FTIR, Raman, XPS, physical adsorption analyzer, SEM, TEM, and TG-IR, the mesoporous carbon material was formed under the synergistic effect of hydrogen bond and ionic bond has a mesoporous volume of 0.44 cm3/g, a BET surface area of 262 m2/g, and possesses the ideal unimodal distribution around 2.20 nm. The mesopores are originated from the degradation of hydrophobic segment PPO of F127, and the micropores come from the gases CO2, CO, NH3, CH4, tetraethylene glycol dimethyl ether, and 2,6-diisopropylphenyl isocyanate produced during the degradation of prepolymers. The maximum adsorption capacity of this mesoporous carbon for tannic acid (Sips model) at 30 °C is 70.4 mg/g.
Collapse
|
11
|
Wu X, Zhang T, Hoff B, Suvarnapathaki S, Lantigua D, McCarthy C, Wu B, Camci‐Unal G. Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects. Adv Healthc Mater 2021; 10:e2001101. [PMID: 32940013 DOI: 10.1002/adhm.202001101] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Indexed: 01/28/2023]
Abstract
Sequential mineralization enables the integration of minerals within the 3D structure of hydrogels. Hydrolyzed collagen-based hydrogels are sequentially mineralized over 10 cycles. One cycle is defined as an incubation period in calcium chloride dihydrate followed by incubation in sodium phosphate dibasic dihydrate. Separate cycles are completed at 30-minute and 24-hour intervals. For the gels mineralized for 30 min and 24 h, the compressive moduli increases from 4.25 to 87.57 kPa and from 4.25 to 125.47 kPa, respectively, as the cycle number increases from 0 to 10. As indicated by X-ray diffraction (XRD) and Fourier transform infrared analysis (FTIR) analyses, the minerals in the scaffolds are mainly hydroxyapatite. In vitro experiments, which measure mechanical properties, porous structure, mineral content, and gene expression are performed to evaluate the physical properties and osteoinductivity of the scaffolds. Real time-quantitative polymerase chain reaction (RT-qPCR) demonstrates 4-10 fold increase in the expression of BMP-7 and osteocalcin. The in vivo subcutaneous implantation demonstrates that the scaffolds are biocompatible and 90% biodegradable. The critical size cranial defects in vivo exhibit nearly complete bone regeneration. Cycle 10 hydrogels mineralized for 24 h have a volume of 59.86 mm3 and a density of 1946.45 HU. These results demonstrate the suitability of sequentially mineralized hydrogel scaffolds for bone repair and regeneration.
Collapse
Affiliation(s)
- Xinchen Wu
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Tengfei Zhang
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Brianna Hoff
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Sanika Suvarnapathaki
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Darlin Lantigua
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Colleen McCarthy
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Bin Wu
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Gulden Camci‐Unal
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Department of Surgery University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
12
|
Hu D, Ren Q, Li Z, Zhang L. Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair. Molecules 2020; 25:E4785. [PMID: 33086470 PMCID: PMC7587527 DOI: 10.3390/molecules25204785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a natural, biodegradable cationic polysaccharide, which has a similar chemical structure and similar biological behaviors to the components of the extracellular matrix in the biomineralization process of teeth or bone. Its excellent biocompatibility, biodegradability, and polyelectrolyte action make it a suitable organic template, which, combined with biomimetic mineralization technology, can be used to develop organic-inorganic composite materials for hard tissue repair. In recent years, various chitosan-based biomimetic organic-inorganic composite materials have been applied in the field of bone tissue engineering and enamel or dentin biomimetic repair in different forms (hydrogels, fibers, porous scaffolds, microspheres, etc.), and the inorganic components of the composites are usually biogenic minerals, such as hydroxyapatite, other calcium phosphate phases, or silica. These composites have good mechanical properties, biocompatibility, bioactivity, osteogenic potential, and other biological properties and are thus considered as promising novel materials for repairing the defects of hard tissue. This review is mainly focused on the properties and preparations of biomimetically mineralized composite materials using chitosan as an organic template, and the current application of various chitosan-based biomimetically mineralized composite materials in bone tissue engineering and dental hard tissue repair is summarized.
Collapse
Affiliation(s)
- Die Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Zhongcheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| |
Collapse
|
13
|
Rył A, Owczarz P. Injectability of Thermosensitive, Low-Concentrated Chitosan Colloids as Flow Phenomenon through the Capillary under High Shear Rate Conditions. Polymers (Basel) 2020; 12:E2260. [PMID: 33019566 PMCID: PMC7601197 DOI: 10.3390/polym12102260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Low-concentrated colloidal chitosan systems undergoing a thermally induced sol-gel phase transition are willingly studied due to their potential use as minimally invasive injectable scaffolds. Nevertheless, instrumental injectability tests to determine their clinical utility are rarely performed. The aim of this work was to analyze the flow phenomenon of thermosensitive chitosan systems with the addition of disodium β-glycerophosphate through hypodermic needles. Injectability tests were performed using a texture analyzer and hypodermic needles in the sizes 14G-25G. The rheological properties were determined by the flow curve, three-interval thixotropy test (3ITT), and Cox-Merz rule. It was found that reducing the needle diameter and increasing its length and the crosshead speed increased the injection forces. It was claimed that under the considered flow conditions, there was no need to take into account the viscoelastic properties of the medium, and the model used to predict the injection force, based solely on the shear-thinning nature of the experimental material, showed very good agreement with the experimental data in the shear rate range of 200-55,000 s-1. It was observed that the increase in the shear rate value led to macroscopic structural changes of the chitosan sol caused by the disentangling and ordering of the polysaccharide chains along the shear field.
Collapse
Affiliation(s)
- Anna Rył
- Department of Chemical Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| | | |
Collapse
|
14
|
Jia S, Pan H, Lin Q, Wang X, Li C, Wang M, Shi Y. Study on the preparation and mechanism of chitosan-based nano-mesoporous carbons by hydrothermal method. NANOTECHNOLOGY 2020; 31:365604. [PMID: 32438365 DOI: 10.1088/1361-6528/ab9575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, the hydrothermal method to synthesize and characterize nano-mesoporous carbons and their synthesis mechanism are reported. Using tri-block Pluronic F127 as a structuring agent and chitosan (CS) as a carbon source, the nano-mesoporous carbons were synthesized by a one-step sol polymerization and hydrothermal process, followed by carbonization at high temperature. The pore structure of the carbon materials was characterized by physical adsorption analyzer, and the morphology was characterized by SEM and TEM. Fourier-transform infrared, Raman and x-ray photoelectron spectroscopy were used to study the synthesis mechanism. The results showed that the self-assembly polymerization reaction between CS and F127 in a weakly acidic system was only implemented driven by the hydrogen bond auxiliary electrostatic interactions initiated by protonated amino groups. The nitrogen from amino groups and acetylamino groups, the oxygen in acetylamino groups, hydroxyl groups and the glycosidic bonds of CS, and the oxygen from the hydrophilic segments of F127 were the main active sites. The mesoporous material possesses a high Brunauer-Emmett-Teller surface area (163 m2/g) and large pore volume (0.462 cm3/g) with pore diameter around 2.1 nm. The nitrogen content was 1.08% and existed in the pore wall as the form of pyridine, pyrrole and quaternary nitrogen.
Collapse
Affiliation(s)
- Shuangzhu Jia
- School of Chemistry and Chemical Engineering, Guizhou University, 550025, Guiyang, People's Republic of China. School of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, 558000, Duyun, People's Republic of China. State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Wengfu Group Co. Ltd., 550016, Guiyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Skwarczynska AL, Binias D, Maniukiewicz W, Modrzejewska Z, Douglas TE. The mineralization effect on chitosan hydrogel structure containing collagen and alkaline phosphatase. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 2019; 121:38-54. [DOI: 10.1016/j.ijbiomac.2018.10.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
17
|
Skwarczynska AL, Kuberski S, Maniukiewicz W, Modrzejewska Z. Thermosensitive chitosan gels containing calcium glycerophosphate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:24-33. [PMID: 29727793 DOI: 10.1016/j.saa.2018.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In this paper the properties of thermosensitive chitosan hydrogels, formulated with chitosan chloride with β-glycerophosphate disodium salt hydrate and chitosan chloride with β-glycerophosphate disodium salt hydrate enriched with calcium glycerophosphate, are presented. The study focused on the determination of the hydrogel structure after conditioning in water. The structure of the gels was investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The crystallinity of the gel structure was determined by X-ray diffraction analysis (XRD) and the thermal effects were determined based on DSC thermograms.
Collapse
Affiliation(s)
- Agata L Skwarczynska
- Department of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy 6, 35-959 Rzeszow, Poland.
| | - Slawomir Kuberski
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 175, 90-924 Lodz, Poland
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Zofia Modrzejewska
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 90-924 Lodz, Poland
| |
Collapse
|
18
|
Puertas-Bartolomé M, Benito-Garzón L, Olmeda-Lozano M. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:327-355. [PMID: 29691829 DOI: 10.1007/978-3-319-76711-6_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization. Carbohydr Polym 2017; 182:254-264. [PMID: 29279122 DOI: 10.1016/j.carbpol.2017.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/17/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022]
Abstract
Polyelectrolyte complexes (PEC) of chitosan and ulvan were fabricated to study alkaline phosphatase (ALP) mediated formation of apatitic minerals. Scaffolds of the PEC were subjected to ALP and successful mineral formation was studied using SEM, Raman and XRD techniques. Investigation of the morphology via SEM shows globular structures of the deposited minerals, which promoted cell attachment, proliferation and extracellular matrix formation. The PEC and their successful calcium phosphate based mineralization offers a greener route of scaffold fabrication towards developing resorbable materials for tissue engineering.
Collapse
|
20
|
Fabrication and evaluation of thermosensitive chitosan/collagen/α, β-glycerophosphate hydrogels for tissue regeneration. Carbohydr Polym 2017; 167:145-157. [DOI: 10.1016/j.carbpol.2017.03.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 11/18/2022]
|
21
|
Ridi F, Meazzini I, Castroflorio B, Bonini M, Berti D, Baglioni P. Functional calcium phosphate composites in nanomedicine. Adv Colloid Interface Sci 2017; 244:281-295. [PMID: 27112061 DOI: 10.1016/j.cis.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Abstract
Calcium phosphate (CaP) materials have many peculiar and intriguing properties. In nature, CaP is found in nanostructured form embedded in a soft proteic matrix as the main mineral component of bones and teeth. The extraordinary stoichiometric flexibility, the different stabilities exhibited by its different forms as a function of pH and the highly dynamic nature of its surface ions, render CaP one of the most versatile materials for nanomedicine. This review summarizes some of the guidelines so far emerged for the synthesis of CaP composites in aqueous media that endow the material with tailored crystallinity, morphology, size, and functional properties. First, we introduce very briefly the areas of application of CaP within the nanomedicine field. Then through some selected examples, we review some synthetic routes where the presence of functional units (small templating molecules like surfactants, or oligomers and polymers) assists the synthesis and at the same time impart the functionality or the responsiveness desired for the end-application of the material. Finally, we illustrate two examples from our laboratory, where CaP is decorated by biologically active polymers or prepared within a thermo- and magneto-responsive hydrogel, respectively.
Collapse
Affiliation(s)
- Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Ilaria Meazzini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Benedetta Castroflorio
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Massimo Bonini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy.
| |
Collapse
|
22
|
Huang L, Jin P, Lin X, Lin C, Zheng L, Zhao J. Beneficial effects of sulfonamide‑based gallates on osteoblasts in vitro. Mol Med Rep 2017; 15:1149-1156. [PMID: 28138702 PMCID: PMC5367358 DOI: 10.3892/mmr.2017.6142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/08/2016] [Indexed: 11/05/2022] Open
Abstract
Effective treatments for osteoporosis remain fairly elusive; however, studies have reported that antioxidants may aid in the maintenance of reactive oxygen species at a favorable level, in order to prevent osteoporosis. Gallic acid (GA) and its derivatives are potent antioxidative and anti-inflammatory agents that affect several biochemical and pharmacological pathways; however, GA is slightly cytotoxic and suppresses cell proliferation. The present study modified GA by the introduction of sulfonamide, in order to obtain a novel compound known as JEZ-C, and investigated its effects on osteoblasts by measuring cell proliferation, viability, morphology, alkaline phosphatase (ALP) activity, and the expression of relevant osteoblast markers. Results indicated that JEZ-C may effectively promote osteoblast growth. JEZ-C increased ALP activity, upregulated the expression of osteogenic-related genes, including runt-related transcription factor 2, bone sialoprotein, osteocalcin and alpha-1 type I collagen, thus indicating that JEZ-C enhances bone matrix production and mineralization. The recommended range of JEZ-C concentration is between 6.25×10−3 and 6.25×10−1 µg/ml, within which cell growth was promoted compared with the control. Specifically, treatment with 6.25×10−2 µg/ml JEZ-C is ideal. These findings may represent a novel approach to cell-based therapy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li Huang
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Pan Jin
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Li Zheng
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Engineering Center for Biomaterials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
Kamińska M, Kuberski S, Maniukiewicz W, Owczarz P, Komorowski P, Modrzejewska Z, Walkowiak B. Thermosensitive chitosan gels containing calcium glycerophosphate for bone cell culture. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516671150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this article, properties of thermosensitive chitosan hydrogels prepared with the use of chitosan chloride with β-glycerophosphate disodium salt pentahydrate enriched with calcium glycerophosphate are presented and compared with chitosan hydrogels with β-glycerophosphate disodium salt pentahydrate. The study is focused on the determination of hydrogel structure and biological testing of hydrogels with human osteoblasts line Saos-2. The structure of gels was visualized by scanning electron microscopy and was investigated by infrared spectroscopy. The crystallinity of gel structure was determined by X-ray diffraction analysis and thermal effects were determined using differential scanning calorimetry thermograms.
Collapse
Affiliation(s)
- Marta Kamińska
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Sławomir Kuberski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Piotr Owczarz
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
- BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Lodz, Poland
| | - Zofia Modrzejewska
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Bogdan Walkowiak
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
- BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Lodz, Poland
| |
Collapse
|
24
|
Miranda DG, Malmonge SM, Campos DM, Attik NG, Grosgogeat B, Gritsch K. A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J Biomed Mater Res B Appl Biomater 2015; 104:1691-1702. [PMID: 26344054 DOI: 10.1002/jbm.b.33516] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/31/2015] [Accepted: 08/23/2015] [Indexed: 11/11/2022]
Abstract
The current challenge in treating periodontitis is regenerating the periodontium. This motivates tissue-engineering researchers to develop scaffolds as artificial matrices that give mechanical support for osteoblasts, cementoblasts, gingival and periodontal ligament fibroblast cells. In this study, modified hyaluronic acid (HA) and chitosan (CS) were employed to create a hybrid CS-HA hydrogel scaffold for periodontal regeneration. CS, HA, and CS-HA scaffolds were obtained by freeze-drying technique, resulting in porous structures suitable for use in tissue engineering. Scaffolds were submitted to gamma and UV-sterilization without significant morphology changes. The ATR-FTIR spectra of CS-HA hydrogels showed peaks at 377 cm-1 , 1566 cm-1 , and 1614 cm-1 , representing secondary amide, primary amine, and carboxyl acid respectively, and it was also observed the emergence of peaks at 886 cm-1 , which probably represents the Schiff base formed in the case of hybrid CS-HA hydrogels. The scaffolds presented a high rate of PBS uptake, reaching values higher than 95%. Thermal degradation of HA scaffolds was around 225°C and CS was around 285°C. The ATR-FTIR spectra and swelling degree were slightly disturbed mainly after gamma sterilization, but degradation temperature did not change after sterilization. The performance of the CS-HA hydrogel scaffolds for in vitro cell culture was tested using NIH3T3 and MG63 cell lines. The Alamar Blue test showed a significant increase in cellular viability and high CD44 expression, suggesting that the cells migrated more when seeded onto the scaffolds. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1691-1702, 2016.
Collapse
Affiliation(s)
- Diego G Miranda
- Laboratoire des Multimatériaux et Interfaces CNRS (UMR 5615), Université Lyon 1, Villeurbanne, France.,UFR d'Odontologie, Université Lyon 1, Lyon, France
| | - Sônia M Malmonge
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil.
| | - Doris M Campos
- Laboratoire des Multimatériaux et Interfaces CNRS (UMR 5615), Université Lyon 1, Villeurbanne, France
| | - Nina G Attik
- Laboratoire des Multimatériaux et Interfaces CNRS (UMR 5615), Université Lyon 1, Villeurbanne, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces CNRS (UMR 5615), Université Lyon 1, Villeurbanne, France.,UFR d'Odontologie, Université Lyon 1, Lyon, France.,Service de Consultations et de Traitements Dentaires (U.F. Santé Publique), Hospices Civils de Lyon, Lyon, France
| | - Kerstin Gritsch
- Laboratoire des Multimatériaux et Interfaces CNRS (UMR 5615), Université Lyon 1, Villeurbanne, France.,UFR d'Odontologie, Université Lyon 1, Lyon, France.,Service de Consultations et de Traitements Dentaires (U.F. Parodontologie), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
25
|
Lišková J, Douglas TE, Beranová J, Skwarczyńska A, Božič M, Samal SK, Modrzejewska Z, Gorgieva S, Kokol V, Bačáková L. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization. Carbohydr Polym 2015; 129:135-42. [DOI: 10.1016/j.carbpol.2015.04.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/13/2015] [Accepted: 04/18/2015] [Indexed: 12/13/2022]
|
26
|
Dash M, Samal SK, Douglas TEL, Schaubroeck D, Leeuwenburgh SC, Van Der Voort P, Declercq HA, Dubruel P. Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 2015; 11:1500-1513. [DOI: 10.1002/term.2048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Mamoni Dash
- Polymer Chemistry and Biomaterials Research Group; Ghent University; Krijgslaan 281, S4-Bis B-9000 Ghent Belgium
| | - Sangram K. Samal
- Polymer Chemistry and Biomaterials Research Group; Ghent University; Krijgslaan 281, S4-Bis B-9000 Ghent Belgium
- Laboratory of General Biochemistry and Physical Pharmacy; Ghent University; Harelbekestraat 72 9000 Ghent Belgium
- Centre for Nano- and Biophotonics; Ghent University; Harelbekestraat 72 9000 Ghent Belgium
| | - Timothy E. L. Douglas
- Polymer Chemistry and Biomaterials Research Group; Ghent University; Krijgslaan 281, S4-Bis B-9000 Ghent Belgium
| | - David Schaubroeck
- Centre for Microsystems Technology (CMST); Imec and Ghent University; Technologiepark 914a 9052 Ghent Belgium
| | - Sander C. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Centre; PO Box 9101 6500 HB Nijmegen The Netherlands
| | - Pascal Van Der Voort
- Department of Inorganic Chemistry, COMOC; Ghent University; Krijgslaan 281 S3 9000 Ghent Belgium
| | - Heidi A. Declercq
- Department of Basic Medical Sciences, Tissue Engineering Group; Ghent University; De Pintelaan 185 (6B3) 9000 Ghent Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group; Ghent University; Krijgslaan 281, S4-Bis B-9000 Ghent Belgium
| |
Collapse
|
27
|
Development of thermosensitive hydrogels of chitosan, sodium and magnesium glycerophosphate for bone regeneration applications. J Funct Biomater 2015; 6:192-203. [PMID: 25859630 PMCID: PMC4493507 DOI: 10.3390/jfb6020192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/17/2022] Open
Abstract
Thermosensitive injectable hydrogels based on chitosan neutralized with sodium beta-glycerophosphate (Na-β-GP) have been studied as biomaterials for drug delivery and tissue regeneration. Magnesium (Mg) has been reported to stimulate adhesion and proliferation of bone forming cells. With the aim of improving the suitability of the aforementioned chitosan hydrogels as materials for bone regeneration, Mg was incorporated by partial substitution of Na-β-GP with magnesium glycerophosphate (Mg-GP). Chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were also loaded with the enzyme alkaline phosphatase (ALP) which induces hydrogel mineralization. Hydrogels were characterized physicochemically with respect to mineralizability and gelation kinetics, and biologically with respect to cytocompatibility and cell adhesion. Substitution of Na-β-GP with Mg-GP did not negatively influence mineralizability. Cell biological testing showed that both chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were cytocompatible towards MG63 osteoblast-like cells. Hence, chitosan/Na-β-GP/Mg-GP hydrogels can be used as an alternative to chitosan/Na-β-GP hydrogels for bone regeneration applications. However the incorporation of Mg in the hydrogels during hydrogel formation did not bring any appreciable physicochemical or biological benefit.
Collapse
|
28
|
Trusek-Holownia A, Noworyta A. Efficient utilisation of hydrogel preparations with encapsulated enzymes - a case study on catalase and hydrogen peroxide degradation. ACTA ACUST UNITED AC 2015. [PMID: 28626692 PMCID: PMC5466259 DOI: 10.1016/j.btre.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We present a model for the process of enzyme encapsulation in hydrogels. Parameters influencing the process efficiency and substrate conversion rate are selected. The diameter of the gel capsule used for enzymatic preparation influences the process efficiency. Encapsulated enzymes remain more active than native enzymes and enzymes immobilised on solid supports.
The size of the gel preparation, the concentration of the encapsulated enzyme and the ratio of the preparation volume to the volume of the reaction mixture influence the reaction efficiency with encapsulated biocatalysts. A model of first order enzymatic reaction with substrate diffusion is presented and validated by the decomposition reaction of hydrogen peroxide by catalase. The Thiele modulus (Ф) contains the modified (including the enzyme concentration) enzymatic reaction constant (k′). Based on the model analysis, the Thiele modulus should not exceed a value of 2 (optimally less than 0.5). This value can be controlled by appropriate selection of the enzyme concentration inside and the size of the capsule. A lower Ф value gives a flat substrate concentration profile inside the gel capsule and all the enzyme molecules are involved in the reaction. The optimal diameter of the gel capsule with respect to their separation from the reaction mixture is 1–2 mm.
Collapse
|
29
|
Yan XZ, van den Beucken JJJP, Cai X, Yu N, Jansen JA, Yang F. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading. Tissue Eng Part A 2014; 21:1066-76. [PMID: 25345525 DOI: 10.1089/ten.tea.2014.0319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT) fluorescently labeled PDLCs, were prepared and transplanted into rat intrabony periodontal defects; untreated defects were used as empty controls (n=8; EMPTY). After 4 weeks, maxillae were harvested, decalcified, and used for histological, histomorphometrical, and immunohistochemical assessments. The results showed that PDLCs remained viable upon encapsulation within chitosan hydrogels before transplantation. Histological analysis demonstrated that the chitosan hydrogels were largely degraded after 4 weeks of implantation, without any adverse reaction in the surrounding tissue. In terms of periodontal regeneration, alveolar bone height, alveolar bone area, and epithelial downgrowth were comparable for CHIT, CHIT+CELL, as well as EMPTY groups. In contrast, both CHIT and CHIT+CELL showed a significant increase in functional ligament length compared with EMPTY. From a cellular perspective, the contribution of chitosan hydrogel-incorporated cells to the periodontal regeneration could not be ascertained, as no signal from transplanted PDLCs could be detected at 4 weeks posttransplantation. The results demonstrated that enzymatically solidified chitosan hydrogels are highly biocompatible and biodegradable. Moreover, chitosan hydrogels without cell loading can improve periodontal regeneration in terms of functional ligament length, indicating the great potential of this hydrogel in clinical applications. Further work on the use of chitosan hydrogels as cell carriers is required.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- Department of Biomaterials, Radboud UMC , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 2014; 117:524-536. [PMID: 25498667 DOI: 10.1016/j.carbpol.2014.09.094] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering.
Collapse
|
31
|
Mekhail M, Tabrizian M. Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater 2014; 3:1529-45. [PMID: 24616443 DOI: 10.1002/adhm.201300586] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/19/2014] [Indexed: 12/17/2022]
Abstract
Injectable scaffolds (IS) are polymeric solutions that are injected in vivo and undergo gelation in response to physiological or non-physiological stimuli. Interest in using IS in regenerative medicine has been increasing this past decade. IS are administered in vivo using minimally invasive surgery, which reduces hospitalization time and risk of surgical wound infection. Here, chitosan is explored as an excellent candidate for developing IS. A literature search reveals that 27% of IS publications in the past decade investigated injectable chitosan scaffolds (ICS). This increasing interest in chitosan stems from its many desirable physicochemical properties. The first section of this Progress Report is a comprehensive study of all physical, chemical, and biological stimuli that have been explored to induce ICS gelation in vivo. Second, the use of ICS is investigated in four major regenerative medicine applications, namely bone, cartilage, cardiovascular, and neural regeneration. Finally, an overall critique of the ICS literature in light of clinical translatability is presented. Even though ICS have been widely explored in the literature, very few have progressed to clinical trials. The authors discuss the current barriers to moving ICS into the clinic and provide suggestions regarding what is needed to overcome those challenges.
Collapse
Affiliation(s)
- Mina Mekhail
- Biomedical Engineering, Duff Medical Building; Room 313, McGill; Montreal H3A 2B4 Canada
| | - Maryam Tabrizian
- Biomedical Engineering, Duff Medical Building; Room 313, McGill; Montreal H3A 2B4 Canada
| |
Collapse
|
32
|
Yan XZ, Nijhuis AWG, van den Beucken JJJP, Both SK, Jansen JA, Leeuwenburgh SCG, Yang F. Enzymatic Control of Chitosan Gelation for Delivery of Periodontal Ligament Cells. Macromol Biosci 2014; 14:1004-14. [DOI: 10.1002/mabi.201400040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/24/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Xiang-Zhen Yan
- Department of Biomaterials; Radboud University Medical Center; 309 Dentistry, PO Box 9101, 6500 HB Nijmegen The Netherlands
- Department of Periodontology; Shandong University; Jinan 250012 Shandong, P. R. China
| | - Arnold W. G. Nijhuis
- Department of Biomaterials; Radboud University Medical Center; 309 Dentistry, PO Box 9101, 6500 HB Nijmegen The Netherlands
| | | | - Sanne K. Both
- Department of Biomaterials; Radboud University Medical Center; 309 Dentistry, PO Box 9101, 6500 HB Nijmegen The Netherlands
| | - John A. Jansen
- Department of Biomaterials; Radboud University Medical Center; 309 Dentistry, PO Box 9101, 6500 HB Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Center; 309 Dentistry, PO Box 9101, 6500 HB Nijmegen The Netherlands
| | - Fang Yang
- Department of Biomaterials; Radboud University Medical Center; 309 Dentistry, PO Box 9101, 6500 HB Nijmegen The Netherlands
| |
Collapse
|
33
|
Dash M, Samal SK, Bartoli C, Morelli A, Smet PF, Dubruel P, Chiellini F. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3211-3218. [PMID: 24494863 DOI: 10.1021/am404912c] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photo-cross-linked ulvan scaffolds were designed with the aim to induce and support enzyme mediated formation of apatite minerals, in the absence of osteogenic growth factors. Scaffold formation with a desired geometry was investigated using chemically modified ulvan bearing radically polymerizable groups. Further bioactivity was incorporated by the use of alkaline phosphatase (ALP) induced minerals. Successful modification of UV cross-linked ulvan scaffolds was revealed by (1)H NMR. The presence of the mineral formation was evidenced by Raman spectroscopy and XRD techniques. Investigations of the morphology confirmed the homogeneous mineralization using ALP. The MC3T3 cell activity clearly showed that the mineralization of the biofunctionalized ulvan scaffolds was effective in improving the cellular activity.
Collapse
Affiliation(s)
- Mamoni Dash
- Polymer Chemistry & Biomaterials Research Group, Ghent University , Krijgslaan 281, S4-Bis, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
Moreno E, Schwartz J, Larrañeta E, Nguewa PA, Sanmartín C, Agüeros M, Irache JM, Espuelas S. Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) - Pluronic(®) F127 copolymers for controlled protein release. Int J Pharm 2013; 459:1-9. [PMID: 24315923 DOI: 10.1016/j.ijpharm.2013.11.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 12/30/2022]
Abstract
Thermosensitive hydrogels are of a great interest due to their many biomedical and pharmaceutical applications. In this study, we synthesized a new series of random poly (methyl vinyl ether-co-maleic anhydride) (Gantrez(®) AN, GZ) and Pluronic(®) F127 (PF127) copolymers (GZ-PF127), that formed thermosensitive hydrogels whose gelation temperature and mechanical properties could be controlled by the molar ratio of GZ and PF127 polymers and the copolymer concentration in water. Gelation temperatures tended to decrease when the GZm/PF127 ratio increased. Thus, at a fixed GZm/PF127 value, sol-gel temperatures decreased at higher copolymer concentrations. Moreover, these hydrogels controlled the release of proteins such as bovine serum albumin (BSA) and recombinant recombinant kinetoplastid membrane protein of Leishmania (rKMP-11) more than the PF127 system. Toxicity studies carried out in J774.2 macrophages showed that cell viability was higher than 80%. Finally, histopathological analysis revealed that subcutaneous administration of low volumes of these hydrogels elicited a tolerable inflammatory response that could be useful to induce immune responses against the protein cargo in the development of vaccine adjuvants.
Collapse
Affiliation(s)
- Esther Moreno
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Juana Schwartz
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eneko Larrañeta
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Paul A Nguewa
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Organic and Pharmaceutical Chemistry Department, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Maite Agüeros
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Juan M Irache
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Socorro Espuelas
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
| |
Collapse
|
35
|
Alinaghi A, Rouini MR, Johari Daha F, Moghimi HR. The influence of lipid composition and surface charge on biodistribution of intact liposomes releasing from hydrogel-embedded vesicles. Int J Pharm 2013; 459:30-9. [PMID: 24239579 DOI: 10.1016/j.ijpharm.2013.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
Abstract
Mixed drug delivery systems possess advantages over discrete systems, and can be used as a strategy to design more effective formulations. They are more valuable if the embedded particles perform well, rather than using drugs that have been affected by the surrounding vehicle. In order to address this concept, different liposomes have been incorporated into hydrogel to evaluate the potential effect on the controlled release of liposomes. Radiolabeled liposomes, with respect to different acyl chain lengths (DMPC, DPPC, or DSPC) and charges (neutral, negative [DSPG], or positive [DOTAP]) were integrated into chitosan-glycerophosphate. The results obtained from the biodistribution showed that the DSPC liposomes had the highest area under the curve (AUC) values, both in the blood (206.5%ID/gh(-1)) and peritoneum (622.3%ID/gh(-1)), when compared to the DPPC and DMPC formulations, whether in liposomal hydrogel or dispersion. Interesting results were observed in that the hydrogel could reverse the peritoneal retention of negatively charged liposomes, increasing to 8 times its AUC value, to attain the highest amount among all formulations. The interactions between the liposomes and chitosan-glycerophosphate, confirmed by the Fourier transform infrared (FTIR) spectra as shifted characteristic peaks, were observed in the combined systems. Overall, the hydrogel could control the release of intact liposomes, which could be manipulated by both the liposome type and interactions between the two vehicles.
Collapse
Affiliation(s)
- A Alinaghi
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M R Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - F Johari Daha
- Radioisotope Division, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran, Iran
| | - H R Moghimi
- Department of Pharmaceutics, Faculty of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|