1
|
Pihlaja S, Jääskeläinen E, Heikkilä L, Hintsanen M. Associations of lipids in adolescence and adulthood with self- and other-directed compassion in adulthood. Scand J Psychol 2024; 65:1101-1112. [PMID: 39013837 DOI: 10.1111/sjop.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
Self- and other-directed compassion have been linked with better mental and physical health but research on factors contributing to their development is scarce. Previous studies indicate a possible causal relationship of lipids with personality and socioemotional functioning. As an extension to earlier research, in the present study we examine whether lipids assessed in adolescence and adulthood are associated with self-compassion and other-directed compassion in adulthood. The study utilizes data on lipids from two follow-ups in the Northern Finland Birth Cohort 1986 at ages 15-16 and 33-35. In the latter follow-up also self-compassion and other-directed compassion were assessed with the self-compassion scale - short form and the subscale for compassion in the dispositional positive emotions scale, respectively. The sample for the cross-sectional associations of lipids in adulthood with the compassion variables in adulthood includes 1,459 participants, whereas the sample for the longitudinal associations of lipids in adolescence and the compassion variables in adulthood consists of 1,509 participants. The associations were examined with hierarchical linear regression (lipids as continuous variables) and univariate general linear model (lipids as categorical variables). The results suggest that in women, high-density lipoprotein (HDL) cholesterol in adolescence is associated with high empathic concern (a component of other-directed compassion) in adulthood. The results show further that, in women, an HDL cholesterol level above 1.2 mmol/L in adulthood is associated with high other-directed compassion and empathic concern in adulthood. The present study provides tentative evidence that biological factors such as lipids might play a role in the development of empathic concern and other-directed compassion.
Collapse
Affiliation(s)
- Sofia Pihlaja
- Research Center of Psychology, Faculty of Education and Psychology, University of Oulu, Oulu, Finland
| | - Erika Jääskeläinen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Laura Heikkilä
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation sr, Oulu, Finland
| | - Mirka Hintsanen
- Research Center of Psychology, Faculty of Education and Psychology, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Messinis A, Panteli E, Paraskevopoulou A, Zymarikopoulou AK, Filiou MD. Altered lipidomics biosignatures in schizophrenia: A systematic review. Schizophr Res 2024; 271:380-390. [PMID: 39142015 DOI: 10.1016/j.schres.2024.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 08/16/2024]
Abstract
Multiomics approaches have significantly aided the identification of molecular signatures in complex neuropsychiatric disorders. Lipidomics, one of the newest additions in the -omics family, sheds light on lipid profiles and is an emerging methodological tool to study schizophrenia pathobiology, as lipid dysregulation has been repeatedly observed in schizophrenia. In this review, we performed a detailed literature search for lipidomics studies in schizophrenia. Following elaborate inclusion/exclusion criteria, we focused on human studies in schizophrenia and schizophrenia-related diagnoses in brain and blood specimens, including serum plasma, platelets and red blood cells. Eighteen studies fulfilled our inclusion criteria, of which five were conducted in the brain, 12 in peripheral material and one in both. Here, we first provide background on lipidomics and the main lipid categories addressed, review in detail the included literature and look for common lipidomics patterns in brain and the periphery that emerge from these studies. Furthermore, we highlight current limitations in schizophrenia lipidomics research and underline the need for following up on lipidomics results with complementary molecular approaches.
Collapse
Affiliation(s)
- Alexandros Messinis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Panteli
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Aristea Paraskevopoulou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | | | - Michaela D Filiou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece; Institute of Biosciences, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
3
|
Yang W, Tan Z, Yu S, Ren Y, Pan R, Yu X. A highly sensitive optical fiber sensor enables rapid triglycerides-specific detection and measurement at different temperatures using convolutional neural networks. Int J Biol Macromol 2024; 256:128353. [PMID: 38000611 DOI: 10.1016/j.ijbiomac.2023.128353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
For specific recognition and sensitive detection of triglycerides (TGs), an optical fiber sensor (OFS) based on an enhanced core diameter mismatch was proposed. The sensitivity of the sensor is significantly increased due to the repetitive excitation of the higher-order cladding modes. A technique for immobilizing lipase using covalent binding technology was presented and demonstrated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy. The interference dip of the sensor was shifted due to TGs being hydrolyzed in the presence of lipase. The sensor shows an optimal response within 3 min and exhibits a high sensitivity of 0.9933 nm/(mg/ml) and a limit of detection of 0.0822 mg/ml in the concentration range 0-8 mg/ml at a temperature of 37 °C and a pH of 7.4. The response of the sensor to TGs concentration at different temperatures and pH was investigated. The reproducibility, reusability, and stability of the proposed sensor were tested and verified experimentally. The biosensor is highly specific for TGs and unaffected by many other interfering substances. Further, the measurement of TGs concentration at different temperatures was realized. This method provides a new way to detect TGs rapidly and reliably and has potential applications in medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Wenlong Yang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Zhengzheng Tan
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Shuang Yu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Yuanyuan Ren
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Rui Pan
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Xiaoyang Yu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| |
Collapse
|
4
|
Xu M, Zhang P, Lv W, Chen Y, Chen M, Leng Y, Hu T, Wang K, Zhao Y, Shen J, You X, Gu D, Zhao W, Tan S. A bifunctional anti-PCSK9 scFv/Exendin-4 fusion protein exhibits enhanced lipid-lowering effects via targeting multiple signaling pathways in HFD-fed mice. Int J Biol Macromol 2023; 253:127003. [PMID: 37739280 DOI: 10.1016/j.ijbiomac.2023.127003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Fusion protein which encompasses more than one functional component, has become one of the most important representatives of macromolecular drugs for disease treatment since that monotherapy itself might not be effective enough to eradicate the disease. In this study, we sought to construct a bifunctional antibody fusion protein by fusing anti-PCSK9 scFv with Exendin-4 for simultaneously lowering both LDL-C and TG. Firstly, three Ex4-anti-PCSK9 scFv fusion proteins were constructed by genetically connecting the C-terminal of Exendin-4 to the N-terminal of anti-PCSK9 scFv through various flexible linker peptides (G4S)n (n = 2, 3, 4). After soluble expression in E. coli, the most potent Ex4-(G4S)4-anti-PCSK9 scFv fusion protein was selected based on in vitro activity assays. Then, we investigated the in vivo therapeutic effects of Ex4-(G4S)4-anti-PCSK9 scFv on the serum lipid profile and bodyweight changes as well as underlying molecular mechanism in HFD-fed C57BL/6 mice. The data showed that Ex4-(G4S)4-anti-PCSK9 scFv exhibits enhanced effects of lowering both LDL-C and TG in serum, reducing food intake and body weight via blocking PCSK9/LDLR, activating AMPK/SREBP-1 pathways, and up-regulating sirt6. Conclusively, Ex4-(G4S)4-anti-PCSK9 has the potential to serve as a promising therapeutic agent for effectively treating dyslipidemia with high levels of both LDL-C and TG.
Collapse
Affiliation(s)
- Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Panpan Zhang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxiu Lv
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuting Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Manman Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yeqing Leng
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tuo Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ke Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yaqiang Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiaqi Shen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiangyan You
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dian Gu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
McMullan JE, Yeates AJ, Allsopp PJ, Mulhern MS, Strain JJ, van Wijngaarden E, Myers GJ, Shroff E, Shamlaye CF, McSorley EM. Fish consumption and its lipid modifying effects - A review of intervention studies. Neurotoxicology 2023; 99:82-96. [PMID: 37820771 PMCID: PMC11749167 DOI: 10.1016/j.neuro.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Fish is an important source of nutrients, particularly the long chain n-3 polyunsaturated fatty acids (n-3 PUFAs). The incorporation of fish into the diet has been shown to have several health benefits, including lowering the risk of cardiovascular disease (CVD). Elevated plasma lipids are one of the main modifiable risk factors contributing to CVD and may be partly mediated by n-3 PUFAs. Although n-3 PUFAs in the form of supplementation have been shown to exert lipid modifying effects, the effects of fish consumption on the lipid profile have not been well summarised to date. Therefore, the aim of the present review is to discuss the current evidence from intervention studies investigating the effect of fish consumption on the lipid profile in both apparently healthy and non-healthy populations. Existing evidence appears to support the role of fish in promoting a shift towards a less inflammatory lipid profile through raising n-3 PUFAs and potentially lowering n-6 PUFA and triglyceride concentrations in both healthy and non-healthy populations. Fish consumption has a negligible effect on cholesterol concentrations; however, fish consumption may promote a small increase in high density lipoprotein (HDL) cholesterol amongst people with lower HDL at baseline. Limited studies have shown fish consumption to result in shifts in phospholipid and sphingolipid species and structure, albeit it is not yet clear whether these alterations have any meaningful impact on CVD risk. Future well-designed studies that utilise NMR and/or lipidomics analysis are warranted to explore the effects of these shifts in lipid content and structure in the context of disease development. Public health guidance should emphasise the cardioprotective benefits of fish and encourage consumption particularly in the Global North where fish consumption remains low.
Collapse
Affiliation(s)
- James E McMullan
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Emelyn Shroff
- The Ministry of Health, Mahé, Republic of Seychelles
| | | | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
6
|
An J, Yi Y, Jiang J, Yao W, Ren G, Shang Y. Metabolic disturbance and transcriptomic changes induced by methyl triclosan in human hepatocyte L02 cells. Toxicol Res (Camb) 2023; 12:863-872. [PMID: 37915488 PMCID: PMC10615820 DOI: 10.1093/toxres/tfad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE Methyl triclosan (MTCS) is one of the biomethylated by-products of triclosan (TCS). With the increasing use of TCS, the adverse effects of MTCS have attracted extensive attention in recent years. The purpose of this study was to investigate the cytotoxicity of MTCS and to explore the underlining mechanism using human hepatocyte L02 cells as in vitro model. RESULTS The cytotoxicity results revealed that MTCS could inhibit cell viability, disturb the ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG), and reduce the mitochondrial membrane potential (MMP) in a dose-dependent manner. In addition, MTCS exposure significantly promoted the cellular metabolic process, including enhanced conversion of glucose to lactic acid, and elevated content of intracellular triglyceride (TG) and total cholesterol (TC). RNA-sequencing and bioinformatics analysis indicated disorder of glucose and lipid metabolism was significantly induced after MTCS exposure. Protein-protein interaction network analysis and node identification suggested that Serine hydroxy methyltransferase 2 (SHMT2), Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), Asparagine synthetase (ASNS) and Phosphoglycerate dehydrogenase (PHGDH) are potential molecular markers of metabolism imbalance induced by MTCS. CONCLUSION These results demonstrated that oxidative stress and metabolism dysregulation might be involved in the cytotoxicity of MTCS in L02 cells.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yuting Yi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Jingjing Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Weiwei Yao
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| |
Collapse
|
7
|
Pliego-Sandoval JE, Díaz-Barbosa A, Reyes-Nava LA, Angeles Camacho-Ruiz M, Iñiguez-Muñoz LE, Pinto-Pérez O. Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. BIOSENSORS 2023; 13:826. [PMID: 37622912 PMCID: PMC10452911 DOI: 10.3390/bios13080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Overweight and obesity promote diabetes and heart disease onset. Triglycerides are key biomarkers for cardiovascular disease, strokes, and other health issues. Scientists have devised methods and instruments for the detection of these molecules in liquid samples. In this study, an enzymatic biosensor was developed using an Arduino-based microfluidic platform, wherein a lipolytic enzyme was immobilized on an ethylene-vinyl acetate polymer through physical adsorption. This low-cost optical biosensor employed a spectrophotometric transducer and was assessed in liquid samples to indirectly detect triglycerides and fatty acids using p-nitrophenol as an indicator. The average triglyceride level detected in the conducted experiments was 47.727 mg/dL. The biosensor exhibited a percentage of recovery of 81.12% and a variation coefficient of 0.791%. Furthermore, the biosensor demonstrated the ability to detect triglyceride levels without the need for sample dilution, ranging from 7.6741 mg/dL to 58.835 mg/dL. This study successfully developed an efficient and affordable enzymatic biosensor prototype for triglyceride and fatty acid detection. The lipolytic enzyme immobilization on the polymer substrate provided a stable and reproducible detection system, rendering this biosensor an exciting option for the detection of these molecules.
Collapse
Affiliation(s)
- Jorge E. Pliego-Sandoval
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Arturo Díaz-Barbosa
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Luis A. Reyes-Nava
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - María Angeles Camacho-Ruiz
- Centro Universitario del Norte, Laboratorio de Investigación en Biotecnología, Universidad de Guadalajara, Colotlán 46200, Jalisco, Mexico;
| | - Laura Elena Iñiguez-Muñoz
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Osmar Pinto-Pérez
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| |
Collapse
|
8
|
Gong R, Tang X, Jiang Z, Luo G, Dong C, Han X. Serum 25(OH)D Levels Modify the Association between Triglyceride and IR: A Cross-Sectional Study. Int J Endocrinol 2022; 2022:5457087. [PMID: 35592754 PMCID: PMC9113899 DOI: 10.1155/2022/5457087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Triglycerides and 25(OH)D had been reported as correlates of IR, but the results suggest substantial heterogeneity across races. In addition, little research reported on whether different 25(OH)D levels affect triglycerides and IR. Therefore, a similar study on the US population would be a great addition to the current one. This study investigated the association between triglycerides and IR at different 25(OH)D levels. METHODS A total of 19,926 participants were included, each containing specific indicators for the study project. IR was estimated as a HOMA-IR index ≥2.73. Four multivariate logistic regression models were developed to analyze the association between TG and IR and whether different 25(OH)D levels influenced this association. Smoothed fitting curves were plotted. RESULTS Triglyceride was significantly associated with IR (OR: 1.3, 95 CI %), while this association received different 25(OH)D levels (P for interaction <0.001). The effect value OR was 1.33 with the high levels, and its effect value OR was 1.28 with the low levels. CONCLUSION This study demonstrates that triglyceride levels are significantly associated with insulin in the US adult population and can be used as a predictor of IR. This correlation was compromised at different 25 (OH)D levels, so future studies need to be explored in more ethnically diverse contexts.
Collapse
Affiliation(s)
| | - Xin Tang
- Qinghai University, Xining, Qinghai 810016, China
| | - Ziying Jiang
- Qinghai University, Xining, Qinghai 810016, China
| | - Gang Luo
- Qinghai University, Xining, Qinghai 810016, China
| | - Chaofan Dong
- Qinghai University, Xining, Qinghai 810016, China
| | - Xiuxia Han
- Renal Department, Dezhou People's Hospital, Dezhou, Shandong Province 25300, China
| |
Collapse
|
9
|
Zhou S, Li X, Zhang J, Yuan H, Hong X, Chen Y. Dual-fiber optic bioprobe system for triglyceride detection using surface plasmon resonance sensing and lipase-immobilized magnetic bead hydrolysis. Biosens Bioelectron 2021; 196:113723. [PMID: 34688110 DOI: 10.1016/j.bios.2021.113723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 10/16/2021] [Indexed: 11/19/2022]
Abstract
The rapid and accurate detection of triglyceride (TG) plays a valuable role in the prevention and control of dyslipidemia. In this paper, a novel method for TG detection using a dual-fiber optic bioprobe system, which can accurately detect different levels of TG concentration in serum, is proposed. The system employs disposable microprobe-type fiber optic surface plasmon resonance (SPR) biosensors for signal acquisition, providing high stability and portability while avoiding cross-contamination caused by repeated use. The proposed biosensor with a high sensitivity of 1.25 nm/(mg/mL) for TG detection in serum and a tiny diameter of 125 μm, was fabricated using a novel multimode fiber-single-mode fiber-reflector (MSR) structure, which has been scarcely ever reported to the best of our knowledge. In the process of TG detection, lipase-immobilized magnetic beads were introduced to specifically hydrolyze TG, and the relationship between the TG content and the SPR differential signal was obtained from dual-fiber optic bioprobe measurements of the TG sample before and after hydrolysis. The proposed method achieved TG detection in the concentration range of 0-8 mg/mL (including healthy and unhealthy levels of TG concentration in the human body). Additionally, the miniaturized fiber optic biosensors used in this work have the advantages of low sample consumption, high sensitivity, simple operation, label-free measurement, high selectivity, and low cost. This method provides a new pathway for rapid and reliable TG detection and has potential applications in medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Shirong Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Sensor Technology, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen, 518060, China
| | - Xuejin Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Sensor Technology, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen, 518060, China; The Chinese University of Hong Kong, Shenzhen, 518060, China
| | - Jinghan Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Sensor Technology, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen, 518060, China
| | - Hao Yuan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Sensor Technology, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen, 518060, China
| | - Xueming Hong
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Sensor Technology, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen, 518060, China
| | - Yuzhi Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Sensor Technology, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Madhurantakam S, Jayanth Babu K, Balaguru Rayappan JB, Maheswari Krishnan U. Fabrication of a Nano‐Interfaced Electrochemical Triglyceride Biosensor and its Potential Application towards Distinguishing Cancer and Normal Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202003771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sasya Madhurantakam
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA University Thanjavur 613 401 India
- School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 India
- Department of Molecular Physiology School of Medicine Niigata University Niigata 9518103 Japan
| | - K Jayanth Babu
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA University Thanjavur 613 401 India
- School of Electrical & Electronics Engineering SASTRA University Thanjavur 613 401 India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA University Thanjavur 613 401 India
- School of Electrical & Electronics Engineering SASTRA University Thanjavur 613 401 India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA University Thanjavur 613 401 India
- School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 India
- School of Arts Science & Humanities (SASH) SASTRA University Thanjavur 613 401 India
| |
Collapse
|
11
|
Development of Screen-Printed Electrode Biosensor for Rapid Determination of Triglyceride Content in Coconut Milk. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:1696201. [PMID: 32455128 PMCID: PMC7229538 DOI: 10.1155/2020/1696201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
The screen-printed electrode biosensor was developed for triglyceride determination in coconut milk. The biosensor was developed by adding lipase, glycerol-3-phosphate (GPO), and glycerol kinase (GK), which is immobilized to a gelatin solution. The concentration of triglyceride is found to be linear to the current produced. The developed screen-printed electrode biosensor showed the optimum response for pH 7.0, 45 mg amount of gelatin, 2.5% glutaraldehyde concentration solution. The developed biosensor was able to find triolein concentrations 0.1 to 1.5 mM. The correlation obtained between these two methods was 93% which was found to be good.
Collapse
|
12
|
Neelam, Chhillar AK, Rana JS. Enzyme nanoparticles and their biosensing applications: A review. Anal Biochem 2019; 581:113345. [DOI: 10.1016/j.ab.2019.113345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
|
13
|
Ono T, Sato K, Sasano Y, Yoshida K, Dairaku T, Iwabuchi Y, Kashiwagi Y. Electrochemical Detection of Triglycerides Based on an Enzymatic Reaction and Electrocatalytic Oxidation with Nortropine‐ N‐oxyl. ELECTROANAL 2019. [DOI: 10.1002/elan.201800660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tetsuya Ono
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| | - Katsuhiko Sato
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578 Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578 Japan
| | - Kentaro Yoshida
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| | - Takenori Dairaku
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578 Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| |
Collapse
|
14
|
Bhardwaj SK, Chauhan R, Yadav P, Ghosh S, Mahapatro AK, Singh J, Basu T. Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection. Biomater Sci 2019; 7:1598-1606. [DOI: 10.1039/c8bm01406j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, increased attention has been drawn to application of graphene and its derivatives for construction of biosensors, since they can be used to rapidly detect the presence of bio-analytes.
Collapse
Affiliation(s)
| | | | - Premlata Yadav
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Subhasis Ghosh
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Ajit K. Mahapatro
- Department of Physics and Astrophysics
- University of Delhi
- New Delhi 110007
- India
| | - Jay Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Tinku Basu
- Amity Institute of Nanotechnology
- Amity University
- Noida
- India
| |
Collapse
|
15
|
Lu S, Yu T, Wang Y, Liang L, Chen Y, Xu F, Wang S. Nanomaterial-based biosensors for measurement of lipids and lipoproteins towards point-of-care of cardiovascular disease. Analyst 2018; 142:3309-3321. [PMID: 28828428 DOI: 10.1039/c7an00847c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) has become the primary cause of global deaths and inflicts an enormous healthcare burden on both developed and developing countries. Frequent monitoring of CVD-associated risk factors such as the level of lipids (e.g., triglyceride (TG) and total cholesterol (TC)) and lipoproteins (e.g., low-density lipoprotein (LDL) and high-density lipoprotein (HDL)) can effectively help prevent disease progression and improve clinical outcomes. However, measurement of these risk factors is generally integrated into an automated analyzer, which is prohibitively expensive and highly instrument-dependent for routine testing in primary care settings. As such, a variety of rapid, simple and portable nanomaterial-based biosensors have been developed for measuring the level of lipids (TG and TC) and lipoproteins (LDL and HDL) towards the management of CVD at the point-of-care (POC). In this review, we first summarize traditional methods for measurement of lipids and lipoproteins, and then present the latest advances in developing nanomaterial-based biosensors that can potentially monitor the risk factors of CVD at the POC.
Collapse
Affiliation(s)
- Siming Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Biosensing methods for determination of triglycerides: A review. Biosens Bioelectron 2018; 100:214-227. [DOI: 10.1016/j.bios.2017.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 01/06/2023]
|
17
|
Pietrzyk Ł. Food properties and dietary habits in colorectal cancer prevention and development. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1236813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Łukasz Pietrzyk
- Department of Didactics and Medical Simulation, Chair of Human Anatomy, Medical University of Lublin, Lublin, Poland
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital in Lublin, Lublin, Poland
| |
Collapse
|
18
|
Narwal V, Pundir C. An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode. Enzyme Microb Technol 2017; 100:11-16. [DOI: 10.1016/j.enzmictec.2017.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
|
19
|
Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase. Anal Biochem 2017; 517:56-63. [DOI: 10.1016/j.ab.2016.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
|
20
|
Rick J, Tsai MC, Hwang BJ. Biosensors Incorporating Bimetallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 6:E5. [PMID: 28344262 PMCID: PMC5302532 DOI: 10.3390/nano6010005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.
Collapse
Affiliation(s)
- John Rick
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Meng-Che Tsai
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Bing Joe Hwang
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
| |
Collapse
|
21
|
Urmann K, Tenenbaum E, Walter JG, Segal E. Porous Silicon Biosensors Employing Emerging Capture Probes. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20346-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. NANO LETTERS 2015; 15:1146-51. [PMID: 25569673 DOI: 10.1021/nl504217p] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The development of a scalable, low-cost, and versatile biosensor platform for the sensitive and rapid detection of human metabolites is of great interest for healthcare, pharmaceuticals, and medical science. On the basis of hierarchically nanostructured conducting polymer hydrogels, we designed a flexible biosensor platform that can detect various human metabolites, such as uric acid, cholesterol, and triglycerides. Owing to the unique features of conducting polymer hydrogels, such as high permeability to biosubstrates and rapid electron transfer, our biosensors demonstrate excellent sensing performance with a wide linear range (uric acid, 0.07-1 mM; cholesterol, 0.3-9 mM, and triglycerides, 0.2-5 mM), high sensitivity, low sensing limit, and rapid response time (∼3 s). Given the facile and scalable processability of hydrogels, the proposed conductive hydrogels-based biosensor platform shows great promise as a low-cost sensor kit for healthcare monitoring, clinical diagnostics, and biomedical devices.
Collapse
Affiliation(s)
- Lanlan Li
- Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | | | | | | | | | | | | |
Collapse
|