1
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Nawaz M, Jiang Y, Xiao Y, Yu H, Wang Z, Hu K, Zhang T, Hu J, Gao MT. Influence of Different Pretreatment Steps on the Ratio of Phenolic Compounds to Saccharides in Soluble Polysaccharides Derived from Rice Straw and Their Effect on Ethanol Fermentation. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04337-9. [PMID: 36701092 DOI: 10.1007/s12010-023-04337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
The complex structure of rice straw is such that its bioconversion requires multiple physical and chemical pretreatment steps. In this study, it was found that a large amount of soluble polysaccharides (SPs) are formed during the pretreatment of straw. The yield of NaOH-based SPs (4.8%) was much larger than that of ball-milled SPs (1.5%) and H2SO4-based SPs (1.1%). For all the pretreatments, the ratio of phenolic compounds to saccharides (P/S) for each type of SPs increased upon increasing the concentration of ethanol in the order of 90% > 70% > 50%. The yield of NaOH-based SPs was much higher than that of acid-based and ball-milled SPs. The changes in the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of SPs follow the same rule, i.e., the higher the P/S ratio, the higher the antioxidant values of the SPs. The flow cytometry and laser scanning microscopy results show that the P/S ratio can significantly influence the effect of SPs on microbial growth and cell membrane permeability. Upon varying the ethanol concentration in the range of 50-90%, the P/S ratio increased from 0.02 to 0.17, resulting in an increase in the promoting effects of the SPs on yeast cell growth. Furthermore, H2O2, NAD+/NADH, and NADP+/NADPH assays indicate that SPs with a high P/S ratio can reduce intracellular H2O2 and change the intracellular redox status.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yipeng Jiang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ying Xiao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hao Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zikang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Kun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Tianao Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
3
|
Bardineshin F, Bahramikia S, Khodarahmi R, Hadi F. Mesalazine Inhibits Amyloid Formation and Destabilizes Pre-formed Amyloid Fibrils in the Human Insulin. J Fluoresc 2023:10.1007/s10895-022-03142-7. [PMID: 36640210 DOI: 10.1007/s10895-022-03142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Amyloid formation due to protein aggregation is associated with several amyloid diseases (amyloidosis). The use of small organic ligands as inhibitors of protein aggregation is an attractive strategy for the treatment of these diseases. In the present study, we evaluated the in vitro inhibitory and destabilizing effects of Mesalazine on human insulin fibrillation. To induce fibrillation, human insulin was incubated in 50 mM glycine buffer (pH 2.0) at 50 °C. The effect of Mesalazine on insulin amyloid aggregation was studied using spectroscopic, imaging, and computational approaches. Based on the results, the Mesalazine in a concentration-dependent manner (different ratios (1:0.1, 1:0.5, 1:1, and 1:5) of the insulin to Mesalazine) prevented the formation of amyloid fibrils and destabilized pre-formed fibrils. In addition, our molecular docking study confirmed the binding of Mesalazine to insulin through hydrogen bonds and hydrophobic interactions. Our findings suggest that Mesalazine may have therapeutic potential in the prevention of insulin amyloidosis and localized amyloidosis.
Collapse
Affiliation(s)
- Fatemeh Bardineshin
- Department of Biology, MSc of Biology, Lorestan University, Khorramabad, Iran
| | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Hadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
4
|
Khaibrakhmanova D, Nikiforova A, Li Z, Sedov I. Effect of ligands with different affinity on albumin fibril formation. Int J Biol Macromol 2022; 204:709-717. [PMID: 35134455 DOI: 10.1016/j.ijbiomac.2022.01.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
The effect of binding of several ligands to bovine serum albumin on the kinetics of fibril formation at denaturing conditions is studied. The considered ligands are clinical drugs with different binding constants to albumin: relatively strong binders (naproxen, ibuprofen, warfarin with 105 to 107 binding constant values) and weak binders (isoniazid, ranitidine with 103 to 104 binding constant values). The data of thioflavin fluorescence binding assay, Congo red binding assay, and circular dichroism spectroscopy indicate ligand concentration-dependent suppression of fibril formation in the presence of strong binders and no effects in the presence of weak binders. Analysis of kinetic curves shows no induction lag associated with fibril nucleation and the first-order kinetics of fibril formation with respect to albumin concentration for all the studied systems. Using DSC method, the fractions of unfolded albumin at incubation temperature were determined for each albumin-ligand system and ligand concentration. Their magnitudes ranging from 0 to 1 correlate with the initial rates of fibril formation and with equilibrium concentrations of fibrils formed in the system after incubation for at least 120 min. The results indicate that fibrils are formed from partially or completely denatured albumin form with the rate proportional to the fraction of this form. Strong albumin binders act as thermodynamic inhibitors of fibrillation shifting the unfolding equilibrium to the side of the native ligand-bound protein.
Collapse
Affiliation(s)
| | - Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Ziying Li
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
| |
Collapse
|
5
|
Basu A, Bhowmick S, Mukherjee A. Flavonolignan silibinin abrogates SDS induced fibrillation of human serum albumin. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Murakami K, Horii S, Hanaki M, Irie K. Searching for Natural Products That Delay Nucleation Phase and Promote Elongation Phase of Amyloid β42 toward Alzheimer's Disease Therapeutics. ACS Chem Neurosci 2021; 12:3467-3476. [PMID: 34463471 DOI: 10.1021/acschemneuro.1c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aggregation of amyloid β42 (Aβ42) is one of the hallmarks of Alzheimer's disease (AD). The mechanism of Aβ42 aggregation mainly consists of two phases, nucleation and elongation (including plateau region as a saturation phase). During the nucleation phase, the monomer gradually forms toxic oligomers. During the elongation phase, each nucleus acts as a template and associates with monomers to initiate less toxic fibrillization. We previously proposed a method of classifying compounds into nine groups based on their ability to modulate the nucleation and/or elongation phases. An orcein derivative (O4), which is a phenoxazine dye isolated from the lichen Roccella tinctoria and containing a 2,5-cyclohexadienone moiety, was reported to convert oligomers into relatively inert fibrils, resulting in the reduction of the neurotoxicity of Aβ42. Focusing on O4 in the pursuit of anti-AD drugs, we herein screened 480 natural products including NPDepo (RIKEN) for the compounds that delayed the nucleation phase and promoted the elongation phase. The signal intensities for Aβ42 treated with each of the 15 compounds that met these criteria were lowered in dot blotting using antioligomer antibody, and the fibril formation of Aβ42 in the presence of these compounds was observed in transmission electron microscopy. Among the 15 compounds, 12 compounds (80%) reduced the toxicity of Aβ42 against mouse neuroblastoma Neuro-2a cells. Some of these anticytotoxic compounds contain 2-pyrone and 4-pyrone that interacted with Aβ42, maybe by shifting the equilibrium of Aβ from toxic oligomer into inert fibrils.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shiori Horii
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Guo DD, Li B, Deng ZP, Huo LH, Gao S. A rational design of layered metal-organic framework towards high-performance adsorption of hazardous organic dye. Dalton Trans 2021; 50:7818-7825. [PMID: 34008585 DOI: 10.1039/d0dt04174b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Water pollution originating from organic dyes is endangering the survival and development of society; however, adsorbents with high capacity (>5000 mg g-1) for the fast removal (≤30 min) of Congo Red (CR) in aqueous solution have been not reported to date. In the present work, an acid-base stably layered MOF, [Cd(H2L)(BS)2]n·2nH2O (L-MOF-1, H2L = N1,N2-bis(pyridin-3-ylmethyl)ethane-1,2-diamine, BS = benzenesulfonate), was hydrothermally prepared. L-MOF-1 exhibited high-performance adsorption of CR in aqueous solution at room temperature. The experimental adsorption capacity of the L-MOF-1 adsorbent towards CR reached up to about 12 000 mg g-1 in 20 min in the pH range of 2.2-4.7, which is the best adsorbent with the highest capacity and fastest adsorption of CR to date. The spontaneous adsorption process can be described by the pseudo-second-order kinetic and Langmuir isotherm models. Meanwhile, the L-MOF-1 absorbent possessed a highly positive zeta potential in acid condition (even at pH = 2.2, zeta potential = 36.2 mV). Its good adsorption performance mainly originates from its strong electrostatic attraction with CR in acidic condition, together with diverse hydrogen bonds and ππ stacking interactions. Furthermore, the L-MOF-1 absorbent exhibited good selectivity and could be reused five times through simply washing, where its adsorption efficiency was hardly affected. Therefore, L-MOF-1 is a potential absorbent for effectively removing CR from dye wastewater.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China.
| | | | | | | | | |
Collapse
|
8
|
Maalej A, Elloumi W, Angelov I, Kardaleva P, Dimitrov V, Chamkha M, Guncheva M, Sayadi S. Pistacia lentiscus by-product as a promising source of phenolic compounds and carotenoids: Purification, biological potential and binding properties. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
10
|
Phytosterols disaggregate bovine serum albumin under the glycation conditions through interacting with its glycation sites and altering its secondary structure elements. Bioorg Chem 2020; 101:104047. [DOI: 10.1016/j.bioorg.2020.104047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022]
|
11
|
Unravelling the inhibitory and cytoprotective potential of diuretics towards amyloid fibrillation. Int J Biol Macromol 2020; 150:1258-1271. [DOI: 10.1016/j.ijbiomac.2019.10.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
12
|
Masroor A, Zaidi N, Chandel TI, Aqueel Z, Malik S, Khan RH. Probing the Nongeneralized Amyloid Inhibitory Mechanism of Hydrophobic Chaperone. ACS Chem Neurosci 2020; 11:373-384. [PMID: 31935057 DOI: 10.1021/acschemneuro.9b00593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Increasing prevalence of protein misfolding disorders urges the search for effective therapies. Although several antiaggregation molecules have been identified, their molecular process of aggregation and clinical trials are underway. The present study is focused on the mechanism through which phenyl butyrate (PB), a chemical chaperone, triggers inhibition of human serum albumin (HSA) fibrillation. Turbidity and Rayleigh light scattering (RLS) measurements reveal the marked presence of aggregates in HSA that were confirmed as amyloid fibrils by thioflavin T (ThT) and Congo red (CR) and were subsequently inhibited by PB in a dose dependent manner. ThT fluorescence kinetics reveals a decrease in the apparent rate constant, Kapp, in the presence of PB without triggering a lag phase in HSA suggesting PB's interference with the elongation phase. Dynamic light scattering (DLS) results display a reduction in the aggregate size in the presence of PB. Isothermal titration calorimetry (ITC) data reveals strong binding of PB at site II both at 25 °C (Kb ≈ 1.94 × 105 M-1) and 65 °C (Kb ≈ 2.90 × 104 M-1), mediated by hydrogen bonding. Overall, our finding establishes that PB stabilizes partially unfolded HSA molecules through hydrogen bonding, thereby preventing establishment of hydrogen bonds between them and hindering their progression into amyloid fibrils. This is in contrast to its chaperone effect manifested with other proteins.
Collapse
Affiliation(s)
- Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Tajalli Ilm Chandel
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Zoha Aqueel
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
13
|
Gao F, Zhao J, Liu P, Ji D, Zhang L, Zhang M, Li Y, Xiao Y. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer's disease. Int J Biol Macromol 2019; 142:265-276. [PMID: 31593732 DOI: 10.1016/j.ijbiomac.2019.09.098] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to ascertain the effect of selenium-chondroitin sulfate nanoparticles (CS@Se) on multi-target-directed therapy for the treatment of Alzheimer's disease (AD). CS@Se nanoparticles were successfully synthesized, and their therapeutic effects were studied in in vitro AD models. CS@Se effectively inhibited amyloid-β (Aβ) aggregation and protected SH-SY5Y cells from Aβ1-42-induced cytotoxicity. Moreover, CS@Se significantly decreased okadaic acid-induced actin cytoskeleton instability in SH-SY5Y cells. In addition, CS@Se decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the levels of glutathione peroxidase (GSH-Px). The Western blot results indicated that CS@Se attenuated the hyperphosphorylation of tau (Ser396/Ser404) by regulating the expression of GSK-3β. In summary, this study demonstrated that CS@Se could inhibit the aggregation of Aβ, reduce damage to the cytoskeleton, mitigate oxidative stress and attenuate the hyperphosphorylation of tau protein. CS@Se might be a potent multi-functional agent for the treatment of AD and thus warrants further research and evaluation.
Collapse
Affiliation(s)
- Fei Gao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Jing Zhao
- Department of Pharmacy, Taishan Sanatorium of Shandong Province, Taian 271000, Shandong, China
| | - Ping Liu
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China; Department of Pharmacy, Affiliated Hospital of Heze Medical College, Heze 274000, Shandong, China
| | - Dongsheng Ji
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Litao Zhang
- Department of Imaging, Taian Central Hospital, Taian 271000, Shandong, China
| | - Mengxiao Zhang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yuqin Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China.
| | - Yuliang Xiao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China.
| |
Collapse
|
14
|
Wang X, Cui S, Hu J, Ma X, Zhang TA, Tsang YF, Li J, Gao MT. Saccharides in straw hydrolysate decrease cell membrane damage by phenolics by inducing the formation of extracellular matrix in yeast. Carbohydr Polym 2019; 219:414-422. [DOI: 10.1016/j.carbpol.2019.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022]
|
15
|
Guo DD, Li B, Deng ZP, Huo LH, Gao S. Ladder chain Cd-based polymer as a highly effective adsorbent for removal of Congo red. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:221-229. [PMID: 31015184 DOI: 10.1016/j.ecoenv.2019.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/22/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Developing of high effective and fast-rate adsorbent materials has been recently attracted intensive attentions all over the world due to organic dye polluted water treatment. However, few studies have been reported on the ultrahigh-capacity and fast-rate removal of Congo red. In this work, a new stable Cd-based coordination polymer exhibits excellent adsorption performance towards Congo Red. This ladder chain [Cd4(H2L)4(H2O)8(NDS)]n·3n(NDS) (I) (H2L = N1,N2-bis(pyridin-3-ylmethyl) ethane-1,2-diamine, 1,5-H2NDS = 1,5-naphthalene disulfonic acid) has been successfully synthesized by the hydrothermal reaction. At room temperature, the experimental adsorption capacity of coordination polymer (I) towards Congo red can reach up to 16,880 mg g-1 in 20 min (pH = 2.0-3.2), and its higher capacity and faster rate are all better than those in reported inorganic and metal-organic frameworks absorbents. The adsorption process is spontaneous and endothermic reaction, and fits well with the second-order kinetics, Langmuir and Scatchard isotherm adsorption models. The excellent adsorption performance of (I) towards Congo red is related to the strong electrostatic, various hydrogen bonding and π-π stacking interactions under acidic conditions.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China
| | - Bo Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China
| | - Zhao-Peng Deng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Li-Hua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| |
Collapse
|
16
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
17
|
Cieślik-Boczula K. Effect of phenothiazine compounds on the secondary structure and fibrillogenesis of poly-l-lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:15-24. [PMID: 30870786 DOI: 10.1016/j.saa.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Phenothiazine molecules are effective and commonly used antipsychotic drugs, especially in the treatment of schizophrenia. However, they produce strong extrapyramidal side-effects manifested by drug-induced parkinsonism. Because Parkinson's disease as a neurodegenerative illness is associated with the formation of amyloid fibrils in neuronal cells, it is postulated that the development of phenothiazine-induced parkinsonism may be related to the phenothiazine-induced formation of fibrillar aggregates. The effect of phenothiazine compounds (fluphenazine (FPh), chlorpromazine (ChP) and propionylpromazine (PP)) on the fibrillogenesis of poly-l-lysine (PLL) was studied using Fourier-transform infrared (FTIR) spectroscopy supported by principal component analysis (PCA), vibrational circular dichroism (VCD), transmission electron microscopy (TEM) and Congo red binding assay. The fibrillogenesis of PLL is accompanied by fibril formation with charged or uncharged polypeptides with PPII (polyproline-like extended helix), α-helix or β-sheet conformations. All of the phenothiazine molecules investigated effectively reduced the temperature required to induce the formation of β-sheet-rich fibrils from α-helix-rich fibrils of PLL.
Collapse
|
18
|
Kasi PB, Kotormán M. Among Commercially Available Fruit Juices, Pomegranate Is the Most Effective Inhibitor of PMS-Trypsin Amyloid-Like Fibrils Formation. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19859127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The formation of amyloid fibrils is associated with many human illnesses, such as Alzheimer’s, Huntington’s, and Parkinson’s diseases, amyotrophic lateral sclerosis, spongiform encephalitis, type 2 diabetes, and primary and secondary systemic amyloidosis. Nutrition contributes to the prevention of these diseases. The aim of our work was to look for commercially available fruit juices that can inhibit the formation of amyloid fibrils. Of the fruit juices that we examined, that of pomegranate was found to be the most effective inhibitory agent using turbidity measurements and Congo red binding assay. According to our experiments, pomegranate juice reduced the amount of PMS-trypsin amyloid-like fibrils to 3.7% at 5-fold dilution compared with the sample without pomegranate. The inhibitory effect of the pomegranate juice was concentration dependent.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| | - Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| |
Collapse
|
19
|
Furkan M, Siddiqi MK, Zakariya SM, Khan FI, Hassan MI, Khan RH. An In Vitro elucidation of the antiaggregatory potential of Diosminover thermally induced unfolding of hen egg white lysozyme; A preventive quest for lysozyme amyloidosis. Int J Biol Macromol 2019; 129:1015-1023. [DOI: 10.1016/j.ijbiomac.2019.02.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/24/2023]
|
20
|
Elucidating the inhibitory potential of Vitamin A against fibrillation and amyloid associated cytotoxicity. Int J Biol Macromol 2019; 129:333-338. [DOI: 10.1016/j.ijbiomac.2019.01.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
|
21
|
Kasi PB, Kotormán M. Avocado Juice Prevents the Formation of Trypsin Amyloid-Like Fibrils in Aqueous Ethanol. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19851410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this work fruit and vegetable juices were analyzed for their ability to prevent the aggregation of trypsin using turbidity measurement. Fruit and vegetable juices are capable of inhibiting the aggregation of PMS-trypsin in aqueous ethanol. Among the juices examined, avocado was found to be the most effective. Choline bitartrate was investigated for its ability to inhibit the fibrillation of PMS-trypsin. We have found that avocado juice and choline bitartrate have an inhibitory effect on the formation of trypsin amyloid-like fibrils using Congo red-binding assay.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| | - Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| |
Collapse
|
22
|
Ali MS, Al-Lohedan HA, Tariq M, Farah MA, Altaf M, Wabaidur SM, Shakeel Iqubal SM, Tabassum S, Abdullah MMS. Modulation of amyloid fibril formation of plasma protein by saffron constituent "safranal": Spectroscopic and imaging analyses. Int J Biol Macromol 2019; 127:529-535. [PMID: 30654036 DOI: 10.1016/j.ijbiomac.2019.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/24/2022]
Abstract
Anti-amyloidogenic activity of safranal towards induced HSA amyloids has been observed using a variety of techniques including fluorescence, UV-visible, CD, DLS and microscopies. The HSA solution was pre-incubated at 65 °C for 120 h and, in between, the growth of amyloid fibrils, using ThT aggregation kinetics, was monitored at different time intervals. It was found that the amyloid fibril formation of HSA diminishes in presence of safranal and the inhibition was concentration dependent. The surface hydrophobicity of HSA amyloid fibrils also decreased in presence of safranal. The increased CR binding of HSA fibrils also decreased and high concentration of safranal causes the CR binding to resemble like that of native HSA. Both RLS and turbidity intensities were also in inverse relation to the safranal concentration. Safranal also has a good impact to protect the secondary structure of incubated HSA. From the electron microscopy it was seen that the fibrillar network of HSA amyloids gradually vanishes as the concentration of safranal increased. The largely decreased population of HSA aggregates in safranal containing solution as compared to the one without it also suggests the inhibition of formation of large fibrillar aggregates.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Tariq
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Altaf
- Central Laboratory, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - S M Wabaidur
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - S M Shakeel Iqubal
- Department of Basic Science (Chemistry), Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Sartaj Tabassum
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Mahmood M S Abdullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Experimental and computational investigation on the molecular interactions of safranal with bovine serum albumin: Binding and anti-amyloidogenic efficacy of ligand. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Cieślik-Boczula K, Trombik P. Resveratrol modulates fibrillogenesis in a poly‑l‑lysine peptide. Int J Biol Macromol 2019; 125:630-641. [DOI: 10.1016/j.ijbiomac.2018.12.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/13/2023]
|
25
|
A multiparametric analysis of the synergistic impact of anti-Parkinson's drugs on the fibrillation of human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:275-285. [DOI: 10.1016/j.bbapap.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023]
|
26
|
Srivastava R, Alam MS. Role of (single/double chain surfactant) micelles on the protein aggregation. Int J Biol Macromol 2019; 122:72-81. [DOI: 10.1016/j.ijbiomac.2018.10.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022]
|
27
|
Siddiqi MK, Alam P, Malik S, Majid N, Chaturvedi SK, Rajan S, Ajmal MR, Khan MV, Uversky VN, Khan RH. Stabilizing proteins to prevent conformational changes required for amyloid fibril formation. J Cell Biochem 2019; 120:2642-2656. [PMID: 30242891 DOI: 10.1002/jcb.27576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/07/2018] [Indexed: 01/24/2023]
Abstract
Amyloid fibrillation is associated with several human maladies, such as Alzheimer's, Parkinson's, Huntington's diseases, prions, amyotrophic lateral sclerosis, and type 2 diabetes diseases. Gaining insights into the mechanism of amyloid fibril formation and exploring novel approaches to fibrillation inhibition are crucial for preventing amyloid diseases. Here, we hypothesized that ligands capable of stabilizing the native state of query proteins might prevent protein unfolding, which, in turn, may reduce the propensity of proteins to form amyloid fibrils. We demonstrated the efficient inhibition of amyloid formation of the human serum albumin (HSA) (up to 85%) and human insulin (up to 80%) by a nonsteroidal anti-inflammatory drug, ibuprofen (IBFN). IBFN significantly increases the conformational stability of both HSA and insulin, as confirmed by differential scanning calorimetry (DSC). Moreover, increasing concentration of IBFN boosts its amyloid inhibitory propensity in a linear fashion by influencing the nucleation phase as assayed by thioflavin T fluorescence, transmission electron microscopy, and dynamic light scattering. Furthermore, circular dichroism analysis supported the DSC results, showing that IBFN binds to the native state of proteins and almost completely prevents their tendency to lose secondary and tertiary structures. Cell toxicity assay confirms that species formed in the presence of IBFN are less toxic to neuronal cells (SH-SY5Y). These results demonstrate the feasibility of using a small molecule to stabilize the native state of proteins, thereby preventing the amyloidogenic conformational changes, which appear to be the common link in several human amyloid diseases.
Collapse
Affiliation(s)
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.,Kususma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | | | | | - Mohd Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Moscow, Russia.,Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
28
|
Wu H, Zeng W, Chen G, Guo Y, Yao C, Li J, Liang Z. Spectroscopic techniques investigation on the interaction of glucoamylase with 1-deoxynojirimycin: Mechanistic and conformational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:613-621. [PMID: 30098884 DOI: 10.1016/j.saa.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/22/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
1-Deoxynojirimycin (DNJ), a representative polyhydroxylated alkaloids, is widely used in the field of antidiabetic, antitumor, and anti-HIV. The present study tried to clarify the interaction mechanism of DNJ with glucoamylase by multi-spectroscopic techniques, dynamic light scattering in combination with molecular modeling strategies from biophysics point of view. Fluorescence and UV-vis data indicated that fluorescence quenching mechanism of glucoamylase and DNJ was a dynamic manner. The association constant, binding site and thermodynamic parameters were also obtained from fluorescence spectrum at different temperatures. Synchronous fluorescence, circular dichroism and dynamic light scattering methods demonstrated that their interaction induced microenvironment changes around tryptophan residue and protein conformational alteration. The main driving force was hydrophobic interaction and hydrogen bonding. In addition, molecular docking study indicated that 1-deoxynojirimycin could bind in the catalytic domain of glucoamylase and interact with amino acid residues Arg78, Asp79, Glu203 and Glu424 by forming hydrogen bonds. Molecular dynamics simulation demonstrated that profiles of atomic fluctuation remained the rigidity of ligand binding site. This study elucidated the detailed interaction mechanism of DNJ with glucoamylase, which will be helpful for pharmaceutical companies to design new α-glucosidase inhibitor drugs based on polyhydroxylated alkaloids compound like DNJ.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Wei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ye Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Chengzhen Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
29
|
Abstract
Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
30
|
Sardar S, Anas M, Maity S, Pal S, Parvej H, Begum S, Dalui R, Sepay N, Halder UC. Silver nanoparticle modulates the aggregation of beta-lactoglobulin and induces to form rod-like aggregates. Int J Biol Macromol 2018; 125:596-604. [PMID: 30528992 DOI: 10.1016/j.ijbiomac.2018.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/23/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023]
Abstract
Silver nanoparticles (SNPs) have been increasingly used in medicines and biomaterials as a drug carriers and diagnostic or therapeutic material due to their smaller size, large surface area and cell penetration ability. Here we report the preparation of SNPs of diameter 10 ± 3 nm by using silver nitrate and sodium borohydride and the interaction of synthesized SNPs with our model protein β-lactoglobulin (β-lg) in 10 mM phosphate buffer at pH 7.5 after thermal exposure at 75 °C. Heat exposed β-lg forms amyloidal fibrillar aggregates whereas this protein aggregates adopt rod-like shape instead of fibrillar structure in presence of SNP under the same conditions. Size of the synthesized SNPs is confirmed by UV-Visible spectroscopy, SEM and TEM. Interactions and subsequent formation of molecular assembly of heat stressed β-lg with SNP were investigated using Th-T assay and ANS binding assay, DLS, RLS, CD, FT-IR, SEM, TEM. Docking study parallely also support the experimental findings.
Collapse
Affiliation(s)
- Subrata Sardar
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Md Anas
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sanhita Maity
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sampa Pal
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Hasan Parvej
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Shahnaz Begum
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Ramkrishna Dalui
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Nayim Sepay
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Umesh Chandra Halder
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
31
|
Heat-induced amyloid-like aggregation of β-lactoglobulin regulated by glycation: A comparison of five kinds of reducing saccharides. Int J Biol Macromol 2018; 120:302-309. [DOI: 10.1016/j.ijbiomac.2018.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
|
32
|
Kasi PB, Borics A, Molnár K, László L, Kotormán M. Eduscho Coffee Extract Effectively Inhibits the Formation of Amyloid-like Fibrils by Trypsin in Aqueous Ethanol. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work we used an in vitro trypsin aggregation model to show that certain commercial coffee extracts can inhibit protein aggregation. Aggregation experiments were performed using several spectroscopic methods and a dye binding assay, such as turbidity, Congo red (CR) and electronic circular dichroism (ECD), that was further supported by transmission electron microscopy (TEM). A correlation was found between the anti-aggregation properties and the total phenolic content of the coffee extracts. The results revealed that the greatest effect was exerted by the Eduscho coffee extract. It was found that the inhibitory effect of this extract was concentration dependent. Using size exclusion chromatography, we demonstrated that the inhibitory effect of the Eduscho coffee extract on the formation of amyloid-like fibrils was due to its capacity to stabilize the oligomeric form of the protein.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Borics
- Laboratory of Chemical Biology, Biological Research Centre of Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
33
|
Nontoxic silver nanocluster-induced folding, fibrillation, and aggregation of blood plasma proteins. Int J Biol Macromol 2018; 119:838-848. [DOI: 10.1016/j.ijbiomac.2018.07.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 11/18/2022]
|
34
|
Exploring the effects of methylene blue on amyloid fibrillogenesis of lysozyme. Int J Biol Macromol 2018; 119:1059-1067. [DOI: 10.1016/j.ijbiomac.2018.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022]
|
35
|
Wawer J, Szociński M, Olszewski M, Piątek R, Naczk M, Krakowiak J. Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme. Int J Biol Macromol 2018; 121:63-70. [PMID: 30290259 DOI: 10.1016/j.ijbiomac.2018.09.165] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
The study investigates the role of the electrostatic interactions in the fibrillation of the hen egg white lysozyme (HEWL). In order to achieve this aim the influence of the cations Na+, Mg2+ and Al3+ on the amyloid fibril formation and amorphous aggregation was tested. The amyloids are formed in the solution without added salt but the Thioflavin T fluorescence gives the false-negative result. In these conditions, the HEWL fibrils are long and curvy. If the ionic strength of the solution is sufficiently high, the formed amyloids are shorter and fragmented. Our study shows that the addition of the aluminium salt promotes protein fibrillation. The amorphous aggregation dominates in the high concentration of electrolyte. The in vitro amyloid fibril formation seems to be regulated by universal mechanisms. The theories implemented in the polymer science or for colloidal solutions give the qualitative description of the aggregation phenomena. However, the specific interactions and the additional effects (e.g. fibril fragmentation) modulate the amyloidogenesis.
Collapse
Affiliation(s)
- Jarosław Wawer
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, Gdańsk 80-233, Poland.
| | - Michał Szociński
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, Gdańsk 80-233, Poland
| | - Marcin Olszewski
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, Gdańsk 80-233, Poland
| | - Rafał Piątek
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, Gdańsk 80-233, Poland
| | - Mateusz Naczk
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, Gdańsk 80-233, Poland
| | - Joanna Krakowiak
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, Gdańsk 80-233, Poland
| |
Collapse
|
36
|
Zhu S, Xi XB, Duan TL, Zhai Y, Li J, Yan YB, Yao K. The cataract-causing mutation G75V promotes γS-crystallin aggregation by modifying and destabilizing the native structure. Int J Biol Macromol 2018; 117:807-814. [DOI: 10.1016/j.ijbiomac.2018.05.220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022]
|
37
|
Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int J Biol Macromol 2018; 118:1211-1219. [DOI: 10.1016/j.ijbiomac.2018.06.190] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 11/16/2022]
|
38
|
Li CT, How SC, Chen ME, Lo CH, Chun MC, Chang CK, Chen WA, Wu JW, Wang SSS. Effects of glycation on human γd-crystallin proteins by different glycation-inducing agents. Int J Biol Macromol 2018; 118:442-451. [DOI: 10.1016/j.ijbiomac.2018.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
|
39
|
Ansari SS, Yousuf I, Arjmand F, Siddiqi MK, Naqvi S. Exploring the intermolecular interactions and contrasting binding of flufenamic acid with hemoglobin and lysozyme: A biophysical and docking insight. Int J Biol Macromol 2018; 116:1105-1118. [DOI: 10.1016/j.ijbiomac.2018.05.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
|
40
|
Rutin attenuates negatively charged surfactant (SDS)-induced lysozyme aggregation/amyloid formation and its cytotoxicity. Int J Biol Macromol 2018; 120:45-58. [PMID: 30081131 DOI: 10.1016/j.ijbiomac.2018.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Amyloid fibrils are highly ordered protein assemblies known to contribute to the pathology of a variety of genetic and aging-associated diseases. Here, we have investigated the aggregation propensity of lysozyme in the presence of a negatively charged surfactant (SDS) and evaluated the anti-aggregation activity of rutin. Multiple approaches such as turbidity measurements, dye binding assays, intrinsic fluorescence, circular dichroism (CD), transmission electron microscopy (TEM), MTT and comet assays have been used for this purpose. We inferred that SDS induces aggregation of lysozyme in 0.2-0.6 mM concentration range while at higher concentration range (0.8-1.0 mM), it leads to solubilization/stabilization of protein. Intrinsic/extrinsic fluorescence and CD analysis confirmed significant conformational changes in lysozyme at 0.2 mM SDS. Thioflavin T (ThT), congo red binding and TEM analysis further reaffirmed the formation of lysozyme fibrils. Moreover, MTT assay demonstrated cytotoxicity of these fibrils towards neuroblastoma cell lines (SH-SY5Y) and their attenuation by rutin. Comet assay supported the cytotoxicity mechanism via DNA damage. Molecular docking results also advocate a strong interaction between lysozyme and rutin. The current study indicates a mechanistic approach assuming structural constraints and specific aromatic interactions of rutin with HEWL aggregates.
Collapse
|
41
|
Siddiqi MK, Alam P, Iqbal T, Majid N, Malik S, Nusrat S, Alam A, Ajmal MR, Uversky VN, Khan RH. Elucidating the Inhibitory Potential of Designed Peptides Against Amyloid Fibrillation and Amyloid Associated Cytotoxicity. Front Chem 2018; 6:311. [PMID: 30123793 PMCID: PMC6085999 DOI: 10.3389/fchem.2018.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Inhibition of fibrillation process and disaggregation of mature fibrils using small peptide are the promising remedial strategies to combat neurodegenerative diseases. However, designing peptide-based drugs to target β-sheet-rich amyloid has been a major challenge. The current work describes, for the first time, the amyloid inhibitory potential of the two short peptides (selected on the basis of predisposition of their amino acid residues toward β-sheet formation) using combination of biophysical, imaging methods, and docking approaches. Results showed that peptides employed different mechanisms to inhibit the amyloid fibrillation. Furthermore, they were also effective in blocking the amyloid fibrillation pathway. In contrary to the insulin fibrillar mesh, significantly less fibrillar species appeared in the presence of peptides, as confirmed by transmission electron microscopy. Circular dichroism analysis indicated that although peptides did not stabilize the native state of insulin, they inhibited amyloid aggregation by reducing the formation of β-sheet rich structures. Hemolytic assay revealed the non-hemolytic nature of the species formed when insulin was co-incubated with the peptides. Therefore, despite the inherent potential to form β-sheet structure, these peptides inhibited the amyloid formation and potentially can be used as therapeutics for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Mohammad K Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Tabish Iqbal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aftab Alam
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Mohd R Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Moscow, Russia.,Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
42
|
Dhouafli Z, Leri M, Bucciantini M, Stefani M, Gadhoumi H, Mahjoub B, Ben Jannet H, Guillard J, Tounsi MS, Ksouri R, Hayouni EA. A new purified Lawsoniaside remodels amyloid-β42 fibrillation into a less toxic and non-amyloidogenic pathway. Int J Biol Macromol 2018; 114:830-835. [DOI: 10.1016/j.ijbiomac.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
43
|
Santos JCN, da Silva IM, Braga TC, de Fátima Â, Figueiredo IM, Santos JCC. Thimerosal changes protein conformation and increase the rate of fibrillation in physiological conditions: Spectroscopic studies using bovine serum albumin (BSA). Int J Biol Macromol 2018; 113:1032-1040. [DOI: 10.1016/j.ijbiomac.2018.02.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
|
44
|
Wu H, Zeng W, Chen L, Yu B, Guo Y, Chen G, Liang Z. Integrated multi-spectroscopic and molecular docking techniques to probe the interaction mechanism between maltase and 1-deoxynojirimycin, an α-glucosidase inhibitor. Int J Biol Macromol 2018; 114:1194-1202. [DOI: 10.1016/j.ijbiomac.2018.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022]
|
45
|
Saifi IJ, Neelofar K, Ajmal M, Siddiqi SS. Biophysical and immunological characterization of 2-dRib modified HSA and its implications in diabetes mellitus. Int J Biol Macromol 2018; 113:294-299. [DOI: 10.1016/j.ijbiomac.2018.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/15/2022]
|
46
|
Behavior of bovine serum albumin in the presence of locust bean gum. Int J Biol Macromol 2018; 111:1-10. [DOI: 10.1016/j.ijbiomac.2017.12.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 12/16/2022]
|
47
|
Ishrat M, Hassan MI, Ahmad F, Islam A. Sugar osmolytes-induced stabilization of RNase A in macromolecular crowded cellular environment. Int J Biol Macromol 2018; 115:349-357. [PMID: 29665392 DOI: 10.1016/j.ijbiomac.2018.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Organisms synthesize sugar osmolytes during environmental stresses to protect proteins against denaturation. These studies were carried out in dilute buffer whereas intracellular milieu within cells has cytoplasmic concentration of macromolecules in the range of 80-400 mg ml-1. Is the stabilizing effect of sugar osmolytes on the protein in dilute buffer different from that when protein is in cellular environment? To answer this question, we have measured and analysed the effect of sugar osmolytes on the structural and thermodynamic stability of ribonuclease A in the presence of dextran 70 at multiple concentrations of six sugars at different pH values. It was found that (i) each sugar osmolyte in the crowded environment provides stability to the protein in terms of Tm (midpoint of denaturation) and ∆GD° (Gibbs energy change) and this stabilizing effect is under entropic control, (ii) the extent of osmolyte-induced stabilization of RNase A is pH dependent, and (iii) effect of sugars on the stability of protein in presence of the crowding agent remains unchanged. This study concludes that crowding does not affect the efficacy of osmolytes and vice versa; and emphasizes on understanding of internal architecture of the cellular environment with respect to molecular and macromolecular crowding.
Collapse
Affiliation(s)
- Moin Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
48
|
Bansal R, Haque MA, Yadav P, Gupta D, Ethayathulla AS, Hassan MI, Kaur P. Estimation of structure and stability of MurE ligase from Salmonella enterica serovar Typhi. Int J Biol Macromol 2018; 109:375-382. [DOI: 10.1016/j.ijbiomac.2017.12.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/29/2022]
|
49
|
Inhibition of insulin amyloid fibrillation by Morin hydrate. Int J Biol Macromol 2018; 108:225-239. [DOI: 10.1016/j.ijbiomac.2017.11.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
|
50
|
Ahmed A, Shamsi A, Khan MS, Husain FM, Bano B. Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. Int J Biol Macromol 2018; 113:269-276. [PMID: 29481950 DOI: 10.1016/j.ijbiomac.2018.02.137] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 11/15/2022]
Abstract
Serum protein glycation and formation of advanced glycation end products (AGEs) correlates with many diseases viz. diabetes signifying the importance of studying the glycation pattern of serum proteins. In our present study, methylglyoxal was investigated for its effect on the structure of human serum albumin (HSA); exploring the formation of AGEs and aggregates of HSA. The analytical tools employed includes intrinsic and extrinsic fluorescence, UV spectroscopy, far UV circular dichroism, Thioflavin T fluorescence, congo red binding, polyacrylamide gel electrophoresis (PAGE). UV and fluorescence spectroscopy revealed the structural transition of native HSA evident by new peaks and increased absorbance in UV spectra and quenched fluorescence in the presence of MG. Far UV CD spectroscopy revealed MG induced secondary structural alteration evident by reduced α-helical content. AGEs formation was confirmed by AGEs specific fluorescence. Increased ThT fluorescence and CR absorbance of 10mM MG incubated HSA suggests that glycated HSA results in the formation of aggregates of HSA. SEM and TEM were reported to have an insight of these aggregates. Molecular docking was also utilized to see site specific interaction of MG-HSA. This study is clinically significant as HSA is a clinically relevant protein which plays a crucial role in many diseases.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Biochemistry, F/O Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Department of Biochemistry, F/O Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Bilqees Bano
- Department of Biochemistry, F/O Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|