1
|
Ma S, Xi G, Feng X, Yang Q, Peng Z, Qiu D, Hu Y, Zhao X, Cheng L, Duan S. Bio-synthesis of bacterial cellulose from ramie textile waste for high-efficiency Cu(II) adsorption. Sci Rep 2025; 15:18715. [PMID: 40437005 PMCID: PMC12120067 DOI: 10.1038/s41598-025-02310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 05/13/2025] [Indexed: 06/01/2025] Open
Abstract
The current study aims at the high-value utilization of ramie textile waste and explores a bio-synthetic pathway to convert waste ramie fibers into bacterial cellulose (BC). Ramie fibers were treated with commercial cellulase (C2730) and the hydrolysate was used as a base medium (RFH) for BC synthesis by fermentation. The enzymatic hydrolysis parameters were optimized by response surface methodology, yielding an optimal temperature of 40 °C, 64 h, and an enzyme dosage of 5.7%. Under these optimized conditions, the resultant yield of reducing sugars was 31.24 ± 0.37 g/L. And then the Novacetimonas hansenii HX1 strain isolated from kombucha was used for fermentation production of BC. The study found that adding yeast extract into RFH can significantly increase BC production, and 7.2 g/L BC can be produced within 7 days. The physical and chemical properties of BC were then analyzed, including Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Thermogravimetric analysis (TGA), confirming its type Iα cellulose structure and good thermal stability. In particular, BC shows efficient adsorption capacity for Cu(II) ions in aqueous solution, with the highest adsorption efficiency reaching 95.62%. This research not only provides a new way to recycle textile waste, but also lays the foundation for the application of BC in the field of environmental remediation.
Collapse
Affiliation(s)
- Shihang Ma
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Guoguo Xi
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Xiangyuan Feng
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Qi Yang
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Zhenghong Peng
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuqin Hu
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xin Zhao
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Lifeng Cheng
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Shengwen Duan
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
2
|
Du M, Zhu H, DiMauro S, Qin Y, Xiao Z, Luo Y. Rehydratable dry bacterial cellulose formulation and the role of sodium alginate in mitigating hornification. Int J Biol Macromol 2025; 304:140795. [PMID: 39924038 DOI: 10.1016/j.ijbiomac.2025.140795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In this study, a cost-effective dry formulation of bacterial cellulose (BC) was developed by employing sodium alginate (SA) as a capping agent to reduce hornification during the drying process. The effects of different BC-to-SA ratios were assessed for reducing hornification and improving rehydration capabilities. The mechanism by which SA alleviated hornification in BC was explained at macroscopic, microscopic, and molecular levels. Compared with BC alone, the BC powder prepared with a 1:3 BC-to-SA ratio (BCSA3) demonstrated significantly better rehydration and redispersion capabilities, and a BC-to-SA ratio of 1:5 (BCSA5) exhibited the best rehydration performance. Sedimentation assay revealed that BCSA5 exhibited the lowest sedimentation ratio among the rehydrated formulations. Pore size distribution analysis indicated that SA effectively reduced the macropore volume of BC, preventing pore collapse during structural shrinkage. Furthermore, XRD and FTIR analyses confirmed that SA reduced hydrogen bonding in the amorphous regions of BC during drying, resulting in lower crystallinity. Rheological characterization of rehydrated samples further demonstrated the efficacy of SA in retaining functional properties. Compared with traditional freeze-drying, our findings revealed that formulating BC with SA at appropriate ratios could lead to rehydratable products via oven-drying, a more cost-effective and scalable approach for large-scale production and industrial applications.
Collapse
Affiliation(s)
- Muyao Du
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Sebastian DiMauro
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States
| | - Yang Qin
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States
| | - Zhenlei Xiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
3
|
Nie W, He Z, Gu M, Zhou T, Xu J, Zhong J, Yang Y, Zhong W. Improved bacterial cellulose production by Acetobacter oryzoeni MGC-N8819 in tobacco waste extract coupled with nicotine removal by Pseudomonas sp. JY-Q/5∆. Int J Biol Macromol 2025; 293:139336. [PMID: 39740714 DOI: 10.1016/j.ijbiomac.2024.139336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed. In this study, BC production by Acetobacter oryzoeni MGC-N8819 was carried out in four dilutions (5 %, 10 %, 15 %, and 20 %) of TWE. 15 % TWE without nicotine removal resulting in a 3.27 g/L BC production. Considering the inhibitor effect of nicotine on BC synthesis. Pseudomonas sp. JY-Q/5∆, an efficient nicotine-degrading mutant strain without the ability of glucose consumption, was statically co-cultured with MGCN8819, and the BC production was increased to 4.61 g/L after 7 days of cultivation. To eliminate the limitation of insufficient oxygen supply, BC films were harvested on day 7 and cultured for an additional 5 days resulting in a 6.00 g/L final BC production. Remarkably, the co-culture of MGC-N8819 and JY-Q/5∆ improved BC properties in terms of fiber diameter (28 nm), mechanical properties (tensile strength to 67 MPa and elongation at break to 23 %), and thermal stability (the maximum decomposition temperature was 600 °C). This study suggests a valuable strategy for improving BC production using agricultural waste.
Collapse
Affiliation(s)
- Wenxia Nie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Menjie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Tong Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Jian Xu
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China
| | - Jiajun Zhong
- International Division, Hangzhou High School, Hangzhou 310021, Zhejiang Province, PR China
| | - Yang Yang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China.
| |
Collapse
|
4
|
Jiao X, Jia K, Yu Y, Liu D, Zhang J, Zhang K, Zheng H, Sun X, Tong Y, Wei Q, Lv P. Nanocellulose-based functional materials towards water treatment. Carbohydr Polym 2025; 350:122977. [PMID: 39647961 DOI: 10.1016/j.carbpol.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Water resources are important ecological resources for human survival. To date, advanced water purification technology has become one of the focus of global attention due to the continuous deterioration of the environment and the serious shortage of freshwater resources. Recently, nanocellulose, as a kind of sustainable and carbon-neutral biopolymer, has not only the properties of cellulose, but also the important nature of nanomaterials, including large specific surface area, tailorable surface chemistry, excellent mechanical flexibility, biodegradability, and environmental compatibility. Herein, this review covers several methods of extraction and preparation of nanocellulose and the functional modification strategies. Subsequently, we systematically review the application and latest research progress of nanocellulose-based functional material towards water treatment, from micro/nanoparticles filtration, dyes/organics adsorption/degradation, heavy metal ions adsorption/detection and oil-water separation to seawater desalination. Furthermore, scalable and low-cost nanocellulose synthesis strategies are discussed. Finally, the challenges and opportunities of nanocellulose water purification substrate in industrial application and emerging directions are briefly discussed. This review is expected to provide new insights for the application of advanced functional materials based on nanocellulose in water treatment and environmental remediation, and promote rapid cross-disciplinary development.
Collapse
Affiliation(s)
- Xiaohui Jiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Keli Jia
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, eQilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huanda Zheng
- National Supercritical Fluid Dyeing Technology Research Center, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
5
|
Katyal M, Singh R, Mahajan R, Sharma A, Gupta R, Aggarwal NK, Yadav A. Valorization of papaya fruit peel waste for the production of nanocellulose by Novacetimonas hansenii BMK-3. Biotechnol Appl Biochem 2024. [PMID: 39668653 DOI: 10.1002/bab.2706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Nanocellulose is the renewable biopolymer produced in nature by different bacteria. The widespread use of nanocellulose in industrial processes increases the demand for this valuable biomaterial. To overcome the high cost of producing nanocellulose using the Hestrin-Schramm medium, alternative agricultural waste has been studied as a potential low-cost supply. This study investigated the optimization and physicochemical characterization of cellulose membrane obtained, utilizing a low-cost substrate--papaya peel-based medium, with Novacetimonas hansenii BMK-3.The maximum yield of nanocellulose was found at an inoculum age 24 h, inoculum size 10% (v/v), incubation time 15 days, pH 3.5, media:flask volume ratio 1:2.5, and temperature 30°C. Cellulose yield produced using the papaya peel-based medium was nearly four times more than using the Hestrin-Schramm medium. The structural and physical properties of cellulose were characterized using field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and derivative of thermogravimetric analysis. Cellulose produced using papaya peel-based medium had similar properties to cellulose produced in the Hestrin-Schramm medium. The results suggested papaya peels as a cost-effective substrate for cellulose production with enhanced yield. This study reports an eco-friendly approach for the management of papaya peels waste disposal and production of value-added product. This is the first report mentioning the valorization of papaya fruit peel waste for the production of cellulose.
Collapse
Affiliation(s)
- Moniya Katyal
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rakshanda Singh
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ritu Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anurekha Sharma
- Department of Electronic Science, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ranjan Gupta
- Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
6
|
Sharma C, Bhardwaj NK, Pathak P, Dey P, Gautam S, Kumar S, Dutt Purohit S. Bacterial nanocellulose by static, static intermittent fed-batch and rotary disc bioreactor-based fermentation routes using economical black tea broth medium: A comparative account. Int J Biol Macromol 2024; 277:134228. [PMID: 39074706 DOI: 10.1016/j.ijbiomac.2024.134228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Bacterial nanocellulose was produced here using static, static intermittent-fed batch (SIFB) and rotary disc bioreactor (RDB) mode. Economical black tea broth media with symbiotic consortia of bacteria and yeast (SCOBY) was used towards feasible BNC production (instead of commercial NCIM 2526 strain and conventional HS media). The physicochemical characterization of BNC produced in all three modes via FE-SEM, ATR-FTIR, XRD and TGA results showed a highly porous morphology, mostly Iα form, good crystallinity and thermal stability, respectively. BNC crystallinity lies in the range of 68 % (RDB) to 79.4 % (static and SIFB). Water retention value (86 to 93 %) and moisture content (85 to 93 %) are high for BNC produced in all three modes. Commendable difference in the BNC yield, sugar consumption, conversion yield and residual sugar was observed using different methods. Highest BNC yield 29.4 ± 0.66 gL-1 was obtained under SIFB method as compared to static mode (13.6 ± 0.32 g L-1). Under RDB, a negligible amount of BNC i.e., 1.0 ± 0.2 g L-1 was produced. SCOBY with BTB medium was found unsuitable for BNC production under RDB and needs further investigation. Thus, this comparative study offers a way to produce a commendable amount of low-priced BNC for various techno-industrial usage.
Collapse
Affiliation(s)
- Chhavi Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, India; University Centre for Research and Development, Chandigarh University, Mohali, -140413, India.
| | - Nishi K Bhardwaj
- Avantha Centre for Industrial Research and Development, Yamuna Nagar-135001, Haryana, India.
| | - Puneet Pathak
- Agriliv Research Foundation, Chidana, Sonipat, Haryana- 131306, India.
| | - Pinaki Dey
- Microbial Processes and Technology Division, CSIR, - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram- 695019, Kerala, India.
| | - Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar-263145, India.
| | - Samit Kumar
- Department of Chemistry, Faculty of Basic Science, AKS University, Satna, Madhya Pradesh-48500, India.
| | - Shiv Dutt Purohit
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
7
|
Walling B, Bharali P, Ramachandran D, Kanagasabai V, Dutta N, Hazarika S, Maadurshni GB, Manivannan J, Kumari S, Acharjee SA, Gogoi B, Alemtoshi, Sorhie V, Vishwakarma V. Bacterial valorization of agricultural-waste into a nano-sized cellulosic matrix for mitigating emerging pharmaceutical pollutants: An eco-benign approach. Int J Biol Macromol 2024; 277:133684. [PMID: 39084979 DOI: 10.1016/j.ijbiomac.2024.133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
For Bacterial Nanocellulose (BNC) production, standard methods are well-established, but there is a pressing need to explore cost-effective alternatives for BNC commercialization. This study investigates the feasibility of using syrup prepared from maize stalk as a valuable nutrient and sustainable carbon source for BNC production. Our study achieved a remarkable BNC production yield of 19.457 g L-1 by utilizing Komagataeibacter saccharivorans NUWB1 in combination with components from the Hestrin-Schramm (HS) medium. Physicochemical properties revealed that the obtained BNC exhibited a crystallinity index of 60.5 %, tensile strength of 43.5 MPa along with enhanced thermostability reaching up to 360 °C. N2 adsorption-desorption isotherm of the BNC displayed characteristics of type IV, indicating the presence of a mesoporous structure. The produced BNC underwent thorough investigation, focusing on its efficacy in addressing environmental concerns, particularly in removing emerging pharmaceutical pollutants like Metformin and Paracetamol. Remarkably, the BNC exhibited strong adsorption capabilities, aligning with the Langmuir isotherm and pseudo-second-order model. Thermodynamic analysis confirmed a spontaneous and endothermic adsorption process. Furthermore, the BNC showed potential for regeneration, enabling up to five recycling cycles. Cytotoxicity and oxidative stress assays validated the biocompatibility of BNC. Lastly, the BNC films displayed an impressive 88.73 % biodegradation within 21 days.
Collapse
Affiliation(s)
- Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India.
| | - D Ramachandran
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, -600119, Tamil Nadu, India
| | - Viswanathan Kanagasabai
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, -600119, Tamil Nadu, India
| | - Nipu Dutta
- Department of Chemical Science, Tezpur University, Napaam, Tezpur, -784028, Assam, India
| | - Swapnali Hazarika
- Chemical Engineering Group, CSIR-North East Institute of Science & Technology, Jorhat, -785006, Assam, India
| | | | - Jeganathan Manivannan
- Environmental Health & Toxicology Laboratory, Department of Environmental Science, Bharathiar University, Tamil Nadu, India
| | - Sony Kumari
- Department of Applied Biology, University of Science and Technology, Meghalaya, Ri Bhoi, Baridua 793101, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR, Delhi, India
| |
Collapse
|
8
|
Katyal M, Singh R, Mahajan R, Sharma A, Gupta R, Aggarwal NK, Yadav A. A novel cost-effective methodology for the screening of nanocellulose producing micro-organisms. Bioprocess Biosyst Eng 2024; 47:1595-1603. [PMID: 38980386 DOI: 10.1007/s00449-024-03049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
In this paper, the work has been done to develop a cost-effective methodology, for the isolation of the potential producer of bacterial nanocellulose. No report is available in the literature, on the use of gram flour and table sugar for the screening of nanocellulose-producing isolates. Since commercially used, Hestrin-Schramm medium is expensive for the isolation of nanocellulose-producing micro-organisms, the possibility of using gram flour-table sugar medium was investigated in this work. Qualitative screening of micro-organisms was done using cost-effective medium, i.e., gram flour-table sugar medium. Qualitative analysis of various nanocellulose-producing bacteria depicted that cellulose layer production occurred on both HS medium and gram flour-table sugar medium. The yield of nanocellulose was also better on air-liquid surface in case of gram flour-table sugar medium as compared to HS medium. 16S rRNA was used for molecular characterization of bacterial strain and the best nanocellulose producer was identified as Novacetimonas hansenii BMK-3_NC240423 (isolated from rotten banana). FTIR and FE-SEM studies of nanocellulose pellicle produced on HS medium and gram flour-table sugar medium demonstrated equivalent structural, morphological, and chemical properties. The cost of newly designed medium (0.01967 $/L) is nearly 90 times lower than the Hestrin-Schramm medium (1.748 $/L), which makes the screening of nanocellulose producers very cost-effective. A strategy of using gram flour extract-table sugar medium for the screening of nanocellulose-producing micro-organisms is a novel approach, which will drastically reduce the screening associated cost of cellulose-producing micro-organisms and also motivate the researchers/industries for comprehensive screening programme for getting high cellulose-producing microbes.
Collapse
Affiliation(s)
- Moniya Katyal
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rakshanda Singh
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ritu Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anurekha Sharma
- Department of Electronic Science, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ranjan Gupta
- Department of Biochemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, India.
| |
Collapse
|
9
|
De la Cruz Gómez N, Poza-Carrión C, Del Castillo-González L, Martínez Sánchez ÁI, Moliner A, Aranaz I, Berrocal-Lobo M. Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2158. [PMID: 39124276 PMCID: PMC11313925 DOI: 10.3390/plants13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming.
Collapse
Affiliation(s)
- Noelia De la Cruz Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
- Arquimea Agrotech S.L.U, 28400 Madrid, Spain
| | - César Poza-Carrión
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ángel Isidro Martínez Sánchez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ana Moliner
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense, 28040 Madrid, Spain;
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| |
Collapse
|
10
|
Liu Z, Wang Y, Guo S, Liu J, Zhu P. Preparation and characterization of bacterial cellulose synthesized by kombucha from vinegar residue. Int J Biol Macromol 2024; 258:128939. [PMID: 38143062 DOI: 10.1016/j.ijbiomac.2023.128939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Bacterial cellulose (BC) has been widely applied in various fields due to its excellent physicochemical properties, but its high production cost remains a challenge. Herein, the present study aimed to utilize the hydrolysate of vinegar residue (VR) as the only medium to realize the cost-effective production of BC. The BC production was optimized by the single-factor test. The treatment of 6 % VR concentration with 3 % acid concentration at 100 °C for 1.5 h and 96 U/mL of cellulase for 4 h at 50 °C obtained a maximum reducing sugar concentration of about 32 g/L. Additionally, the VR hydrolysate treated with 3 % active carbon (AC) at 40 °C for 0.5 h achieved a total phenol removal ratio of 86 %. The yield of BC reached 2.1 g/L under the optimum conditions, which was twice compared to the standard medium. The produced BC was characterized by SEM, FT-IR, XRD, and TGA analyses, and the results indicated that the BC prepared by AC-treated VR hydrolysate had higher fiber density, higher crystallinity, and good thermal stability. Furthermore, the regenerated BC (RBC) fibers with a tensile stress of 400 MPa were prepared successfully using AmimCl solution as a solvent by dry-wet-spinning method. Overall, the VR waste could be used as an alternative carbon source for the sustainable production of BC, which could be further applied to RBC fibers preparation.
Collapse
Affiliation(s)
- Zhanna Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Yingying Wang
- Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Shengnan Guo
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China.
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
11
|
Acharya DR, Liu S, Lu H, Albashir D, Koirala P, Shi Y, Chen Q. Nanoemulsion-integrated gelatin/bacterial cellulose nanofibril-based multifunctional film: Fabrication, characterization, and application. Int J Biol Macromol 2024; 257:128341. [PMID: 38029904 DOI: 10.1016/j.ijbiomac.2023.128341] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The current requirements of food safety regulations and the environmental impact stemming from plastic packaging can only be addressed by developing suitable bio-nanocomposite films. Therefore, this study is dedicated to the fabrication of multifunctional film composed of gelatin, bacterial cellulose nanofibrils (BCNF), and black pepper essential oil nanoemulsion (BPEONE) and application for duck meat preservation. BCNF was prepared through ultrasonication of cellulose derived from Komagataeibacter xylinus. BPEONE observed spherical morphology with a diameter ranging from 83.7 to 118 nm. A film matrix containing a higher gelatin proportion than BCNF was more effective in trapping BPEONE. However, increasing the BPEONE fraction showed more surface abrasion and voids in the film morphology. A flexible film with good interaction, crystallinity, and greater thermal stability (421 °C) was developed. Nevertheless, film hydrophobicity (118.89°) declined, resulting in a notable effect on water solubility, swelling, and water vapor permeability. Moreover, the film had improved antibacterial and antioxidant activities, coupled with controlled release characteristics. Consequently, the developed film effectively retarded the lipid oxidation, inhibited microbial growth, and extended the shelf life of duck meat at refrigeration (4 °C) by 3 days, and made the film a promising alternative in the realm of bio-active packaging technology.
Collapse
Affiliation(s)
- Dev Raj Acharya
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dafaallah Albashir
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Future Food Laboratory, Innovation Centre of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
12
|
Tseng YS, Patel AK, Haldar D, Chen CW, Dong CD, Singhania RR. Microalgae and nano-cellulose composite produced via a co-culturing strategy for ammonia removal from the aqueous phase. BIORESOURCE TECHNOLOGY 2023; 389:129801. [PMID: 37813315 DOI: 10.1016/j.biortech.2023.129801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
This study addresses the pressing need for sustainable bioremediation solutions to combat increasing pollution challenges in alignment with sustainability development goals. The research focuses on developing a co-culture approach involving microalgae and Komagataeibacter europaeus BCRC 14148 bacterium to create a biocomposite for efficient ammonia removal. Nanocellulose, produced by the bacterium, serves as a substrate for microalgae attachment. Optimization using specific growth media ratios resulted in biocomposite yields of 4.05 ± 0.16 g/L and 3.83 ± 0.13 g/L in HS medium with fructose and glucose, respectively. The optimal conditions include a 40:60 ratio of HS-F to TAP medium, 25 ℃ incubation, 6000 Lux light intensity, pH 5.5, and a 48-hour incubation period. When applied to wastewater treatment, the biocomposite demonstrated exceptional ammonium removal efficiency at 91.64 ± 1.27 %. This co-culture-derived biocomposite offers an eco-friendly, recyclable, and effective solution for sustainable environmental bioremediation.
Collapse
Affiliation(s)
- Yi-Sheng Tseng
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India.
| |
Collapse
|
13
|
Kumari R, Sakhrie M, Kumar M, Vivekanand V, Pareek N. Enhanced production of bacterial cellulose employing banana peel as a cost-effective nutrient resource. Braz J Microbiol 2023; 54:2745-2753. [PMID: 37872277 PMCID: PMC10689649 DOI: 10.1007/s42770-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Bacterial cellulose (BC) is an exopolysaccharide produced by bacteria that has unusual structural features and is more refined than plant cellulose. BC has recently gained more attention in a variety of fields including biological and biomedical applications due to its excellent physiochemical properties including easy biodegradability, better water holding capacity, high tensile strength, high thermal stability, and high degree of polymerization. However, application of BC at industrial scale is still limited due to its high production cost and lesser yielding strains. The present study is an attempt to isolate and characterize a novel BC-producing bacterial strain. The bacterial strain S5 has resulted into maximum cellulose production of 4.76 ± 0.49 gL-1 (30°C, pH 7.0). The strain has been further identified as Stenotrophomonas sp. Derivation of nutritional and cultural conditions has resulted into 2.34-fold enhanced BC production (banana peel powder, peptone, tartaric acid, pH 7, 30°C). FTIR spectrum of BC revealed characteristic absorption bands which could be attributed to the O-H band, C-H stretching, C-O-C stretching band, O-H bending, and >CH2 bending, indicative of the β-1,4 glycosidic linkages of cellulose. Thermogravimetric analysis has also revealed stability of polysaccharide backbones and characteristic weight loss points. Employment of banana peel powder has appeared as a proficient low-cost source for large-scale economic production of BC for industrial applications.
Collapse
Affiliation(s)
- Rajni Kumari
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Mesevilhou Sakhrie
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
14
|
Li W, Huang X, Liu H, Lian H, Xu B, Zhang W, Sun X, Wang W, Jia S, Zhong C. Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus. Carbohydr Polym 2023; 313:120892. [PMID: 37182977 DOI: 10.1016/j.carbpol.2023.120892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Bacterial cellulose (BC) is a bio-produced nanostructure material widely used in biomedical, food, and paper-manufacturing industries. However, low production efficiency and high-cost have limited its industrial applications. This study aimed to examine the level of improvement in BC production by co-culturing Bacillus cereus and Komagataeibacter xylinus. The BC yield in corn stover enzymatic hydrolysate was found to be obviously enhanced from 1.2 to 4.4 g/L after the aforementioned co-culturing. The evidence indicated that acetoin (AC) and 2,3-butanediol (2,3-BD) produced by B. cereus were the key factors dominating BC increment. The mechanism underlying BC increment was that AC and 2,3-BD increased the specific activity of AC dehydrogenase and the contents of adenosine triphosphate (ATP) and acetyl coenzyme A (acetyl-CoA), thus promoting the growth and energy level of K. xylinus. Meanwhile, the immobilization of BC could also facilitate oxygen acquisition in B. cereus under static conditions. This study was novel in reporting that the co-culture could effectively enhance BC production from the lignocellulosic enzymatic hydrolysate.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Xinxin Huang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Huan Liu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Hao Lian
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Bin Xu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Wenjin Zhang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Xuewen Sun
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Wei Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China.
| |
Collapse
|
15
|
Nguyen NN, Tran TTV, Nguyen QD, Nguyen TP, Lien TN. Modification of microstructure and selected physicochemical properties of bacterial cellulose produced by bacterial isolate using hydrocolloid-fortified Hestrin-Schramm medium. Biotechnol Prog 2023; 39:e3344. [PMID: 37025043 DOI: 10.1002/btpr.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
Bacterial cellulose (BC) is a biopolymer with applications in numerous industries such as food and pharmaceutical sectors. In this study, various hydrocolloids including modified starches (oxidized starch-1404 and hydroxypropyl starch-1440), locust bean gum, xanthan gum (XG), guar gum, and carboxymethyl cellulose were added to the Hestrin-Schramm medium to improve the production performance and microstructure of BC by Gluconacetobacter entanii isolated from coconut water. After 14-day fermentation, medium supplemented with 0.1% carboxymethyl cellulose and 0.1% XG resulted in the highest BC yield with dry BC content of 9.82 and 6.06 g/L, respectively. In addition, scanning electron microscopy showed that all modified films have the characteristic three-dimensional network of cellulose nanofibers with dense structure and low porosity as well as larger fiber size compared to control. X-ray diffraction indicated that BC fortified with carboxymethyl cellulose exhibited lower crystallinity while Fourier infrared spectroscopy showed characteristic peaks of both control and modified BC films.
Collapse
Affiliation(s)
- Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Thi Tuong Vi Tran
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Tran-Phong Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Tuyet-Ngan Lien
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| |
Collapse
|
16
|
Abu Hasan NS, Mohamad S, Sy Mohamad SF, Arzmi MH, Supian NNI. Ex-Situ Development and Characterization of Composite Film Based on Bacterial Cellulose Derived from Oil Palm Frond Juice and Chitosan as Food Packaging. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The development of alternative food packaging films using bio-based residues is in great demand for replacing petroleum-based packaging materials. However, large-scale application is severely limited by costly production and poor performance. This study investigates the ex-situ modification of bacterial cellulose (BC) produced by Acetobacter xylinum in oil palm fronds juice to obtain BC-Chitosan (BCC) films. FTIR revealed the structure of amide I and II bands, confirming the presence of chitosan in BCC films. The FE-SEM images of BCC films showed the formation of a thick chitosan layer with increasing chitosan incorporated into the BC surface structure. The coated chitosan layer observed improved mechanical properties in BCC films due to the disappearance of empty pores between BC fibers. Increments in chitosan concentration slightly decreased the thermal behavior of BCC. The antimicrobial effects of BCC films were effective against Gram-positive bacteria (Staphylococcus aureus) when the concentration of chitosan incorporated was above 0.6 %w/v. This study reveals the potential of extending the application of BC derived from oil palm frond juice (OPFJ) for developing food packaging materials.
Collapse
|
17
|
Samyn P, Meftahi A, Geravand SA, Heravi MEM, Najarzadeh H, Sabery MSK, Barhoum A. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Int J Biol Macromol 2023; 231:123316. [PMID: 36682647 DOI: 10.1016/j.ijbiomac.2023.123316] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Bacterial nanocellulose (BNC) is a natural polysaccharide produced as extracellular material by bacterial strains and has favorable intrinsic properties for primary use in biomedical applications. In this review, an update on state-of-the art and challenges in BNC production, surface modification and biomedical application is given. Recent insights in biosynthesis allowed for better understanding of governing parameters improving production efficiency. In particular, introduction of different carbon/nitrogen sources from alternative feedstock and industrial upscaling of various production methods is challenging. It is important to have control on the morphology, porosity and forms of BNC depending on biosynthesis conditions, depending on selection of bacterial strains, reactor design, additives and culture conditions. The BNC is intrinsically characterized by high water absorption capacity, good thermal and mechanical stability, biocompatibility and biodegradability to certain extent. However, additional chemical and/or physical surface modifications are required to improve cell compatibility, protein interaction and antimicrobial properties. The novel trends in synthesis include the in-situ culturing of hybrid BNC nanocomposites in combination with organic material, inorganic material or extracellular components. In parallel with toxicity studies, the applications of BNC in wound care, tissue engineering, medical implants, drug delivery systems or carriers for bioactive compounds, and platforms for biosensors are highlighted.
Collapse
Affiliation(s)
- Pieter Samyn
- SIRRIS, Department Innovations in Circular Economy, Leuven, Belgium.
| | - Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Sahar Abbasi Geravand
- Department of Technical & Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Hamideh Najarzadeh
- Department of Textile Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt; School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland.
| |
Collapse
|
18
|
Tseng YS, Patel AK, Chen CW, Dong CD, Singhania RR. Improved production of bacterial cellulose by Komagataeibacter europaeus employing fruit extract as carbon source. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1054-1064. [PMID: 36908337 PMCID: PMC9998749 DOI: 10.1007/s13197-022-05451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
Bacterial cellulose (BC) has attracted worldwide attention owing to its tremendous properties and versatile applications. BC has huge market demand, however; its production is still limited hence important to explore the economically and technically feasible bioprocess for its improved production. The current study is based on improving the bioprocess for BC production employing Komagataeibacter europeaus 14148. Physico-chemical parameters have been optimized e.g., initial pH, incubation temperature, incubation period, inoculum size, and carbon source for maximum BC production. The study employed crude and/or a defined carbon source in the production medium. Hestrin and Schramm (HS) medium was used for BC production with initial pH 5.5 at 30 °C after 7 days of incubation under static conditions. The yield of BC obtained from fruit juice extracted from orange, papaya, mango and banana were higher than other sugars employed. The maximum BC yield of 3.48 ± 0.16 g/L was obtained with papaya extract having 40 g/L reducing sugar concentration and 3.47 ± 0.05 g/L BC was obtained with orange extract having 40 g/L reducing sugar equivalent in the medium. BC yield was about three-fold higher than standard HS medium. Fruit extracts can be employed as sustainable and economic substrates for BC production to replace glucose and fructose. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05451-y.
Collapse
Affiliation(s)
- Yi Sheng Tseng
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan, Republic of China
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan, Republic of China
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan, Republic of China
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan, Republic of China
| |
Collapse
|
19
|
Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem 2022; 405:134964. [DOI: 10.1016/j.foodchem.2022.134964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
20
|
Zhang RY, Liu C, Wang XD, Liu HM, Zhu WX. Effects of different concentrations of NaOH on the structure and in vitro digestion of cellulose from sesame kernel. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Yang H, He Y, Liao J, Li X, Zhang J, Liebl W, Chen F. RNA-Seq transcriptomic analysis reveals gene expression profiles of acetic acid bacteria under high-acidity submerged industrial fermentation process. Front Microbiol 2022; 13:956729. [PMID: 36246236 PMCID: PMC9557201 DOI: 10.3389/fmicb.2022.956729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are Gram-negative obligate aerobics in Acetobacteraceae family. Producing acetic acid and brewing vinegars are one of the most important industrial applications of AAB, attributed to their outstanding ability to tolerate the corresponding stresses. Several unique acid resistance (AR) mechanisms in AAB have been revealed previously. However, their overall AR strategies are still less-comprehensively clarified. Consequently, omics analysis was widely performed for a better understanding of this field. Among them, transcriptome has recently obtained more and more attention. However, most currently reported transcriptomic studies were conducted under lab conditions and even in low-acidity environment, which may be unable to completely reflect the conditions that AAB confront under industrialized vinegar-brewing processes. In this study, we performed an RNA-Seq transcriptomic analysis concerning AAB’s AR mechanisms during a continuous and periodical industrial submerged vinegar fermentation process, where a single AAB strain performed the fermentation and the acetic acid concentration fluctuated between ~8% and ~12%, the highest acidity as far we know for transcriptomic studies. Samples were directly taken from the initial (CK), mid, and final stages of the same period of the on-going fermentation. 16S rRNA sequence analysis indicated the participation of Komagataeibacter europaeus in the fermentation. Transcriptomic results demonstrated that more genes were downregulated than upregulated at both mid and final stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich analysis reflected that the upregulated genes mainly carried out tricarboxylic acid cycle and oxidative phosphorylation processes, probably implying a considerable role of acetic acid overoxidation in AR during fermentation. Besides, upregulation of riboflavin biosynthesis pathway and two NAD+-dependent succinate-semialdehyde dehydrogenase-coding genes suggested a critical role of succinate oxidation in AR. Meanwhile, downregulated genes were mainly ribosomal protein-coding ones, reflecting that the adverse impact on ribosomes initiates at the transcription level. However, it is ambiguous whether the downregulation is good for stress responding or it actually reflects the stress. Furthermore, we also assumed that the fermentation stages may have a greater effect on gene expression than acidity. Additionally, it is possible that some physiological alterations would affect the AR to a larger extent than changes in gene expression, which suggests the combination of molecular biology and physiology research will provide deeper insight into the AR mechanisms in AAB.
Collapse
Affiliation(s)
- Haoran Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Liao
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin Li
- Jiangsu Hengshun Vinegar Industry Co., Ltd, Zhenjiang, Jiangsu, China
| | - Junhong Zhang
- Jiangsu Hengshun Vinegar Industry Co., Ltd, Zhenjiang, Jiangsu, China
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- *Correspondence: Fusheng Chen,
| |
Collapse
|
22
|
Characterization of bacterial cellulose produced by Acetobacter pasteurianus MGC-N8819 utilizing lotus rhizome. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Stoichiometric Analysis and Production of Bacterial Cellulose by Gluconacetobacter liquefaciens using Borassus flabellifer L. Jaggery. Appl Biochem Biotechnol 2022; 194:3645-3667. [PMID: 35482222 DOI: 10.1007/s12010-022-03896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
The objective of the work is to examine the potential utilization of Palmyra palm jaggery (PPJ) for the enhancement of bacterial cellulose (BC) production by Gluconacetobacter liquefaciens. To evaluate the culturing condition, the production of BC fermentation was carried out in batch mode using different carbon sources namely glucose, sucrose and PPJ. PPJ in the HS medium (PHS medium) resulted maximum concentration of BC (14.35 ± 0.18 g/L) under shaking condition than other carbon sources in HS medium. The influence of different medium variables including initial pH and nitrogen sources on BC production was investigated using PHS medium under shaking condition. The maximum BC concentration of 17.79 ± 2.4 g/L was obtained in shaking condition at an initial pH of 5.6 using yeast extract as nitrogen source. Stoichiometric equation for the cell growth and BC synthesis was developed using elemental balance approach. The metabolic heat of reaction (40 kcal generated per liter of medium) was evaluated using electron balance approach. Based on the process economic analysis and the yield of BC during the fermentation, PHS medium without nitrogen source could be a promising cost-effective nutrient than HS medium. Thermal stability, crystallinity index and structural characterizations of produced BC using PPJ medium were evaluated using TGA, XRD and FTIR and the obtained results were compared with HS medium containing glucose and sucrose.
Collapse
|
24
|
Bioprocess development for bacterial cellulose biosynthesis by novel Lactiplantibacillus plantarum isolate along with characterization and antimicrobial assessment of fabricated membrane. Sci Rep 2022; 12:2181. [PMID: 35140278 PMCID: PMC8828888 DOI: 10.1038/s41598-022-06117-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial cellulose (BC) is an ecofriendly biopolymer with diverse commercial applications. Its use is limited by the capacity of bacterial production strains and cost of the medium. Mining for novel organisms with well-optimized growth conditions will be important for the adoption of BC. In this study, a novel BC-producing strain was isolated from rotten fruit samples and identified as Lactiplantibacillus plantarum from 16S rRNA sequencing. Culture conditions were optimized for supporting maximal BC production using one variable at a time, Plackett–Burman design, and Box Behnken design approaches. Results indicated that a modified Yamanaka medium supported the highest BC yield (2.7 g/l), and that yeast extract, MgSO4, and pH were the most significant variables influencing BC production. After optimizing the levels of these variables through Box Behnken design, BC yield was increased to 4.51 g/l. The drug delivery capacity of the produced BC membrane was evaluated through fabrication with sodium alginate and gentamycin antibiotic at four different concentrations. All membranes (normal and fabricated) were characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and mechanical properties. The antimicrobial activity of prepared composites was evaluated by using six human pathogens and revealed potent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus mutans, with no detected activity against Pseudomonas aeruginosa and Candida albicans.
Collapse
|
25
|
Li G, Wang L, Deng Y, Wei Q. Research progress of the biosynthetic strains and pathways of bacterial cellulose. J Ind Microbiol Biotechnol 2022; 49:kuab071. [PMID: 34549273 PMCID: PMC9113090 DOI: 10.1093/jimb/kuab071] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022]
Abstract
Bacterial cellulose is a glucose biopolymer produced by microorganisms and widely used as a natural renewable and sustainable resource in the world. However, few bacterial cellulose-producing strains and low yield of cellulose greatly limited the development of bacterial cellulose. In this review, we summarized the 30 cellulose-producing bacteria reported so far, including the physiological functions and the metabolic synthesis mechanism of bacterial cellulose, and the involved three kinds of cellulose synthases (type I, type II, and type III), which are expected to provide a reference for the exploration of new cellulose-producing microbes.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Li Wang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Cielecka I, Ryngajłło M, Maniukiewicz W, Bielecki S. Highly Stretchable Bacterial Cellulose Produced by Komagataeibacter hansenii SI1. Polymers (Basel) 2021; 13:4455. [PMID: 34961006 PMCID: PMC8707637 DOI: 10.3390/polym13244455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
A new strain of bacteria producing cellulose was isolated from Kombucha and identified as Komagataeibacter hansenii, named SI1. In static conditions, the strain synthesises bacterial nanocellulose with an improved ability to stretch. In this study, utilisation of various carbon and nitrogen sources and the impact of initial pH was assessed in terms of bacterial nanocellulose yield and properties. K. hansenii SI1 produces cellulose efficiently in glycerol medium at pH 5.0-6.0 with a yield of 3.20-3.60 g/L. Glucose medium led to the synthesis of membrane characterised by a strain of 77%, which is a higher value than in the case of another Komagataeibacter species. Supplementation of medium with vitamin C results in an enhanced porosity and improves the ability of bacterial nanocellulose to stretch (up to 123%). The properties of modified membranes were studied by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and mechanical tests. The results show that bacterial nanocellulose produced in SH medium and vitamin C-supplemented medium has unique properties (porosity, tensile strength and strain) without changing the chemical composition of cellulose. The method of production BNC with altered properties was the issue of Polish patent application no. P.431265.
Collapse
Affiliation(s)
- Izabela Cielecka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Łódź, Poland;
| | - Stanisław Bielecki
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| |
Collapse
|
27
|
R R, Philip E, Thomas D, Madhavan A, Sindhu R, Binod P, Varjani S, Awasthi MK, Pandey A. Bacterial nanocellulose: engineering, production, and applications. Bioengineered 2021; 12:11463-11483. [PMID: 34818969 PMCID: PMC8810168 DOI: 10.1080/21655979.2021.2009753] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Bacterial nanocellulose (BNC) has been emerging as a biomaterial of considerable significance in a number of industrial sectors because of its remarkable physico-chemical and biological characteristics. High capital expenses, manufacturing costs, and a paucity of some well-scalable methods, all of which lead to low BNC output in commercial scale, are major barriers that must be addressed. Advances in production methods, including bioreactor technologies, static intermittent, and semi-continuous fed batch technologies, and innovative outlay substrates, may be able to overcome the challenges to BNC production at the industrial scale. The novelty of this review is that it highlights genetic modification possibilities in BNC production to overcome existing impediments and open up viable routes for large-scale production, suitable for real-world applications. This review focuses on various production routes of BNC, its properties, and applications, especially the major advancement in food, personal care, biomedical and electronic industries.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, China
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, India
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, India
| |
Collapse
|
28
|
Bhattacharya A, Sadaf A, Dubey S, Singh RP, Khare SK. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46423-46430. [PMID: 32335838 DOI: 10.1007/s11356-020-08845-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In the present study, fermentative production of bacterial nanocellulose (BNC) by using Komagataeibacter xylinus strain SGP8 and characterization of nanocellulose is presented. The bacterium was able to produce 1.82 g L-1 of cellulose in the form of pellicle in standard Hestrin-Schramn (HS) medium. The morpho-structural characterization of the BNC using scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies, respectively revealed nanofibrillar structure and high crystallinity index (~86%). The thermogravimetric analysis (TGA) showed the stability of BNC up to 280 °C, further rise in temperature to 350 °C results in depolymerization of the sample. In order to show the applicability of produced BNC, it was modified first using calcite (CaCO3) and thereafter characterized using SEM, XRD, FTIR, and TGA studies. The BNC-CaCO3 composites as a sorbent resulted in >99% removal of initial 10 mg L-1 of Cd (II) at pH 5, 7 and 9 after 12 h of treatment. Moreover, the composite was also found to be competent in removing high concentrations of Cd (25 and 50 mg L-1) from the solution (69-70%). Overall, the above results suggest that cellulose produced by K. xylinus strain SGP8 showed excellent material properties, and modified BNC (BNC-CaCO3 composite) could effectively be used for remediation of toxic levels of Cd from the contaminated system.
Collapse
Affiliation(s)
- Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 11016, India
| | - Ayesha Sadaf
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 11016, India
| | - Swati Dubey
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rajesh P Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 11016, India.
| |
Collapse
|
29
|
Nascimento ES, Barros MO, Cerqueira MA, Lima HL, Borges MDF, Pastrana LM, Gama FM, Rosa MF, Azeredo HM, Gonçalves C. All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100715] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Khan H, Saroha V, Raghuvanshi S, Bharti AK, Dutt D. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Carbohydr Polym 2021; 260:117807. [PMID: 33712153 DOI: 10.1016/j.carbpol.2021.117807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
To date, the production of bacterial nanocellulose (BNC) by standard methods has been well known, while the use of low-cost feedstock as an alternative medium still needs to be explored for BNC commercialization. This study explores the prospect for the use of the different aqueous extract of fruit peel wastes (aE-FPW) as a nutrient and carbon source for the production of BNC. Herein, this objective was accomplished by the use of a novel, high- yielding strain, isolated from rotten apple and further identified as Komagataeibacter xylinus IITR DKH20 using 16 s rRNA sequencing analysis. The physicochemical properties of BNC matrix collected from the various aE-FPW mediums were similar or advanced to those collected with the HS medium. Statistical optimization of BNC based on Central Composite Design was performed to study the effect of significant parameters and the results demonstrated that the BNC yield (11.44 g L-1) was increased by 4.5 fold after optimization.
Collapse
Affiliation(s)
- Hina Khan
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Vaishali Saroha
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Sharad Raghuvanshi
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Amit Kumar Bharti
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
31
|
Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Sci Rep 2021; 11:2912. [PMID: 33536530 PMCID: PMC7858635 DOI: 10.1038/s41598-021-82596-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
The present work report for the first time on the production of bacterial cellulose (BC) using natural loofa sponge (Luffa aegyptiaca) as a scaffold for the immobilization of Gluconacetobacter kombuchae. Bacterial cellulose (BC) are recently gained more attention in several fields including biological and biomedical applications due to their outstanding physico-chemical characteristics including high thermal stability, easy biodegradability, good water holding capacity, high tensile strength, and high degree of polymerization. The increase in requirement of alternative method for the enhancement of BC production under economical aspect develops a positive impact in large scale industries. In this study, Luffa aegyptiaca (LA) was introduced in a separate fermentation medium so as to enhance the concentration of BC production by Gluconacetobacter kombuchae. Different process/medium parameters such as initial pH, static/shaking condition, inoculum size, nitrogen source, C/N ratio, supplements (ethanol and acetic acid) were analysed for the production of bacterial cellulose using LA support. The maximum yield of BC was obtained using following condition: culturing condition -shaking; initial pH - 5.5; nitrogen source- yeast extract, C/N ratio - 40 and supplement-ethanol. The characterization of the BC was examined using Fourier Transform Infra-Red spectroscopy and thermo gravimetric analysis. The biofilm formation on the surface of LA was examined by SEM photographs. Thus, implementation of LA as a support in shaking fermentation under suitable medium/process variables enhanced the BC production.
Collapse
|
32
|
Dubey S, Mishra R, Roy P, Singh RP. 3-D macro/microporous-nanofibrous bacterial cellulose scaffolds seeded with BMP-2 preconditioned mesenchymal stem cells exhibit remarkable potential for bone tissue engineering. Int J Biol Macromol 2020; 167:934-946. [PMID: 33189758 DOI: 10.1016/j.ijbiomac.2020.11.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Bone repair using BMP-2 is a promising therapeutic approach in clinical practices, however, high dosages required to be effective pose issues of cost and safety. The present study explores the potential of low dose BMP-2 treatment via tissue engineering approach, which amalgamates 3-D macro/microporous-nanofibrous bacterial cellulose (mNBC) scaffolds and low dose BMP-2 primed murine mesenchymal stem cells (C3H10T1/2 cells). Initial studies on cell-scaffold interaction using unprimed C3H10T1/2 cells confirmed that scaffolds provided a propitious environment for cell adhesion, growth, and infiltration, owing to its ECM-mimicking nano-micro-macro architecture. Osteogenic studies were conducted by preconditioning the cells with 50 ng/mL BMP-2 for 15 min, followed by culturing on mNBC scaffolds for up to three weeks. The results showed an early onset and significantly enhanced bone matrix secretion and maturation in the scaffolds seeded with BMP-2 primed cells compared to the unprimed ones. Moreover, mNBC scaffolds alone were able to facilitate the mineralization of cells to some extent. These findings suggest that, with the aid of 'osteoinduction' from low dose BMP-2 priming of stem cells and 'osteoconduction' from nano-macro/micro topography of mNBC scaffolds, a cost-effective bone tissue engineering strategy can be designed for quick and excellent in vivo osseointegration.
Collapse
Affiliation(s)
- Swati Dubey
- Microbial Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - R P Singh
- Microbial Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
33
|
Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydr Polym 2020; 229:115513. [DOI: 10.1016/j.carbpol.2019.115513] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/06/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022]
|
34
|
Gayathri G, Srinikethan G. Bacterial Cellulose production by K. saccharivorans BC1 strain using crude distillery effluent as cheap and cost effective nutrient medium. Int J Biol Macromol 2019; 138:950-957. [DOI: 10.1016/j.ijbiomac.2019.07.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 11/25/2022]
|
35
|
Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Ryngajłło M, Jacek P, Cielecka I, Kalinowska H, Bielecki S. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Appl Microbiol Biotechnol 2019; 103:6673-6688. [PMID: 31168651 PMCID: PMC6667682 DOI: 10.1007/s00253-019-09904-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Ethanol exerts a strong positive effect on the cellulose yields from the widely exploited microbial producers of the Komagataeibacter genus. Ethanol is postulated to provide an alternative energy source, enabling effective use of glucose for cellulose biosynthesis rather than for energy acquisition. In this paper, we investigate the effect of ethanol supplementation on the global gene expression profile of Komagataeibacter xylinus E25 using RNA sequencing technology (RNA-seq). We demonstrate that when ethanol is present in the culture medium, glucose metabolism is directed towards cellulose production due to the induction of genes related to UDP-glucose formation and the repression of genes involved in glycolysis and acetan biosynthesis. Transcriptional changes in the pathways of cellulose biosynthesis and c-di-GMP metabolism are also described. The transcript level profiles suggest that Schramm-Hestrin medium supplemented with ethanol promotes bacterial growth by inducing protein biosynthesis and iron uptake. We observed downregulation of genes encoding transposases of the IS110 family which may provide one line of evidence explaining the positive effect of ethanol supplementation on the genotypic stability of K. xylinus E25. The results of this study increase knowledge and understanding of the regulatory effects imposed by ethanol on cellulose biosynthesis, providing new opportunities for directed strain improvement, scaled-up bionanocellulose production, and wider industrial exploitation of the Komagataeibacter species as bacterial cellulose producers.
Collapse
Affiliation(s)
- Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924, Lodz, Poland.
| | - Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Izabela Cielecka
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Halina Kalinowska
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924, Lodz, Poland
| |
Collapse
|
37
|
Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms. Int J Biol Macromol 2019; 132:166-177. [DOI: 10.1016/j.ijbiomac.2019.03.202] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
|
38
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
39
|
Gopu G, Govindan S. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes. Prep Biochem Biotechnol 2018; 48:842-852. [DOI: 10.1080/10826068.2018.1513032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Gayathri Gopu
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, India
| | - Srinikethan Govindan
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, India
| |
Collapse
|
40
|
Crude glycerol as a cost-effective carbon source for the production of cellulose by K. saccharivorans. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed Pharmacother 2018; 107:96-108. [PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/13/2023] Open
Abstract
Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
Collapse
|
42
|
Milanović V, Osimani A, Garofalo C, De Filippis F, Ercolini D, Cardinali F, Taccari M, Aquilanti L, Clementi F. Profiling white wine seed vinegar bacterial diversity through viable counting, metagenomic sequencing and PCR-DGGE. Int J Food Microbiol 2018; 286:66-74. [PMID: 30048915 DOI: 10.1016/j.ijfoodmicro.2018.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
The production of traditional vinegar is usually carried out using the so-called "seed vinegar" or "mother of vinegar" that is composed of an undefined and complex pool of microorganisms deriving from a previous vinegar production. To date, there have been relatively few studies on the microbiota of seed vinegars. The present study was carried out to discover the bacterial biota of seed vinegar samples used in the homemade production of local vinegars obtained from the acetic fermentation of white wine. The seed vinegar samples were subjected to viable counting and advanced molecular analyses, namely, Illumina sequencing and PCR-DGGE. The adopted polyphasic approach allowed the bacterial diversity of the analyzed samples to be profiled, thus revealing the presence of acetic acid bacteria ascribed to the genera Acetobacter, Gluconacetobacter, Gluconobacter and Komagataeibacter. Moreover, other microbial genera as Pseudomonas, Bacillus and Clostridium were abundantly found in almost all the samples, together with other minority genera. The results of viable counting confirmed the well-acknowledged limitations inherent with acetic acid bacteria recovery on plate growth media. The overall results confirmed that seed vinegars have a complex and heterogeneous biodiversity, thus encouraging their exploitation for the isolation and future technological characterization of cultures to be selected for the manufacture of mixed starter cultures.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Manuela Taccari
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
43
|
Dubey S, Singh J, Singh RP. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation. BIORESOURCE TECHNOLOGY 2018; 247:73-80. [PMID: 28946097 DOI: 10.1016/j.biortech.2017.09.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 05/11/2023]
Abstract
Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL-1) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL-1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production.
Collapse
Affiliation(s)
- Swati Dubey
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Jyoti Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - R P Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|