1
|
Desai K, Dobruchowska JM, Elbers K, Cybulska J, Zdunek A, Porbahaie M, Jansen E, Van Neerven J, Albers R, Wennekes T, Mercenier A, Schols HA. Associating structural characteristics to immunomodulating properties of carrot rhamnogalacturonan-I fractions. Carbohydr Polym 2025; 347:122730. [PMID: 39486960 DOI: 10.1016/j.carbpol.2024.122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Carrot rhamnogalacturonan-I (cRG-I) is a polydisperse polysaccharide with molecular weights of 7-250 kDa. Using size exclusion chromatography cRG-I was fractionated and pooled in fractions (PF1-6). All fractions contained the same RG-I monosaccharides and similar glycosidic linkages although in varying relative amounts. The main differences were in rhamnose substitution, arabinan- and galactan side chain length and in levels of acetylation and methyl esterification. Atomic force microscopy showed either spheric or elongated structures for cRG-I and its derived fractions. To gain insight in the structure-function relationship of cRG-I, the immunomodulatory effect of the six fractions and their saponified derivatives was assessed in vitro. All fractions, except PF2, dose-dependently stimulated TNFα, IL-6, IL-1β, IL-8 and IL-10 production in peripheral blood mononuclear cells (PBMCs) of three healthy donors. Cytokine levels were largely influenced by the Mw and degree of esterification of the individual fractions. Notably, the highest Mw fraction (100 kDa) displayed the most potent activity, which was strongly reduced after the removal of ester residues by saponification. In contrast, the 75 kDa Mw population (PF2) proved inactive while its saponified counterpart exhibited substantial immunomodulatory activity. This confirmed the role of ester residues on the immune profile of RG-I subpopulations.
Collapse
Affiliation(s)
- Krishna Desai
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; NutriLeads B.V., Bronland 12N, 6708 WH Wageningen, the Netherlands.
| | - Justyna M Dobruchowska
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Kari Elbers
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Ul Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Ul Doświadczalna 4, 20-290 Lublin, Poland
| | - Mojtaba Porbahaie
- Cell Biology and Immunology, Wageningen University & Research, De Elst 1, 6700 HB Wageningen, the Netherlands
| | - Erik Jansen
- Cell Biology and Immunology, Wageningen University & Research, De Elst 1, 6700 HB Wageningen, the Netherlands
| | - Joost Van Neerven
- Cell Biology and Immunology, Wageningen University & Research, De Elst 1, 6700 HB Wageningen, the Netherlands
| | - Ruud Albers
- NutriLeads B.V., Bronland 12N, 6708 WH Wageningen, the Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Annick Mercenier
- NutriLeads B.V., Bronland 12N, 6708 WH Wageningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
2
|
Alu'datt MH, Rababah T, Al-U'datt DGF, Gammoh S, Alkandari S, Allafi A, Alrosan M, Kubow S, Al-Rashdan HK. Designing novel industrial and functional foods using the bioactive compounds from Nigella sativa L. (black cumin): Biochemical and biological prospects toward health implications. J Food Sci 2024; 89:1865-1893. [PMID: 38407314 DOI: 10.1111/1750-3841.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sharifa Alkandari
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Allafi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Haneen K Al-Rashdan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Huang Z, Hu M, Peng X, Wang R, Song X, Yin J. The protective effect of small black soybean (Vigna Mungo L.) polysaccharide on acetic acid-induced gastric ulcer in SD rats and its impact on gut microbiota and metabolites. FOOD BIOSCI 2023; 56:103187. [DOI: 10.1016/j.fbio.2023.103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Jarmakiewicz-Czaja S, Zielińska M, Helma K, Sokal A, Filip R. Effect of Nigella sativa on Selected Gastrointestinal Diseases. Curr Issues Mol Biol 2023; 45:3016-3034. [PMID: 37185722 PMCID: PMC10136991 DOI: 10.3390/cimb45040198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Nigella sativa L. (family Ranunculaceae), also known as black cumin, has been used in cuisine around the world for many years. Due to its health-promoting properties, it can be used not only in the food industry but also in medicine. The main bioactive compound contained in the black cumin extract is thymoquinone (TQ), which has a special therapeutic role. The results of research in recent years confirmed its hypoglycemic, hypolipemic, and hepatoprotective effects, among others. In addition, the results of laboratory tests also indicate its immunomodulatory and anticancer effects, although there is still a lack of data on the mechanisms of how they are involved in the fight against cancer. Including this plant material in one’s diet can be both an element of prophylaxis and therapy supporting the treatment process, including pharmacological treatment. However, attention should be paid to its potential interactions with drugs used in the treatment of chronic diseases.
Collapse
Affiliation(s)
| | - Magdalena Zielińska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
5
|
Zhao C, Sun C, Yuan J, Tsopmejio ISN, Li Y, Jiang Y, Song H. Hericium caput-medusae (Bull.:Fr.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115721. [PMID: 36115601 DOI: 10.1016/j.jep.2022.115721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional edible fungus in China and many other Asian countries, Hericium caput-medusae (Bull. Fr.) Pers. is widely used to improve the health of the gastrointestinal tract. For example, the drug "Weilexin Granules" is mainly composed of H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate. However, the mechanism of action remains to be elucidated. AIMS OF THE STUDY The purpose of this study was to assess whether polysaccharides from H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate (HFP) exerts a gut protective effect and a regulatory effect on the intestinal microbiota through the chloride channels and mucus secretion. MATERIALS AND METHODS HFP was extracted, characterized and different concentrations of HFP (100, 200, 400 mg/kg) were administered to mice for 14 days. The changes in gut microbiota were observed via 16S high throughput sequencing. Short-chain fatty acids (SCFAs) was detected by GC-MS. AB-PAS staining was used to observe the secretion of mucus. The chloride channel activity and protein expression were verified by short-circuit current measurement and Western blot. RESULTS HFP regulated the abundance of gut microbiota in mice, with increased levels of Ruminococcaceae and Lachnospiraceae and reduced proportions of Staphylococcus and Enterobacter. HFP enhanced mucus volume as well as increased intestinal fluid secretion by activating the chloride channels. In addition, short-circuit current experiments also proved that HFP activates Cl⁻ currents targeting cystic fibrosis transmembrane conductance regulator (CFTR) and Anoamin1 (ANO1). CONCLUSION In conclusion, HFP might increase intestinal fluid secretion by promoting Cl⁻ secretion, which in turn advanced mucus hydration as well as regulated gut microbiota to improve intestinal health. Therefore, H. caput-medusae (Bull. Fr.) Pers. could be potentially used in the regulation of intestinal secretion and microbes.
Collapse
Affiliation(s)
- Cong Zhao
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Chang Sun
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Jing Yuan
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | | | - Yuting Li
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Yu Jiang
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China.
| | - Hui Song
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, 130118, Changchun, China.
| |
Collapse
|
6
|
Wang X, Yin J, Hu J, Nie S, Xie M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship. FOOD FRONTIERS 2022; 3:560-591. [DOI: 10.1002/fft2.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
AbstractPolysaccharides from natural sources have the potentials in being used as substitutes of chemosynthetic drugs for gastroprotection because of its safety and efficacy. For giving a better understanding of gastroprotective polysaccharides, the research progress on preparation, structure, bioactivity, and their action mechanism is comprehensively summarized in this review. Moreover, the structure–activity relationship of gastroprotective polysaccharides is discussed. Accumulating evidence has indicated that natural polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited gastroprotective effects in vitro and in vivo. The action mechanism might be related to gastric secretions, promotion of gastric defensive factor releases, antioxidation, anti‐inflammatory, antiapoptosis, and facilitation of proliferation. Phenolic compounds, molecular weight and conformation, monosaccharide composition, backbone structure and side chain, and functional group have great influences on the gastroprotective activities of polysaccharides. This review gives comprehensive guidance to the exploitation and application of natural polysaccharides in food and other industries for gastroprotection.
Collapse
Affiliation(s)
- Xiao‐Yin Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
- School of Public Health and Health Management Gannan Medical University Ganzhou 341000 China
| | - Jun‐Yi Yin
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Jie‐Lun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Shao‐Ping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Ming‐Yong Xie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| |
Collapse
|
7
|
Xue Z, Zhao L, Wang D, Chen X, Liu D, Liu X, Feng S. Structural characterization of a polysaccharide from Radix Hedysari and its protective effects against H 2O 2-induced injury in human gastric epithelium cells. Int J Biol Macromol 2021; 189:503-515. [PMID: 34437918 DOI: 10.1016/j.ijbiomac.2021.08.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
The gastroprotective effects of polysaccharides had become a hot topic in the field of functional polysaccharides research. Three polysaccharides, namely HPS-80-1, HPS-80-2, and HPS-80-3 were purified by DEAE-52 column chromatography. The thermodynamic characteristics, scanning electron microscopy, and Congo red experimental results of the above polysaccharides were greatly distinctive. Then a mature GES-1 oxidative stress cell model induced by H2O2 was established to screen out subsequent research subjects. It turned out that HPS-80-1 had a desirable protective effect, which was confirmed by analyses of cell cycle & apoptosis, and oxidative stress-related factors in the cell culture media, and so on. Furthermore, Structural features demonstrated that the backbone of HPS-80-1 appeared to mainly consist of →4)-α-D-Glcp-(1→, →4,6)-β-L-Glcp-(1→, and →6)-α-D-Galp-(1→, with branches at O-1, O-4, and O-6 position consisting of →2,4)-β-D-Rhap-(1→, →1)-α-D-Galp-(4→, and →3,4)-α-D-Manp-(1→. It was speculated that the excellent gastric mucosal protective activity of HPS-80-1 may be due to the high amount of glucose in the backbone. In addition, it was also related to the anti-inflammatory activity and antioxidant bases such as (1 → 4)-Glcp and (1 → 6)-Galp in the structure of HPS-80-1. These findings provide a scientific basis for further utilization of polysaccharides from Radix Hedysari.
Collapse
Affiliation(s)
- Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou 730030, PR China
| | - Donghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xinyue Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Tannic acid is a gastroprotective that regulates inflammation and oxidative stress. Food Chem Toxicol 2021; 156:112482. [PMID: 34371106 DOI: 10.1016/j.fct.2021.112482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 01/27/2023]
Abstract
This study investigated the gastroprotective effect of TA against gastric ulcer in mice, and its possible mechanisms of action. The effects were investigated in a model of ethanol and ethanol/HCl induced ulcers, and physical barrier test. Quantification of oxidative stress mediators and inflammatory cytokines in gastric tissue was performed. The involvement of sulfhydryl compounds (-SH), nitric oxide (NO), prostaglandin E2 (PGE2), potassium channels (K +ATP) and opioid receptors in gastroprotection were investigated. Oral treatment with TA at a dose of 50 mg/kg resulted in 97.96% and 94.20% (reduction in gastric injury) of gastroprotection, against injuries caused by ethanol and ethanol/HCL, respectively, in addition to having a systematic effect. TA promotes increased levels of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH), as well as reduced levels of malondialdehyde (MDA) reaction to thiobarbituric acid and myeloperoxidase (MPO). In addition, there was reduction in levels of tumor necrosis factor alpha (TNF-α) and interleukins (IL) IL-1β and IL-6 and increased IL-10. The gastroprotective activity of TA involved K +ATP channels and the production of -SH, NO and PGE2, demonstrating multiple mechanisms of action. The results of the present study suggest that TA may be a gastroprotective agent counteracting oxidative and inflammatory stress.
Collapse
|
9
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. Black Cumin ( Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021; 13:1784. [PMID: 34073784 PMCID: PMC8225153 DOI: 10.3390/nu13061784] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Gyeonggi-do, Anseong 17546, Korea;
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh;
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahbubur Rahman
- Research and Development Center, KNOTUS Co., Ltd., Yeounsu-gu, Incheon 22014, Korea;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh;
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
11
|
Potential of probiotics for use as functional foods in patients with non-infectious gastric ulcer. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang R, Sun F, Ren C, Zhai L, Xiong R, Yang Y, Yang W, Yi R, Li C, Zhao X. Hunan insect tea polyphenols provide protection against gastric injury induced by HCl/ethanol through an antioxidant mechanism in mice. Food Funct 2020; 12:747-760. [PMID: 33367402 DOI: 10.1039/d0fo02677h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purposes of this study were to explore the preventive and treatment effects of Hunan insect tea polyphenols (HITPs) on gastric injury in mice induced by HCl/ethanol and to investigate their molecular mechanisms of action. Both HITPs and ranitidine inhibited the formation and further deterioration of gastric mucosal lesions, reduced the secretion of gastric juice, and raised gastric juice pH compared to the control. The HITPs-H treated group had lower serum levels of motilin, substance P, and endothelin than the control group, but they had higher serum levels of vasoactive intestinal peptide and somatostatin. Mice treated with HITPs had lower serum levels of cytokines interleukin (IL)-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ than the control group. The activities of superoxide dismutase (SOD), nitric oxide, and glutathione peroxidase (GSH-Px) were higher in the gastric tissues of HITP-treated mice, but the malondialdehyde content was lower. Quantitative PCR analysis indicated that the mRNA expression of occludin, epidermal growth factor (EGF), EGF receptor (EGFR), vascular EGF (VEGF), inhibitor kappaB-α, cuprozinc-superoxide dismutase, manganese-superoxide dismutase, GSH-Px, neuronal nitric oxide synthase, and endothelial NOS increased significantly in the gastric tissues of HITP-treated mice. However, the activated B cell, inducible NOS, cyclooxygenase-2, TNF-α, IL-1 beta, and IL-6 mRNA expression levels in the HITPs group were lower than those in the control group. The protective effect of a high concentration (200 mg per kg bw) of HITPs on gastric injury induced by HCl/ethanol was stronger than that of a low concentration (100 mg per kg bw) of HITPs. High-performance liquid chromatography (HPLC) revealed that the HITPs contained cryptochlorogenic acid, (-)-epicatechin gallate, and isochlorogenic acid C. Taken together, our findings indicate that the HITPs played a role in the prevention of gastric damage. The antioxidant effect of the HITPs contributed to their potential value in the prevention and treatment of gastric injury. HITPs have broad prospects as biologically active substances for food development.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Recent Progress on Chemical Constituents and Pharmacological Effects of the Genus Nigella. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6756835. [PMID: 32655665 PMCID: PMC7321528 DOI: 10.1155/2020/6756835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/04/2022]
Abstract
Seeds of the genus Nigella plants as folk medicine are often used to prevent and treat asthma, diarrhea, dyslipidemia, and other diseases around the world. Pharmacological researches showed that seed extract and seed oil have antibacterial, antioxidant, hypoglycemic, and hepatoprotective effects which attributed to their bioactive constituents such as alkaloids, saponins, flavones, and phenols. This paper has covered recent progresses on chemical and pharmacological researches on these plants, including their compounds and pharmacological effects. It was found that the chemical component researches were focused on the seed oil. Therefore, more attention should be paid to the profile of the whole constituents in the seeds.
Collapse
|
15
|
Guo M, Yu H, Meng M, Wang C. Research on the structural characteristics of a novel Chinese Iron Yam polysaccharide and its gastroprotection mechanism against ethanol-induced gastric mucosal lesion in a BALB/c mouse model. Food Funct 2020; 11:6054-6065. [PMID: 32558848 DOI: 10.1039/c9fo02642h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, a triple-helix Chinese Iron Yam polysaccharide (CIYP) with a molecular weight of 1.67 × 103 kDa was obtained. The CIYP was extracted with deionized water followed by deproteination, decoloration and purification using anion-exchange chromatography and size exclusion chromatography. Its structural characteristics and micromorphology were investigated by GC-MS, periodate oxidation and Smith degradation, FT-IR, NMR spectroscopy, SEM and AFM. The results showed that CIYP is a catenarian polysaccharide composed of rhamnose, arabinose, mannose, glucose, galactose and galacturonic acid in the ratio of 1 : 1.33 : 8.31 : 2.83 : 1.12 : 2.62. Meanwhile, the gastric mucosa protective effect of CIYP on an ethanol-injured BALB/c mouse model was investigated. It was found that the preventive CIYP-treatment groups (200 and 400 mg kg-1 d-1) showed gastric mucosa protective effects on the BALB/c mouse model. The lesion index and lesion inhibition rate of the CIYP and cimetidine treatment groups were significantly altered compared with the ethanol-induced gastric mucosal lesion (GML) group. Moreover, the administration of CIYP showed definite effects of increasing the NO, PGE2 and EGF levels, and SOD activities, and reducing the MDA levels of gastric mucosa tissues to prevent gastric oxidative stress. Histopathological analysis indicated that the microscopic morphology of gastric mucosal tissues was changed after being damaged by ethanol and the damage was significantly reduced after CIYP administration. Finally, the western blot and quantitative real-time polymerase chain reaction (qRT-PCR) results provided comprehensive evidence that the CIYP could repress gastric inflammation through the reduction of IL-1β, TNF-α and IL-6, prevent gastric oxidative stress through the inhibition of lipid peroxides, and favor cell survival via downregulating the TAK1, MKK3, P-p38 and Bax levels and upregulating the protein expression levels, compared with the CIM group.
Collapse
Affiliation(s)
- Mingzhu Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | |
Collapse
|
16
|
Sun X, Wei B, Peng Z, Chen X, Fu Q, Wang C, Zhen J, Sun J. A polysaccharide from the dried rhizome of Drynaria fortunei (Kunze) J. Sm. prevents ovariectomized (OVX)-induced osteoporosis in rats. J Cell Mol Med 2020; 24:3692-3700. [PMID: 32065504 PMCID: PMC7131925 DOI: 10.1111/jcmm.15072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, a homogenous polysaccharide (DFPW) was isolated and purified from the dried rhizome of Drynaria fortunei, and its protective effect against osteoporosis was investigated in ovariectomized (OVX) rats. Histological analysis indicated that oral administration of DFPW (100 and 400 mg/kg) for 12 weeks significantly improved trabecular bone mass, as demonstrated by the increase in trabecular area, trabecular thickness and its number in OVX rats. Furthermore, the decline of bone mineral density and bone mineral content including Ca, P and Mg induced by OVX was reversed by the DFPW administration. This function was achieved by the decreased levels of the bone turnover markers, such as serum ALP, urinary deoxypyridinoline (DPD), Ca and P excretions. Besides, DFPW improved biomechanical parameters (maximum load, energy, Young's, modulus and maximum stress) to strengthen the hardness and strength femoral diaphysis in OVX rats. These results strongly suggested that DFPW might be a hopeful alternative therapeutics to treat postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xin Sun
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiheng Peng
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaru Chen
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qinglong Fu
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaojun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinchang Zhen
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiecong Sun
- Department of Orthopaedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
17
|
Effect of precipitation solvent on some biological activities of polysaccharides from Pinus halepensis Mill. seeds. Int J Biol Macromol 2019; 141:663-670. [DOI: 10.1016/j.ijbiomac.2019.08.266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
|
18
|
Antioxidant and Antiulcerogenic Activity of the Dry Extract of Pods of Libidibia ferrea Mart. ex Tul. (Fabaceae). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1983137. [PMID: 31827669 PMCID: PMC6886323 DOI: 10.1155/2019/1983137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Abstract
Ethnomedicinal studies in the Amazon community and in the Northeast region of Brazil highlight the use of Libidibia ferrea fruits for the treatment of gastric problems. However, there are no data in the literature of this pharmacological activity. Thus, the aim of this paper is to provide a scientific basis for the use of the dry extract of L. ferrea pods (DELfp) for the treatment of peptic ulcers. Phytochemical characterization was performed by HPLC/MS. In vitro antioxidant activity was assessed using DPPH, ABTS, phosphomolybdenum, and superoxide radical scavenging activity. The gastroprotective activity, the ability to stimulate mucus production, the antisecretory activity, and the influence of -SH and NO compounds on the antiulcerogenic activity of DELfp were evaluated. The healing activity was determined by the acetic acid-induced chronic ulcer model. Anti-Helicobacter pylori activity was investigated. HPLC/MS results identified the presence of phenolic compounds, gallic acid and ellagic acid, in DELfp. The extract showed antioxidant activity in vitro. In ulcers induced by absolute ethanol and acidified ethanol, the ED50 values of DELfp were 113 and 185.7 mg/kg, respectively. DELfp (100, 200, and 400 mg/kg) inhibited indomethacin-induced lesions by 66.7, 69.6, and 65.8%, respectively. DELfp (200 mg/kg) reduced gastric secretion and H+ concentration in the gastric contents and showed to be independent of nitric oxide (NO) and dependent on sulfhydryl (-SH) compounds in the protection of the gastric mucosa. In the chronic ulcer model, DELfp reduced the area of the gastric lesion. DELfp also showed anti-H. pylori activity. In conclusion, DELfp showed antioxidant, gastroprotective, healing, and antiulcerogenic activities. The mechanism of these actions seems to be mediated by different pathways and involves the reduction of gastric secretion and H+ concentration, dependence on sulfhydryl compounds, and anti-H. pylori activity. All these actions support the medicinal use of this species in the management of peptic ulcers.
Collapse
|
19
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Pynam H, Dharmesh SM. A xylorhamnoarabinogalactan I from Bael (Aegle marmelos L.) modulates UV/DMBA induced skin cancer via galectin-3 & gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Chen H, Nie Q, Xie M, Yao H, Zhang K, Yin J, Nie S. Protective effects of β-glucan isolated from highland barley on ethanol-induced gastric damage in rats and its benefits to mice gut conditions. Food Res Int 2019; 122:157-166. [DOI: 10.1016/j.foodres.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/13/2022]
|
22
|
Islam MT, Khan MR, Mishra SK. An updated literature-based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00363-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Xue Z, Shi G, Fang Y, Liu X, Zhou X, Feng S, Zhao L. Protective effect of polysaccharides from Radix Hedysari on gastric ulcers induced by acetic acid in rats. Food Funct 2019; 10:3965-3976. [DOI: 10.1039/c9fo00433e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The potential anti-gastric ulcer effects of Hedysarum polysaccharides (HPS-50 and HPS-80) were explored in rats.
Collapse
Affiliation(s)
- Zhiyuan Xue
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Gengen Shi
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Yaoyao Fang
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xiaohua Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xianglin Zhou
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Shilan Feng
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
24
|
A modified pectic polysaccharide from turmeric (Curcuma longa) with antiulcer effects via anti–secretary, mucoprotective and IL–10 mediated anti–inflammatory mechanisms. Int J Biol Macromol 2018; 118:864-880. [PMID: 29924982 DOI: 10.1016/j.ijbiomac.2018.06.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
|
25
|
Chemical and rheological properties of polysaccharides from litchi pulp. Int J Biol Macromol 2018; 112:968-975. [DOI: 10.1016/j.ijbiomac.2018.02.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
|
26
|
Trigui I, Yaich H, Sila A, Cheikh-Rouhou S, Bougatef A, Blecker C, Attia H, Ayadi MA. Physicochemical properties of water-soluble polysaccharides from black cumin seeds. Int J Biol Macromol 2018; 117:937-946. [PMID: 29864536 DOI: 10.1016/j.ijbiomac.2018.05.202] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 12/01/2022]
Abstract
In the present work, water-soluble polysaccharides were isolated from black cumin seeds. Polysaccharides were characterized by their carbohydrate composition, molecular weight, thermal stability and by FTIR, NMR spectroscopy and X-ray diffraction. The surface, the functional and the antioxidant properties of black cumin water-soluble polysaccharides (BCWSP) were also investigated. BCWSP consisted mainly of galacturonic acid (30.20%), glucuronic acid (17.66%) and neutral sugar (22.99%). BCWSP was composed of high peak molecular weight. The FTIR spectrum obtained for BCWSP showed two most important absorptions, at 1659 and 1085 cm-1, which corresponded to COO- of uronic acids and pyranose form, respectively. NMR spectroscopy data suggested that the BCWSP is probably a rhamnogalacturonan backbone with galactan and arabinan side chains. X-ray pattern revealed the semi-crystalline behavior of BCWSP. WHC and OHC of BCWSP were relatively high and varied with temperatures. The polysaccharide zeta potential was greatly affected by pH. Results indicated that the decrease of surface tension has influenced foaming and emulsifying capacities. The DPPH radical scavenging activity of the BCWSP was 63.25% at 1 mg/mL. The BCWSP displayed moderate reductive, β carotene bleaching and chelating abilities. Overall, our results suggested that BCWSP could be used as alternative additives in food and non-food products.
Collapse
Affiliation(s)
- Ines Trigui
- Laboratoire de Valorisation, Analyses et Sécurité des Aliments, Université de Sfax, École Nationale d'Ingénieurs de Sfax, Route de Soukra, 3038 Sfax, Tunisia.
| | - Héla Yaich
- Laboratoire de Valorisation, Analyses et Sécurité des Aliments, Université de Sfax, École Nationale d'Ingénieurs de Sfax, Route de Soukra, 3038 Sfax, Tunisia
| | - Assaâd Sila
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, Route de Soukra, 3038 Sfax, Tunisia
| | - Salma Cheikh-Rouhou
- Laboratoire de Valorisation, Analyses et Sécurité des Aliments, Université de Sfax, École Nationale d'Ingénieurs de Sfax, Route de Soukra, 3038 Sfax, Tunisia
| | - Ali Bougatef
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, Route de Soukra, 3038 Sfax, Tunisia
| | - Christophe Blecker
- Unité de Science des Aliments et Formulation, Université de Liège, Gembloux Agro Bio-Tech, passage des Déportés 2, 5030 Gembloux, Belgium
| | - Hamadi Attia
- Laboratoire de Valorisation, Analyses et Sécurité des Aliments, Université de Sfax, École Nationale d'Ingénieurs de Sfax, Route de Soukra, 3038 Sfax, Tunisia
| | - M A Ayadi
- Laboratoire de Valorisation, Analyses et Sécurité des Aliments, Université de Sfax, École Nationale d'Ingénieurs de Sfax, Route de Soukra, 3038 Sfax, Tunisia
| |
Collapse
|
27
|
Gastroprotective activity of polysaccharide from Hericium erinaceus against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities. Carbohydr Polym 2018; 186:100-109. [PMID: 29455967 DOI: 10.1016/j.carbpol.2018.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 12/19/2022]
Abstract
The gastroprotective activity of Hericium erinaceus polysaccharide was investigated in rats. The antioxidant activities were also evaluated. Pre-treatment of polysaccharide could reduce ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer. The polysaccharide exhibited scavenging activities of 1, 1-diphenyl-2-picryl-hydrozyl and hydroxyl radicals, and ferrous ion-chelating ability. In the pylorus ligation-induced model, gastric secretions (volume of gastric juice, gastric acid, pepsin and mucus) of ulcer rats administrated with polysaccharide were regulated. Levels of tumor necrosis factor-α and interleukins-1β in serum, and myeloperoxidase activity of gastric tissue were reduced, while antioxidant status of gastric tissue was improved. Defensive factors (nitric oxide, prostaglandin E2, epidermal growth factor) in gastric tissue were increased. These results indicate that Hericium erinaceus polysaccharide possess gastroprotective activity, and the possible mechanisms are related to its regulations of gastric secretions, improvements of anti-inflammatory and antioxidant status, as well as increments of defensive factors releases.
Collapse
|
28
|
Zhao X, Sun P, Li G, Yi R, Qian Y, Park KY. Polyphenols in Kuding tea help prevent HCl/ethanol-induced gastric injury in mice. Food Funct 2018; 9:1713-1725. [DOI: 10.1039/c7fo01754e] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We conducted the present study to determine the gastric injury preventive effects of polyphenols in Kuding tea (KTPs) in Kunming (KM) mice through the inhibition of gastric-acid secretion and the protection of the gastric mucosa.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P.R. China
- Chongqing Engineering Research Center of Functional Food
| | - Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P.R. China
- Chongqing Engineering Research Center of Functional Food
| | - Guijie Li
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P.R. China
- Chongqing Engineering Research Center of Functional Food
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P.R. China
- Chongqing Engineering Research Center of Functional Food
| | - Yu Qian
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P.R. China
- Chongqing Engineering Research Center of Functional Food
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P.R. China
- Department of Food Science and Biotechnology
| |
Collapse
|
29
|
Liu Y, Zhang J, Meng Z. Purification, characterization and anti-tumor activities of polysaccharides extracted from wild Russula griseocarnosa. Int J Biol Macromol 2017; 109:1054-1060. [PMID: 29155159 DOI: 10.1016/j.ijbiomac.2017.11.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
The anti-tumor activity of a novel polysaccharide, PRG1-1, obtained from Russula griseocarnosa sporocarp was investigated in this paper. PRG1-1 has a molecular weight of 630kDa and was extracted and purified using DEAE-cellulose and gel filtration chromatography from crude polysaccharide extract of R. griseocarnosa sporocarp. PRG1-1 was composed of glucose, galactose, mannose, xylose and fructose, in a molar ratio of 66.5:29.2:3.17: 0.663:0.447, respectively. Purified PRG1-1 significantly reduced cell viability, increased the production of lactate dehydrogenase (LDH) and reactive oxygen species (ROS), and enhanced the apoptotic rate in HeLa and SiHa cells. Furthermore, after 24h of PRG1-1 exposure the expression levels of cleaved PARP and caspase-3 were increased and mitochondrial cytochrome c was induced to release to the cytosol. Collectively, our results suggested that the cytotoxicity effects of PRG1-1 on human cervical carcinoma are associated with the apoptotic pathway. These data indicate the promising potential of bioactive PRG1-1 as natural agent to inhibit tumor cell proliferation in the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, 130021, China; The Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, 130018, China
| | - Jinjin Zhang
- Department of Gynaecology II, First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|