1
|
Singh S, Goel T, Singh A, Chugh H, Chakraborty N, Roy I, Tiwari M, Chandra R. Synthesis and characterization of Fe 3O 4@SiO 2@PDA@Ag core-shell nanoparticles and biological application on human lung cancer cell line and antibacterial strains. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:46-58. [PMID: 38156875 DOI: 10.1080/21691401.2023.2295534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Novel magnetic and metallic nanoparticles garner much attention of researchers due to their biological, chemical and catalytic properties in many chemical reactions. In this study, we have successfully prepared a core-shell Fe3O4@SiO2@PDA nanocomposite wrapped with Ag using a simple synthesis method, characterised and tested on small cell lung cancer and antibacterial strains. Incorporating Ag in Fe3O4@SiO2@PDA provides promising advantages in biomedical applications. The magnetic Fe3O4 nanoparticles were coated with SiO2 to obtain negatively charged surface which is then coated with polydopamine (PDA). Then silver nanoparticles were assembled on Fe3O4@SiO2@PDA surface, which results in the formation core-shell nanocomposite. The synthesised nanocomposite were characterized using SEM-EDAX, dynamic light scattering, XRD, FT-IR and TEM. In this work, we report the anticancer activity of silver nanoparticles against H1299 lung cancer cell line using MTT assay. The cytotoxicity data revealed that the IC50 of Fe3O4@SiO2@PDA@Ag against H1299 lung cancer nanocomposites cells was 21.52 µg/mL. Furthermore, the biological data of nanocomposites against Gram-negative 'Pseudomonas aeruginosa' and Gram-positive 'Staphylococcus aureus' were carried out. The range of minimum inhibitory concentration was found to be 115 µg/mL where gentamicin was used as a standard drug. The synthesized AgNPs proves its supremacy as an efficient biomedical agent and AgNPs may act as potential beneficial molecule in lung cancer chemoprevention and antibacterial strains.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi, India
| | - Tanya Goel
- Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Aarushi Singh
- Department of Chemistry, University of Delhi, Delhi, India
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi, India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
3
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
4
|
Akram W, Pandey V, Sharma R, Joshi R, Mishra N, Garud N, Haider T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int J Biol Macromol 2024; 259:129131. [PMID: 38181920 DOI: 10.1016/j.ijbiomac.2023.129131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In recent years, inulin has gained much attention as a promising multifunctional natural biopolymer with numerous applications in drug delivery, prebiotics, and therapeutics. It reveals a multifaceted biopolymer with transformative implications by elucidating the intricate interplay between inulin and the host, microbiome, and therapeutic agents. Their flexible structure, exceptional targetability, biocompatibility, inherent ability to control release behavior, tunable degradation kinetics, and protective ability make them outstanding carriers in healthcare and biomedicine. USFDA has approved Inulin as a nutritional dietary supplement for infants. The possible applications of inulin in biomedicine research inspired by nature are presented. The therapeutic potential of inulin goes beyond its role in prebiotics and drug delivery. Recently, significant research efforts have been made towards inulin's anti-inflammatory, antioxidant, and immunomodulatory properties for their potential applications in treating various chronic diseases. Moreover, its ability to reduce inflammation and modulate immune responses opens new avenues for treating conditions such as autoimmune disorders and gastrointestinal ailments. This review will attempt to illustrate the inulin's numerous and interconnected roles, shedding light on its critical contributions to the advancement of healthcare and biomedicine and its recent advancement in therapeutics, and conclude by taking valuable insights into the prospects and opportunities of inulin.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Vikas Pandey
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Rajeev Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Ramakant Joshi
- Department of Pharmaceutics, ShriRam college of Pharmacy, Banmore 476444, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior 474011, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India.
| |
Collapse
|
5
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
6
|
Ayala-Fuentes JC, Soleimani M, Magaña JJ, Gonzalez-Meljem JM, Chavez-Santoscoy RA. Novel Hybrid Inulin-Soy Protein Nanoparticles Simultaneously Loaded with (-)-Epicatechin and Quercetin and Their In Vitro Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101615. [PMID: 37242034 DOI: 10.3390/nano13101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
(-)-Epicatechin and quercetin have attracted considerable attention for their potential therapeutic application in non-communicable chronic diseases. A novel hybrid inulin-soy protein nanoparticle formulation was simultaneously loaded with (-)-epicatechin and quercetin (NEQs) to improve the bioavailability of these flavonoids in the human body, and NEQs were synthesized by spray drying. After process optimization, the physicochemical and functional properties of NEQs were characterized including in vitro release, in vitro gastrointestinal digestion, and cell viability assays. Results showed that NEQs are an average size of 280.17 ± 13.42 nm and have a zeta potential of -18.267 ± 0.83 mV in the organic phase. Encapsulation efficiency of (-)-epicatechin and quercetin reached 97.04 ± 0.01 and 92.05 ± 1.95%, respectively. A 3.5% soy protein content conferred controlled release characteristics to the delivery system. Furthermore, NEQs presented inhibitory effects in Caco-2, but not in HepG-2 and HDFa cell lines. These results contribute to the design and fabrication of inulin-soy protein nanoparticles for improving the bioavailability of multiple bioactive compounds with beneficial properties.
Collapse
Affiliation(s)
- Jocelyn C Ayala-Fuentes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Maryam Soleimani
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Jonathan Javier Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Mexico City 14380, Mexico
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | | | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
7
|
Azehaf H, Benzine Y, Tagzirt M, Skiba M, Karrout Y. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov Today 2023; 28:103606. [PMID: 37146964 DOI: 10.1016/j.drudis.2023.103606] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Colon targeting is an ongoing challenge, particularly for the oral administration of biological drugs or local treatment of inflammatory bowel disease (IBD). In both cases, drugs are known to be sensitive to the harsh conditions of the upper gastrointestinal tract (GIT) and, thus, must be protected. Here, we provide an overview of recently developed colonic site-specific drug delivery systems based on microbiota sensitivity of natural polysaccharides. Polysaccharides act as a substrate for enzymes secreted by the microbiota located in the distal part of GIT. The dosage form is adapted to the pathophysiology of the patient and, thus, a combination of bacteria-sensitive and time-controlled release or pH-dependent systems can be used for delivery.
Collapse
Affiliation(s)
- Hajar Azehaf
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Youcef Benzine
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M Tagzirt
- University of Lille, Inserm, CHU Lille, U1011, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - M Skiba
- University of Rouen, Galenic Pharmaceutical Team, INSERM U1239, UFR of Health, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Youness Karrout
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
8
|
Wu Y, Jin W, Wang S, Li W, Tao Y, Wang J, Yang K, Zhang W, Gui L, Ge F. Preparation of an amphiphilic peptide (P13) with proton sponge effect and analysis of its antitumor activity. NANOTECHNOLOGY 2023; 34:245101. [PMID: 36878001 DOI: 10.1088/1361-6528/acc18b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
In order to prevent drugs from being captured and degraded by the acidic environment of organelles, such as lysosomes, after entering cells, this study designed and synthesized a novel carrier amphiphilic polypeptide (DGRHHHLLLAAAA), designated P13, for use as a tumor-targeting drug delivery vehicle. The P13 peptide was synthesized by the solid phase synthesis method, and its self-assembly behavior and drug-loading capacity in aqueous solution were studied and characterizedin vitro. Doxorubicin (DOX) was loaded by dialysis method, and P13 and DOX were mixed at a mass ratio of 6:1 to form regular rounded globules. The acid-base buffering capacity of P13 was investigated determined by acid-base titration. The results revealed that P13 had excellent acid-base buffering capacity, a critical micelle concentration value of about 0.000 21 g l-1, and the particle size of P13-Dox nanospheres was 167 nm. The drug encapsulation efficiency and drug loading capacity of micelles were 20.40 ± 1.21% and 21.25 ± 2.79%, respectively. At the concentration of 50μg ml-1of P13-DOX , the inhibition rate was 73.35%. The results of thein vivoantitumor activity assay in mice showed that P13-DOX also exhibited excellent inhibitory effect on tumor growth, compared with the tumor weight of 1.1 g in the control group, the tumor weight in the P13-DOX-treated group was only 0.26 g. Additionally, the results of hematoxylin and eosin staining of the organs showed that P13-DOX had no damaging effect on normal tissues. The novel amphiphilic peptide P13 with proton sponge effect designed and prepared in this study is expected to be a promising tumor-targeting drug carrier with excellent application potential.
Collapse
Affiliation(s)
- Yujia Wu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Weihao Jin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Shanyi Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 Jiangsu, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
9
|
Ren Y, Nie L, Luo C, Zhu S, Zhang X. Advancement in Therapeutic Intervention of Prebiotic-Based Nanoparticles for Colonic Diseases. Int J Nanomedicine 2022; 17:6639-6654. [PMID: 36582460 PMCID: PMC9793785 DOI: 10.2147/ijn.s390102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora has become a therapeutic target for the intervention of colonic diseases (CDs) with better understanding of the interplay between microbiota and CDs. Depending on unique properties and prominent ability of regulating the intestinal flora, prebiotics can not only achieve a colon-specific drug delivery but also maintain the intestinal homeostasis, thus playing a positive role in the intervention of CDs. Currently, different studies on prebiotic-based nanoparticles have been contrived for colonic drug delivery and have shown great potential in curing various CDs, such as colitis and colorectal cancer. Nevertheless, there is a lack of systematic survey on the use of prebiotic nanoparticles for the treatment of CDs. This review aims to generalize the state-of-the-art of prebiotic nanomedicines specific for CDs. The species and function of intestinal flora and various kinds of prebiotics available as well as their regulating effects on intestinal flora were expounded. A variety of prebiotic nanoparticles pertinent to colon-targeted drug delivery systems were illustrated with particular emphasis on their curative activities on CDs. The efficacy and safety of prebiotic-based colonic drug delivery systems (p-CDDs) were also analyzed. In conclusion, the synergy between prebiotic nanoparticles and their cargos may hold promise for the treatment and intervention of CDs.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Chunhua Luo
- Newborn Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Shiping Zhu, Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Correspondence: Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|
10
|
Yadav S, Singh R, Kumar P. Bioresponsive inulin‐azobenzene nanostructures for targeted drug delivery to colon. J Appl Polym Sci 2022. [DOI: 10.1002/app.52950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Santosh Yadav
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
| | - Reena Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
11
|
Jena H, Ahmadi Z, Kumar P, Dhawan G. Bioreducible polyethylenimine core-shell nanostructures as efficient and non-toxic gene and drug delivery vectors. Bioorg Med Chem 2022; 69:116886. [PMID: 35749840 DOI: 10.1016/j.bmc.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Low molecular weight branched polyethylenimine (LMW bPEIs 1.8 kDa) have received considerable attention for the fabrication of nucleic acid carriers due to their biocompatible and non-toxic nature. However, due to the inadequate nucleic acid complexation ability and transportation across the cell membrane, these show poor transfection efficacy, limiting their clinical applications. Therefore, to overcome these challenges, in this study, we have grafted bPEI 1.8 kDa with a disulfide bond containing hydrophobic moiety, 3-(2-pyridyldithio) propionic acid (PDPA), via amide linkages through EDC/NHS-mediated coupling to obtain N-[3-(2-pyridyldithio)] propionoyl polyethylenimine (PDPP) conjugates. The best formulation for nucleic acid transfection was evaluated after preparing a series of PDPP conjugates by varying the amount of PDPA. In an aqueous environment, these PDPP conjugates self-assembled to form spherical shaped core-shell PDPP nanostructures with size ranging from ∼188-307 nm and zeta-potential from ∼ +3 to +19 mV. The positively charged surface of the core-shell nanocomposites helps in the binding of plasmid DNA (pDNA), its transportation inside the cell, and protection against enzymes. Evaluation of PDPP/pDNA complexes on mammalian cells revealed that all these complexes showed significantly improved transfection efficacy without hampering cytocompatibility. Amongst all, the pDNA complex of PDPP-2 exhibited the best transfection efficiency (i.e. >6-fold) in comparison to pDNA complex of the native bPEI. The nanocomposites exhibited the redox responsive behavior advantageous for therapeutic delivery to the tumor cells. The core of the nanostructures facilitate the encapsulation of a hydrophobic model drug, ornidazole. In vitro drug release analysis showed a faster release rate in response to a reductant mimicking the cellular environment. Altogether, these nanostructures have great potential to co-deliver both drug and gene simultaneously in response to tumor cell reductive microenvironment in vitro and could be used as the next-generation delivery system.
Collapse
Affiliation(s)
- H Jena
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110019, India; CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Z Ahmadi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | - G Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110019, India; Delhi School of Skill Enhancement & Entrepreneuship Development, Institute of Eminence, University of Delhi, Delhi-110007, India.
| |
Collapse
|
12
|
Synthesis of Tetrapeptides Containing Dehydroalanine, Dehydrophenylalanine and Oxazole as Building Blocks for Construction of Foldamers and Bioinspired Catalysts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092611. [PMID: 35565962 PMCID: PMC9102237 DOI: 10.3390/molecules27092611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
The incorporation of dehydroamino acid or fragments of oxazole into peptide chain is accompanied by a distorted three-dimensional structure and additionally enables the introduction of non-typical side-chain substituents. Thus, such compounds could be building blocks for obtaining novel foldamers and/or artificial enzymes (artzymes). In this paper, effective synthetic procedures leading to such building blocks-tetrapeptides containing glycyldehydroalanine, glycyldehydrophenylalanine, and glycyloxazole subunits-are described. Peptides containing serine were used as substrates for their conversion into peptides containing dehydroalanine and aminomethyloxazole-4-carboxylic acid while considering possible requirements for the introduction of these fragments into long-chain peptides at the last steps of synthesis.
Collapse
|
13
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
14
|
Cui M, Zhang M, Liu K. Colon-targeted drug delivery of polysaccharide-based nanocarriers for synergistic treatment of inflammatory bowel disease: A review. Carbohydr Polym 2021; 272:118530. [PMID: 34420762 DOI: 10.1016/j.carbpol.2021.118530] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Drugs such as immunosuppressants and glucocorticoids used for the treatment of inflammatory bowel disease (IBD) have certain troubling side effects. Polysaccharide-based nanocarriers with high safety and bioavailability are often used in the construction of colon-targeted drug nanodelivery systems (DNSs). It can help the drug resist the harsh environment of gastrointestinal tract, improve stability and concentrate on the intestinal inflammation regions as much as possible, which effectively reduces drug side effects and enhances its bioavailability. Certain polysaccharides, as prebiotics, can not only endow DNSs with the ability to target the colon based on enzyme responsive properties, but also cooperate with drugs to alleviate IBD due to its good anti-inflammatory activity and intestinal microecological regulation. The changes in the gastrointestinal environment of patients with IBD, the colon-targeted drug delivery process of polysaccharide-based nanocarriers and its synergistic treatment mechanism for IBD were reviewed. Polysaccharides used in polysaccharide-based nanocarriers for IBD were summarized.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
15
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
16
|
Development of nanostructured systems using natural polymers to optimize the treatment of inflammatory bowel diseases: A prospective study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
|
18
|
Jervis PJ, Amorim C, Pereira T, Martins JA, Ferreira PMT. Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials. Int J Mol Sci 2021; 22:2528. [PMID: 33802425 PMCID: PMC7959283 DOI: 10.3390/ijms22052528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,β-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.
Collapse
Affiliation(s)
- Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.A.); (T.P.); (J.A.M.); (P.M.T.F.)
| | | | | | | | | |
Collapse
|
19
|
Usman M, Zhang C, Patil PJ, Mehmood A, Li X, Bilal M, Haider J, Ahmad S. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs - A review. Carbohydr Polym 2021; 252:117176. [PMID: 33183623 PMCID: PMC7536552 DOI: 10.1016/j.carbpol.2020.117176] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Inulin is a substance found in a wide variety of fruits, vegetables, and herbs. Inulin was modified by physical and chemical means to improve functionality. HMI has been used in the stability of emulsions and suspensions. SCFAs inulin esters have transformed the gut microbiota and improved the bioavailability of SCFAs. HMI based bioconjugates, hydrogel, and nanomicelles were used as a controlled release of drugs and vaccines.
Over the past few years, hydrophobically modified inulin (HMI) has gained considerable attention due to its multitudinous features. The targeted release of drugs remains a subject of research interest. Moreover, it is important to explore the properties of short-chain fatty acids (SCFAs) inulin esters because they are less studied. Additionally, HMI has been used to stabilize various dispersion formulations, which have been observed to be safe because inulin is generally recognized as safe (GRAS). However, the results regarding HMI-based dispersion products are dispersed throughout the literature. This comprehensive review is discussed the possible limitations regarding SCFAs inulin esters, real food dispersion formulations, and HMI drugs. The results revealed that SCFAs inulin esters can regulate the human gut microbiota and increase the biological half-life of SCFAs in the human body. This comprehensive review discusses the versatility of HMI as a promising excipient for the production of hydrophobic drugs.
Collapse
Affiliation(s)
- Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Prasanna Jagannath Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Muhammad Bilal
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Shabbir Ahmad
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan.
| |
Collapse
|
20
|
Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, Niu F, Zhai X, Wang L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym 2020; 246:116589. [PMID: 32747248 DOI: 10.1016/j.carbpol.2020.116589] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyu Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunwei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengju Niu
- Shandong Institute of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Zhai
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
21
|
Zhu X, Zhang X, Gao X, Meng X, Yi Y. Synthesis and Characterization of Inulin Butyrate Ester, and Evaluation of Its Antioxidant Activity and In Vitro Effect on SCFA Production. STARCH-STARKE 2020. [DOI: 10.1002/star.201900323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaozhen Zhu
- Yantai Institute of Coastal Zone Research Chinese Academy of Sciences Yantai 264003 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xia Zhang
- Yantai Institute of Coastal Zone Research Chinese Academy of Sciences Yantai 264003 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuelu Gao
- University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research Chinese Academy of Sciences Yantai 264003 China
| | - Xianyao Meng
- Yantai Institute of Coastal Zone Research Chinese Academy of Sciences Yantai 264003 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research Chinese Academy of Sciences Yantai 264003 China
- Center for Ocean Mega‐Science Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China
| |
Collapse
|
22
|
In Vitro Assessment of Core-Shell Micellar Nanostructures of Amphiphilic Cationic Polymer-Peptide Conjugates as Efficient Gene and Drug Carriers. J Pharm Sci 2020; 109:2847-2853. [PMID: 32473212 DOI: 10.1016/j.xphs.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022]
Abstract
Design and development of biocompatible, biodegradable and stable dual delivery systems for drug and gene is the need of the hour. Here, we have designed a strategy to develop carrier systems consisting of above mentioned properties by (a) incorporating an unnatural amino acid in the peptide backbone, and b) conjugating a low molecular weight cationic polymer (polyethylenimine, PEI) for incorporating cationic charge. Using this strategy, we have synthesized a small series of Boc-FΔF-AH-polyethylenimine conjugates by varying the concentration of Boc-FΔF-aminohexanoic acid, viz., PP-1, PP-2 and PP-3. These conjugates self-assembled in aqueous medium to form micelles in the size range of ~144-205 nm with zeta potential ~ +7.9-14.2 mV bearing core-shell type of conformation. Positive surface of the micelles facilitated the binding of plasmid DNA as well as transportation inside the cells. The hydrophobic core of the nanostructures helped in the encapsulation of the hydrophobic drug molecule, which was then got released in a controlled manner. DNA complexes of the conjugates were not only found non-toxic but also exhibited higher transfection efficacy than the native polymer and Lipofectamine. Altogether, these nanostructures are capable of delivering a drug and a gene simultaneously in vitro and could be used as next-generation delivery agents.
Collapse
|
23
|
Gao C, Liu L, Zhou Y, Bian Z, Wang S, Wang Y. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin Med 2019; 14:23. [PMID: 31236131 PMCID: PMC6580650 DOI: 10.1186/s13020-019-0245-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease that comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD involves the ileum, rectum, and colon, and common clinical manifestations of IBD are diarrhea, abdominal pain, and even bloody stools. Currently, non-steroidal anti-inflammatory drugs, glucocorticoids, and immunosuppressive agents are used for the treatment of IBD, while their clinical application is severely limited due to unwanted side effects. Chinese medicine (CM) is appealing more and more attention and investigation for the treatment of IBD owing to the potent anti-inflammation pharmacological efficacy and high acceptance by patients. In recent years, novel drug delivery systems are introduced apace to encapsulate CM and many CM-derived active constituents in order to improve solubility, stability and targeting ability. In this review, advanced drug delivery systems developed in the past and present to deliver CM for the treatment of IBD are summarized and future directions are discussed.
Collapse
Affiliation(s)
- Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| | - Lijuan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
- PU-UM Innovative Institute of Chinese Medical Sciences, Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
- Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| |
Collapse
|
24
|
Novel Inulin Derivatives Modified with Schiff Bases: Synthesis, Characterization, and Antifungal Activity. Polymers (Basel) 2019; 11:polym11060998. [PMID: 31167475 PMCID: PMC6631190 DOI: 10.3390/polym11060998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
In this paper, we report chemical modifications of inulin by seven kinds of aromatic Schiff bases, which are different from their substituent groups. The obtained inulin derivatives were confirmed by FTIR, 1H NMR, and 13C NMR. Then, we studied their antifungal activity against four kinds of plant pathogens involving Botrytis cinerea, Fusarium oxysporum f. sp. cucumerium Owen, Fusarium oxysporum f. sp. niveum, and Phomopsis asparagi by the mycelium growth rate method. The results revealed that all inulin derivatives were endowed with significant antifungal activity compared to inulin. Among them, 6-amino-(N-4-chlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (4CBSAIL) and 6-amino-(N-3,4-dichlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (3,4DCBSAIL), which were synthesized from p-chlorobenzaldehyde and 3,4-dichlorobenzaldehyde, could completely inhibit the growth of the test fungi at 1.0 mg/mL. The inhibitory indices of the inulin derivatives were related to the type, position, and number of substituent groups (halogens) on the Schiff bases. The results confirmed that it was feasible to chemically modify inulin with Schiff bases to confer high antifungal activity to inulin. The products described in this paper have great potential as alternatives to some harmful pesticides used for plant disease control.
Collapse
|
25
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
26
|
Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol 2019; 132:852-863. [PMID: 30926495 DOI: 10.1016/j.ijbiomac.2019.03.188] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Inulin (INU) is a flexible, fructan type polysaccharide carbohydrate, mainly obtained from the root of chicory. It is a water-soluble dietary fibre and has been recently approved by the Food and Drug Administration for improving the nutritional values of food products. INU is not digested or fermented in the initial portion of the human digestive system and directly reaches on the distal portion of the colon. Owing to this superior property, INU is specially applied to develop specific carrier systems for localized delivery of drugs related to colon diseases. Several studies proved that the fermented bi-products of INU help the growth and stimulating activity of colon bacteria e.g. Bifidobacterium and Lactobacilli. INU also has several inherent therapeutic effects like reduction of tumor risks, help in calcium ion absorption, anti-inflammatory, antioxidant properties etc. Apart from these, INU has been used for different pharmaceutical applications as a drug carrier, stabilizing agent, cryoprotectant, and an alternative to fats and sugars. Here, we review the applications of INU in different areas of biomedical science, look back into the nutritional effects of INU and outline various routes of administration of INU-based formulations.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Deep Pooja
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
27
|
Ge F, Qiao Q, Zhu L, Li W, Song P, Zhu L, Tao Y, Gui L. Preparation of a tumor-targeted drug-loading material, amphiphilic peptide P10, and analysis of its anti-tumor activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:3. [PMID: 30569205 DOI: 10.1007/s10856-018-6204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
A new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) was designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics were studied. P10 was synthesized by solid-state synthesis and doxorubicin (DOX) was loaded via dialysis. P10 and DOX were mixed with a mass ratio of 6:1 to form regular round spheres. The interconnection between groups was analyzed spectroscopically and the sphere morphology was studied with SEM and a zeta particle size analyzer. Fluorescence spectroscopy was used to analyze the ability of P10 to form micelles and the efficiency of micelle entrapment, and the drug-loading ratio and drug release characteristics were detected. Finally, the in vitro antitumor activity of P10 was studied with HeLa cells as a model. The results showed that P10's critical micelle concentration (CMC) value and its average grain diameter were approximately 0.045 mg/L and 500 nm. The micelle entrapment ratio and drug-loading ratio were 23.011 ± 2.88 and 10.125 ± 2.62%, respectively, and the in vitro drug-releasing properties of P10 were described by the Zero-order model and the Ritger-Peppas model. Compared with DOX, P10-DOX had a higher tumor cell inhibition ratio and a dose-effect relationship with concentration. When P10-DOX's concentration was 20 μg/mL, the inhibition ratio was 44.17%. The new amphiphilic peptide designed and prepared in this study could be a tumor-targeted drug-loading material with better prospects for application. In this paper, a new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) is designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics are studied, providing a theoretical basis and design ideas for further studies and the development of targeted drug-loading materials on tumor cells.
Collapse
Affiliation(s)
- Fei Ge
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Qianqian Qiao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longbao Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Wanzhen Li
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Ping Song
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longlong Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Yugui Tao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China.
| | - Lin Gui
- Department of Microbiology and immunology, Wannan Medical College, No. 22 Wenchang West Road, 241002, Wuhu, China.
| |
Collapse
|
28
|
Liao J, Zheng H, Fei Z, Lu B, Zheng H, Li D, Xiong X, Yi Y. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin. Int J Biol Macromol 2018; 113:737-747. [PMID: 29505869 DOI: 10.1016/j.ijbiomac.2018.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
In this study, intracellular pH-responsive nanoparticles (NPs) of hyaluronic acid-hydrazone linkage-doxorubicin (HA-hyd-DOX) were designed and prepared for acid-triggered release of doxorubicin through a hydrazone linkage. A series of amphiphilic polymeric prodrugs were obtained, which can be self-assembled in aqueous media, the formed NPs exhibited a spherical core-shell type and the uniform size was ranging from 167 to 220nm. Moreover, the HA-hyd-DOX NPs exhibited a good stability in vitro and the drug release profiles showed that the DOX release was obviously mediated by pH gradient. Additionally, the cell counting assay kit-8 (CCK-8) demonstrated that the drug delivery system in this study performed a lower cytotoxicity on normal cells (Mouse fibroblast cells, L929) and higher inhibition ratio on tumor cells (Human cervical cancer cells, HeLa) in response to drug release with the intracellular pH environment. Furthermore, confocal laser scanning microscopy (CLSM) images and flow cytometric profiles of HeLa cells showed an efficiently cellular uptake due to the receptor-mediated affinity of CD44 for HA with high specificity. These results suggest that this pH dependent drug delivery system based on HA will provide insights into the design of potential prodrugs for the cancer therapy.
Collapse
Affiliation(s)
- Jianhong Liao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haoran Zheng
- Key laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zengming Fei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiong Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ying Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
29
|
Goel R, Garg C, Gautam HK, Sharma AK, Kumar P, Gupta A. Fabrication of cationic nanostructures from short self-assembling amphiphilic mixed α/β-pentapeptide: Potential candidates for drug delivery, gene delivery, and antimicrobial applications. Int J Biol Macromol 2018; 111:880-893. [PMID: 29355630 DOI: 10.1016/j.ijbiomac.2018.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
The present article describes designing and fabrication of nanostructures from a mixed α/β-pentapeptide, Lys-βAla-βAla-Lys-βAla, which majorly contains non-natural β-alanine residues in the backbone with two α-lysine residues at 1- and 4-positions. The amphiphilic pentapeptide showed the ability to self-assemble into cationic nanovesicles in an aqueous solution. The average size of peptide nanostructures was found to be ~270 nm with a very high cationic charge of ~+40 mV. TEM micrographs revealed the average size of the same nanostructures ~80 nm bearing vesicular morphology. CD and FTIR spectroscopic studies on self-assembled pentapeptide hinted at random coil conformation which was also correlated with conformational search program using Hyper Chem 8.0. The pentapeptide nanostructures were then tested for encapsulation of hydrophobic model drug moieties, L-Dopa, and curcumin. Transfection efficiency of the generated cationic nanostructures was evaluated on HEK293 cells and compared the results with those obtained in the presence of chloroquine. The cytotoxicity assay performed using MTT depicted ~75-80% cell viability. The obtained nanostructures also gave positive results against both Gram-negative and Gram-positive bacterial strains. Altogether the results advocate the promising potential of the pentapeptide foldamer, H-Lys-βAla-βAla-Lys-βAla-OEt, for drug and gene delivery applications along with the antimicrobial activity.
Collapse
Affiliation(s)
- Rahul Goel
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India
| | - Charu Garg
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India; Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Hemant Kumar Gautam
- Microbial Technology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Alka Gupta
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India.
| |
Collapse
|
30
|
Yu J, Sun L, Zhou J, Gao L, Nan L, Zhao S, Peng T, Han L, Wang J, Lu W, Zhang L, Wang Y, Yan Z, Yu L. Self-Assembled Tumor-Penetrating Peptide-Modified Poly(l-γ-glutamylglutamine)–Paclitaxel Nanoparticles Based on Hydrophobic Interaction for the Treatment of Glioblastoma. Bioconjug Chem 2017; 28:2823-2831. [DOI: 10.1021/acs.bioconjchem.7b00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Sun
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jinge Zhou
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lipeng Gao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lijuan Nan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Shimin Zhao
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Ting Peng
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lin Han
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jing Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, P.R. China
| | - Lin Zhang
- Department
of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital of ZheJiang University, Shaoxing 312000, P.R. China
| | - Yiting Wang
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Zhiqiang Yan
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lei Yu
- Institute
of Biomedical Engineering and Technology, Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|