1
|
Naik TJ, Salgaonkar BB. Unlocking the potential of microbes: Concomitant production of polyhydroxyalkanoates and carotenoids. Int J Biol Macromol 2025; 303:140654. [PMID: 39909243 DOI: 10.1016/j.ijbiomac.2025.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The escalating environmental concerns and depletion of crude oil resources have catalyzed interest in biologically derived polymers, particularly biodegradable ones such as polyhydroxyalkanoates. However, the high production costs associated with polyhydroxyalkanoates, driven by raw material expenses, stringent production conditions and low yields, hinder their widespread adoption. A potential strategy to mitigate these costs involves the production of PHAs and other high-value bioproducts, such as carotenoids simultaneously in microbial systems, utilizing shared metabolic pathways. Carotenoids, known for their antioxidant properties and applications in the food, cosmetics and pharmaceutical industries, offer substantial market potential. This review presents a comprehensive overview of the current progress in polyhydroxyalkanoate and carotenoid co-production, explores the co-synthesis pathways, addresses the challenges involved and explores the future prospects of this integrated bioprocess. By diversifying the product portfolio and optimizing microbial production systems, the co-production strategy could pave the way for more sustainable and economically viable bioplastics.
Collapse
Affiliation(s)
- Tejas Jagannath Naik
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| |
Collapse
|
2
|
Song YT, Sitthikitpanya N, Usmanbaha N, Reungsang A, Chu CY. Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335. Biodegradation 2025; 36:14. [PMID: 39832017 DOI: 10.1007/s10532-025-10110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer. Utilizing Response Surface Methodology-Central Composite Design, we explored optimal conditions, revealing peak PHA production at a substrate concentration of 33.51 g COD/L and a pH of 6.87. The predicted optimal PHA concentration was at 3.05 g/L within the established model, closely matching the experimentally validated value of 3.02 g/L, with the overall usage rate of reducing sugars approximately 50-60%. This study underscores the importance of optimizing PHA production conditions and paving the way toward large-scale PHA production.
Collapse
Affiliation(s)
- Yu-Ting Song
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan
| | - Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chen-Yeon Chu
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan.
- Institute of Green Products, Feng Chia University, Taichung, 407102, Taiwan.
| |
Collapse
|
3
|
Naseem A, Rasul I, Ali Raza Z, Muneer F, ur Rehman A, Nadeem H. Bacterial production of polyhydroxyalkanoates (PHAs) using various waste carbon sources. PeerJ 2024; 12:e17936. [PMID: 39465164 PMCID: PMC11512797 DOI: 10.7717/peerj.17936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/26/2024] [Indexed: 10/29/2024] Open
Abstract
Synthetic plastics are in great demand in society due to their diversified properties, but they cause environmental pollution due to their non-biodegradable nature. Therefore, synthetic plastics are in need to be replaced with biodegradable plastics. Polyhydroxyalkanoates (PHAs), bacterial biopolymers are natural alternative to synthetic plastics. These are present inside the bacterial cytoplasm in granular form. Presently, the production cost of PHA is high due to expensive carbon substrates used in its biosynthesis. Therefore, this study focuses on the cost-effective production of PHA using waste carbon sources. Rice bran and sugarcane molasses were used as the carbon source for PHA production from Bacillus subtilis, Bacillus cereus, Alcaligenes sp. and Pseudomonas aeruginosa. PHA production from these bacterial strains was confirmed through Sudan Black-B screening. With rice bran, as carbon source, the highest PHA yield obtained was for P. aeruginosa, which yielded 93.7% and lowest was 35.5% for B. cereus. Surprisingly, B. cereus produced the highest cell dry mass (0.045 g/L) but its extracted PHA contents were lowest being only 0.02 g/L. Alcaligenes sp. with 0.031 g/L CDM yielded 87.1% PHA. B. subtilis had a CDM 0.029 g/L, 0.02 g/L PHA content and a yield of 69.10%. In the case of sugarcane molasses, P. aeruginosa produced 95% PHA yield, 0.02 g/L CDM, and 0.019 g/L PHA content. Alcaligenes sp. yielded 90.9% PHA, 0.011 g/L CDM, and 0.01 g/L PHA content. B. subtilis produced 91.6% PHA yield, 0.012 g/L CDM, 0.011 g/L PHA content; B. cereus produced 80% PHA yield, 0.015 g/L CDM, 0.012 g/L PHA content at 37 °C, pH 7. Higher concentrations of carbon sources increased the CDM and decreased the PHA yield. The maximum yield of PHA was obtained from sugarcane molasses. 24-48 h of incubation was optimal for B. subtilis and B. cereus, while for Alcaligenes and P. aeruginosa incubation time of 48-96 h was desirable for higher PHA yield. The extracted biopolymers were analyzed by Fourier transform infrared spectroscopy (FTIR), which identified the extracted biopolymers as poly-3-hydroxybutyrate P(3HB). The thermal properties of the extracted biopolymers, such as melting temperatures, were analyzed by differential scanning calorimetry (DSC), which confirmed the thermal stability.
Collapse
Affiliation(s)
- Aansa Naseem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Punjab, Pakistan
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, Punjab, Pakistan
| | - Faizan Muneer
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Punjab, Pakistan
- Biological Oceanography Lab, National Institute of Oceanography, Karachi, Sindh, Pakistan
| | - Asad ur Rehman
- Dr Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Punjab, Pakistan
| |
Collapse
|
4
|
Mandal M, Roy A, Mitra D, Sarkar A. Possibilities and prospects of bioplastics production from agri-waste using bacterial communities: Finding a silver-lining in waste management. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100274. [PMID: 39310303 PMCID: PMC11416519 DOI: 10.1016/j.crmicr.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
To meet the need of the growing global population, the modern agriculture faces tremendous challenges to produce more food as well as fiber, timber, biofuels, etc.; hence generates more waste. This continuous growth of agricultural waste (agri-waste) and its management strategies have drawn the attention worldwide because of its severe environmental impacts including air, soil and water pollution. Similarly, growing concerns about the sustainable future have fuelled the development of biopolymers, substances occurring in and/or produced by living organisms, as substitute for different synthetic and harmful polymers, especially petroleum-based plastics. Now, the components of agri-waste offer encouraging opportunities for the production of bioplastics through mechanical and microbial procedures. Even the microbial, both bacterial and fungal, system results in lower energy consumption and better eco-friendly alternatives. The review mainly concentrates on cataloging and understanding the bacterial 'input' in developing bioplastics from diverse agri-waste. Especially, the bacteria like Cupriavidus necator, Chromatium vinosum, and Pseudomonas aeruginosa produce short- and medium-chain length poly(3-hydroxyalkanote) (P3HB) polymers using starch (from corn and potato waste), and cellulose (from sugarcane bagasse, corn husks waste). Similarly, C. necator, and transformant Wautersia eutropha produce P3HB polymer using lipid-based components (such as palm oil waste). Important to note that, the synthesis of these polymers are interconnected with the bacterial general metabolic activities, for example Krebs cycle, glycolysis cycle, β-oxidation, calvin cycle, de novo fatty acid syntheses, etc. Altogether, the agri-waste is reasonably low-cost feed for the production of bioplastics using bacterial communities; and the whole process certainly provide an opportunity towards sustainable waste management strategy.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| |
Collapse
|
5
|
Hammami K, Souissi Y, Souii A, Gorrab A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Neifar M. Pseudomonas rhizophila S211 as a microbial cell factory for direct bioconversion of waste cooking oil into medium-chain-length polyhydroxyalkanoates. 3 Biotech 2024; 14:207. [PMID: 39184912 PMCID: PMC11341804 DOI: 10.1007/s13205-024-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via β-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Afwa Gorrab
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia “ISSAT”, University of Monastir, 5100 Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled With an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
6
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
8
|
González-Rojo S, Díez-Antolínez R. Production of polyhydroxyalkanoates as a feasible alternative for an integrated multiproduct lignocellulosic biorefinery. BIORESOURCE TECHNOLOGY 2023; 386:129493. [PMID: 37460022 DOI: 10.1016/j.biortech.2023.129493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are considered an alternative to fossil fuel-based plastics. However, in spite of their interesting properties and their multiple applications, PHAs have not taken off as an industrial development. The reason is mainly due to the associated high-production costs, which represent a significant constraint. In recent years, the interest in lignocellulosic biomass (LCB) derived from crop, forestry or municipal waste by-products has been growing, since LCB is plentiful, cheap, renewable and sustainable. On this matter, the valorization of LCB into PHAs represents a promising route within circular economy strategies. However, much effort still needs to be made to improve the bioconversion yields and to enhance PHA production efficiency. So, this review focuses on reviewing the different options for PHA synthesis from LCB, stressing the progress in biomass deconstruction, enzymatic hydrolysis and microbial conversion. In addition, some of the current biological strategies for improving the process of bioconversion are discussed.
Collapse
Affiliation(s)
- S González-Rojo
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, León 24358, Spain.
| | - R Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, León 24358, Spain
| |
Collapse
|
9
|
Huang Z, Liang B, Wang F, Ji Y, Gu P, Fan X, Li Q. Response surface optimization of poly-β-hydroxybutyrate synthesized by Bacillus cereus L17 using acetic acid as carbon source. Int J Biol Macromol 2023; 247:125628. [PMID: 37392926 DOI: 10.1016/j.ijbiomac.2023.125628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
A strain of Bacillus that can tolerate 10 g/L acetic acid and use the volatile fatty acids produced by the hydrolysis and acidification of activated sludge to produce polyhydroxyalkanoate was screened from the activated sludge of propylene oxide saponification wastewater. The strain was identified by 16S rRNA sequencing and phylogenetic tree analysis and was named Bacillus cereus L17. Various characterization methods showed that the polymer synthesized by strain L17 is poly-β-hydroxybutyrate, which has low crystallinity, good ductility and toughness, high thermal stability and a low polydispersity coefficient. It has wide thermoplastic material operating space as well as industrial and medicinal applications. The optimal fermentation conditions were determined by single factor optimization. Then, Plackett-Burman and Box-Behnken design experiments were carried out according to the single factor optimization results, and the response surface optimization was completed. The final results were: initial pH 6.7, temperature 25 °C, and loading volume 124 mL. The verification experiment showed that the yield of poly-β-hydroxybutyrate after optimization increased by 35.2 % compared to that before optimization.
Collapse
Affiliation(s)
- Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Boya Liang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
10
|
Trakunjae C, Boondaeng A, Apiwatanapiwat W, Janchai P, Neoh SZ, Sudesh K, Vaithanomsat P. Statistical optimization of P(3HB-co-3HHx) copolymers production by Cupriavidus necator PHB -4/pBBR_CnPro-phaC Rp and its properties characterization. Sci Rep 2023; 13:9005. [PMID: 37268758 DOI: 10.1038/s41598-023-36180-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] is a bacterial copolymer in the polyhydroxyalkanoates (PHAs) family, a next-generation bioplastic. Our research team recently engineered a newly P(3HB-co-3HHx)-producing bacterial strain, Cupriavidus necator PHB-4/pBBR_CnPro-phaCRp. This strain can produce P(3HB-co-2 mol% 3HHx) using crude palm kernel oil (CPKO) as a sole carbon substrate. However, the improvement of P(3HB-co-3HHx) copolymer production by this strain has not been studied so far. Thus, this study aims to enhance the production of P(3HB-co-3HHx) copolymers containing higher 3HHx monomer compositions using response surface methodology (RSM). Three significant factors for P(3HB-co-3HHx) copolymers production, i.e., CPKO concentration, sodium hexanoate concentration, and cultivation time, were studied in the flask scale. As a result, a maximum of 3.6 ± 0.4 g/L of P(3HB-co-3HHx) with 4 mol% 3HHx compositions was obtained using the RSM optimized condition. Likewise, the higher 3HHx monomer composition (5 mol%) was obtained when scaling up the fermentation in a 10L-stirrer bioreactor. Furthermore, the produced polymer's properties were similar to marketable P(3HB-co-3HHx), making this polymer suitable for a wide range of applications.
Collapse
Affiliation(s)
- Chanaporn Trakunjae
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Antika Boondaeng
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Waraporn Apiwatanapiwat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Phornphimon Janchai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Soon Zher Neoh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Penang, Malaysia
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Penang, Malaysia
| | - Pilanee Vaithanomsat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
11
|
Thu NTT, Hoang LH, Cuong PK, Viet-Linh N, Nga TTH, Kim DD, Leong YK, Nhi-Cong LT. Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in Vietnam. Sci Rep 2023; 13:3137. [PMID: 36823427 PMCID: PMC9950484 DOI: 10.1038/s41598-023-28220-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Following the rising concern on environmental issues caused by conventional fossil-based plastics and depleting crude oil resources, polyhydroxyalkanoates (PHAs) are of great interest by scientists and biodegradable polymer market due to their outstanding properties which include high biodegradability in various conditions and processing flexibility. Many polyhydroxyalkanoate-synthesizing microorganisms, including normal and halophilic bacteria, as well as algae, have been investigated for their performance in polyhydroxyalkanoate production. However, to the best of our knowledge, there is still limited studies on PHAs-producing marine yeast. In the present study, a halophilic yeast strain isolated from Spratly Island in Vietnam were investigated for its potential in polyhydroxyalkanoate biosynthesis by growing the yeast in Zobell marine agar medium (ZMA) containing Nile red dye. The strain was identified by 26S rDNA analysis as Pichia kudriavzevii TSLS24 and registered at Genbank database under code OL757724. The amount of polyhydroxyalkanoates synthesized was quantified by measuring the intracellular materials (predicted as poly(3-hydroxybutyrate) -PHB) by gravimetric method and subsequently confirmed by Fourier transform infrared (FTIR) spectroscopic and nuclear magnetic resonance (NMR) spectroscopic analyses. Under optimal growth conditions of 35 °C and pH 7 with supplementation of glucose and yeast extract at 20 and 10 gL-1, the isolated strain achieved poly(3-hydroxybutyrate) content and concentration of 43.4% and 1.8 gL-1 after 7 days of cultivation. The poly(3-hydroxybutyrate) produced demonstrated excellent biodegradability with degradation rate of 28% after 28 days of incubation in sea water.
Collapse
Affiliation(s)
- Nguyen Thi Tam Thu
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Le Huy Hoang
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Pham Kien Cuong
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Nguyen Viet-Linh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| | - Tran Thi Huyen Nga
- grid.267852.c0000 0004 0637 2083University of Science, Vietnam National University-Hanoi, Hanoi, 11400 Vietnam
| | - Dang Dinh Kim
- grid.267849.60000 0001 2105 6888Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Yoong Kit Leong
- grid.265231.10000 0004 0532 1428Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407224 Taiwan
| | - Le Thi Nhi-Cong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| |
Collapse
|
12
|
Hamdy SM, Danial AW, Gad El-Rab SMF, Shoreit AAM, Hesham AEL. Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiol 2022; 22:183. [PMID: 35869433 PMCID: PMC9306189 DOI: 10.1186/s12866-022-02593-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polyhydroxybutyrate (PHB) is a biopolymer formed by some microbes in response to excess carbon sources or essential nutrient depletion. PHBs are entirely biodegradable into CO2 and H2O under aerobic and anaerobic conditions. It has several applications in various fields such as medicine, pharmacy, agriculture, and food packaging due to its biocompatibility and nontoxicity nature.
Result
In the present study, PHB-producing bacterium was isolated from the Dirout channel at Assiut Governorate. This isolate was characterized phenotypically and genetically as Bacillus cereus SH-02 (OM992297). According to one-way ANOVA test, the maximum PHB content was observed after 72 h of incubation at 35 °C using glucose and peptone as carbon and nitrogen source. Response surface methodology (RSM) was used to study the interactive effects of glucose concentration, peptone concentration, and pH on PHB production. This result proved that all variables have a significant effect on PHB production either independently or in the interaction with each other. The optimized medium conditions with the constraint to maximize PHB content and concentration were 22.315 g/L glucose, and 15.625 g/L peptone at pH 7.048. The maximum PHB content and concentration were 3100.799 mg/L and 28.799% which was close to the actual value (3051 mg/l and 28.7%). The polymer was identified as PHB using FTIR, NMR, and mass spectrometry. FT-IR analysis showed a strong band at 1724 cm− 1 which attributed to the ester group’s carbonyl while NMR analysis has different peaks at 169.15, 67.6, 40.77, and 19.75 ppm that were corresponding to carbonyl, methine, methylene, and methyl resonance. Mass spectroscopy exhibited molecular weight for methyl 3- hydroxybutyric acid.
Conclusion
PHB–producing strain was identified as Bacillus cereus SH-02 (OM992297). Under optimum conditions from RSM analysis, the maximum PHB content and concentration of this strain can reach (3100.799 mg/L and 28.799%); respectively. FTIR, NMR, and Mass spectrometry were used to confirm the polymer as PHB. Our results demonstrated that optimization using RSM is one of the strategies used for reducing the production cost. RSM can determine the optimal factors to produce the polymer in a better way and in a larger quantity without consuming time.
Collapse
|
13
|
Zubkov IN, Bukin YS, Sorokoumov PN, Shishlyannikov SM. Preparation of polyhydroxyalkanoates using <i>Pseudomonas helmanticensis</i> in non-sterile media containing glycerol and sodium dodecyl sulfate. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2022. [DOI: 10.21285/2227-2925-2022-12-3-479-484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biosynthetically-produced Pseudomonas poly-3-hydroxyalkanoates (PHAs) are a promising substitute for conventional plastics. Costs involved with the production of PHAs can be reduced by optimizing power consumption, which can be achieved using nutrient media without preliminary steam sterilization. Cultivation of Pseudomonas bacteria resistant to sodium dodecyl sulfate (SDS) on SDS-containing non-sterile media yields a biomass consisting predominantly of a PHA producer. SDS plays the role of an antimicrobial agent that inhibits the growth of foreign microorganisms. In this work, an SDS-resistant culture of Pseudomonas helmanticensis and media containing glycerol and SDS were used. The concentrations of carbon (glycerol) and nitrogen sources were optimized using an experiment performed according to a central composite rotatable design. The concentration of substrate C and the C/N ratio between the glycerol and nitrogen content were varied. The dependence of the degree of substrate conversion in PHA on C and C/N was derived in the R programming environment. The constructed model adequately describes the experimental data at a significance level of 0.05 (adequacy variance of the regression equation 4.1×10-2; R2 =0.98). According to the constructed model, the conversion of glycerol to PHA equals 6.9±0.4%. Under optimized conditions (0.61 g/L nitrogen source; 8.4 g/L glycerol; 96 h), P. helmanticensis converts 7.0% of the substrate to PHA with an average monomer unit length. Using a 16S rRNA metagenomic assay, the proportion of foreign bacteria in P. helmanticensis cultures on non-sterile media containing 0.5 g/L SDS was shown to be 2%.
Collapse
Affiliation(s)
- I. N. Zubkov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS)
| | | | - P. N. Sorokoumov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS)
| | - S. M. Shishlyannikov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS)
| |
Collapse
|
14
|
Adnan M, Siddiqui AJ, Ashraf SA, Snoussi M, Badraoui R, Alreshidi M, Elasbali AM, Al-Soud WA, Alharethi SH, Sachidanandan M, Patel M. Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization. Polymers (Basel) 2022; 14:polym14193982. [PMID: 36235929 PMCID: PMC9571180 DOI: 10.3390/polym14193982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recently, there has been significant interest in bio-based degradable plastics owing to their potential as a green and sustainable alternative to synthetic plastics due to their biodegradable properties. Polyhydroxybutyrate (PHB) is a biodegradable polymer that is produced by bacteria and archaea as carbon and energy reserves. Due to its rapid degradation in natural environments, it can be considered a biodegradable plastic alternative. In the present study, a dye-based procedure was used to screen PHB-producing bacteria isolated from mangrove soil samples. Among the seven isolates, Agromyces indicus (A. indicus), identified by means of 16S rRNA analysis, accumulated the highest amount of PHB. The extracted polymer was characterized by a UV–Vis spectrophotometer, Fourier-transform infrared (FTIR) spectroscopy, and for the presence of the phbB gene, which confirmed the structure of the polymer as PHB. The maximum PHB production by A. indicus was achieved after 96 h of incubation at a pH of 8.0 and 35 °C in the presence of 2% NaCl, with glucose and peptone as the carbon and nitrogen sources, respectively. The strain was found to be capable of accumulating PHB when various cheap agricultural wastes, such as rice, barley, corn, and wheat bran, were used as the carbon sources. The response surface methodology (RSM) through the central composite design (CCD) for optimizing the PHB synthesis was found to be highly efficient at augmenting the polymer yields. As a result of the optimum conditions obtained from the RSM, this strain can increase the PHB content by approximately 1.4-fold when compared with an unoptimized medium, which would substantially lower the production cost. Therefore, the isolate A. indicus strain B2 may be regarded as one of the best candidates for the industrial production of PHB from agricultural wastes, and it can remove the environmental concerns associated with synthetic plastic.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran P.O. Box 1998, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
- Correspondence:
| |
Collapse
|
15
|
Gufrana T, Islam H, Khare S, Pandey A, P R. In-situ transesterification of single-cell oil for biodiesel production: a review. Prep Biochem Biotechnol 2022; 53:120-135. [PMID: 35499507 DOI: 10.1080/10826068.2022.2065684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, biodiesel synthesis and production demands have increased because of its high degradability, cleaner emissions, non-toxicity, and an alternative to petroleum diesel. In this context, Single Cell Oil (SCO) has been identified as an alternative feedstock, having the advantage of accumulating high intracellular lipid. SCO/microbial lipids are potential alternatives for sustainable biodiesel production. The traditional technique for biodiesel production from the oils obtained from microbes generally requires two steps: lipid extraction and transesterification. In-situ transesterification is an innovative and renewable process for biodiesel production. It rules out the need to isolate and refine the feedstock lipid, as it directly uses biomass in a single step, i.e., the pretreated biomass will be subjected to in-situ transesterification in the presence of catalysts. Hence, the production cost can be reduced by eliminating the lipid extraction procedure. The current review focuses on the basic features and advantages of in-situ transesterification of SCO for biodiesel production with the aid of short-chain alcohols along with different acid, base, and enzyme catalysts. In addition, a comparative study was carried out to highlight the merits of in-situ transesterification over conventional transesterification.
Collapse
Affiliation(s)
- Tasneem Gufrana
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hasibul Islam
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shivani Khare
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankita Pandey
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Radha P
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
16
|
Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. CHEMOSPHERE 2022; 294:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
17
|
Effect of GNPs on the Piezoresistive, Electrical and Mechanical Properties of PHA and PLA Films. FIBERS 2021. [DOI: 10.3390/fib9120086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sustainability has become the primary focus for researchers lately. Biopolymers such as polyhydroxyalkanoate (PHA) and polylactic acid (PLA) are biocompatible and biodegradable. Introducing piezoresistive response in the films produced by PLA and PHA by adding nanoparticles can be interesting. Hence, a study was performed to evaluate the mechanical, electrical and piezoresistive response of films made from PHA and PLA. The films were produced by solvent casting, and they were reinforced with graphene nanoplatelets (GNPs) at different nanoparticle concentrations (from 0.15 to 15 wt.%). Moreover, cellulose nanocrystals (CNC) as reinforcing elements and polyethylene glycol (PEG) as plasticizers were added. After the assessment of the nanoparticle distribution, the films were subjected to tests such as tensile, electrical conductivity and piezoresistive response. The dispersion was found to be good in PLA films and there exist some agglomerations in PHA films. The results suggested that the incorporation of GNPs enhanced the mechanical properties until 0.75 wt.% and they reduced thereon. The addition of 1% CNCs and 20% PEG in 15 wt.% GNPs’ tensile values deteriorated further. The PHA films showed better electrical conductivity compared to the PLA films for the same GNPs wt.%. Gauge factor (GF) values of 6.30 and 4.31 were obtained for PHA and PLA, respectively.
Collapse
|
18
|
Wang J, Liu S, Huang J, Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. BIORESOURCE TECHNOLOGY 2021; 342:126008. [PMID: 34592618 DOI: 10.1016/j.biortech.2021.126008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoates are biopolymers produced by microbial fermentation. They have excellent biodegradability and biocompatibility, which are regarded as promising substitutes for traditional plastics in various production and application fields. This review details the research progress in PHA production from lignocellulosic crop residues, lipid-type agricultural wastes, and other agro-industrial wastes such as molasses and whey. The effective use of agricultural waste can further reduce the cost of PHA production while avoiding competition between industrial production and food. The latest information on fermentation parameter optimization, fermentation strategies, kinetic studies, and circular approach has also been discussed. This review aims to analyze the crucial process of the PHA production from agricultural wastes to provide support and reference for further scale-up and industrial production.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy NY12180, United States
| | - Zixuan Qu
- School of Engineering, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
19
|
Samrot AV, Samanvitha SK, Shobana N, Renitta ER, Senthilkumar P, Kumar SS, Abirami S, Dhiva S, Bavanilatha M, Prakash P, Saigeetha S, Shree KS, Thirumurugan R. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers (Basel) 2021; 13:3302. [PMID: 34641118 PMCID: PMC8512352 DOI: 10.3390/polym13193302] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage granules found in bacteria that are essentially hydroxy fatty acid polyesters. PHA molecules appear in variety of structures, and amongst all types of PHAs, polyhydroxybutyrate (PHB) is used in versatile fields as it is a biodegradable, biocompatible, and ecologically safe thermoplastic. The unique physicochemical characteristics of these PHAs have made them applicable in nanotechnology, tissue engineering, and other biomedical applications. In this review, the optimization, extraction, and characterization of PHAs are described. Their production and application in nanotechnology are also portrayed in this review, and the precise and various production methods of PHA-based nanoparticles, such as emulsion solvent diffusion, nanoprecipitation, and dialysis are discussed. The characterization techniques such as UV-Vis, FTIR, SEM, Zeta Potential, and XRD are also elaborated.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Sree K. Samanvitha
- Department of Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur 613401, Tamil Nadu, India;
| | - N. Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Emilin R. Renitta
- Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Science and Technology, Karunya Nagar, Coimbatore, 641114, Tamil Nadu, India;
| | - P. Senthilkumar
- Department of Chemical Engineering, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Suresh S. Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, Tamil Nadu, India
| | - S. Abirami
- Department of Microbiology, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India;
| | - S. Dhiva
- Department of Microbiology, Sree Narayana College, Alathur, Palakkad 678682, Kerala, India;
| | - M. Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - P. Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - S. Saigeetha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Krithika S. Shree
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - R. Thirumurugan
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India;
| |
Collapse
|
20
|
Bhatia SK, Otari SV, Jeon JM, Gurav R, Choi YK, Bhatia RK, Pugazhendhi A, Kumar V, Rajesh Banu J, Yoon JJ, Choi KY, Yang YH. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. BIORESOURCE TECHNOLOGY 2021; 326:124733. [PMID: 33494006 DOI: 10.1016/j.biortech.2021.124733] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sachin V Otari
- Department of Biotechnology, Shivaji University, Vidyanagar Kolhapur 416004, Maharashtra, India
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
Ojha N, Das N. Green Formulation of Microbial Biopolyesteric Nanocarriers Toward In Vitro Drug Delivery and Its Characterization. Curr Microbiol 2021; 78:2061-2070. [PMID: 33787978 DOI: 10.1007/s00284-021-02464-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
In the present study, formulation and characterization of microbial biopolyesteric nanocarrier (MBPNc) was reported for in vitro controlled release of the drugs, viz., amoxicillin and levofloxacin. The synthesis of microbial biopolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticle was done by a triple emulsion method and loaded with amoxicillin and levofloxacin to improve its curative bioavailability. The synthesized MBPNc was found to be spherical in shape with a size range of 50-100 nm which was confirmed through Transmission Electron Microscopy (TEM) analysis. The surface topology and physicochemical characteristics were analyzed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and X-Ray Diffraction (XRD) spectroscopy. The cell viability % of MBPNc, amoxicillin-loaded MBPNc, and levofloxacin-loaded MBPNc on HEK293 cells at a concentration of 400 µg/ml were found to be 93.43 ± 0.66%, 92.29 ± 0.61%, and 91.53 ± 0.46%, respectively, which confirmed that MBPNc is biocompatible and can be used for biomedical applications without any cytotoxic effect. A significant decrease in the bacterial survival ratio (%) and increase in the zone of inhibition were observed on increasing the concentration of drug-loaded MBPNc against E. coli (ATCC®8739™) and S. aureus (ATCC®23,235™). The in vitro drug delivery study showed controlled release of amoxicillin (99.85 ± 0.15%) and levofloxacin (99.73 ± 0.24%) up to 22 h.
Collapse
Affiliation(s)
- Nupur Ojha
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Nilanjana Das
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
22
|
Ammar EM, El‐Sheshtawy HS, El‐Shatoury EH, Amer SK. Green synthesis of polyhydroxyalkanoate polymer by
Bacillus iocasae. POLYM INT 2021. [DOI: 10.1002/pi.6219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- EM Ammar
- Microbiology Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Huda S El‐Sheshtawy
- Process Design and Development Department Egyptian Petroleum Research Institute Cairo Egypt
| | - EH El‐Shatoury
- Microbiology Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Shaimaa K Amer
- Microbiology Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
23
|
Dat TD, Viet ND, My PLT, Linh NT, Thanh VH, Linh NTT, Ngan NTK, Linh NTT, Nam HM, Phong MT, Hieu NH. The Application of Ethanolic Ultrasonication to Ameliorate the Triterpenoid Content Extracted from Vietnamese
Ganoderma lucidum
with the Examination by Gas Chromatography. ChemistrySelect 2021. [DOI: 10.1002/slct.202004242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Duc Viet
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Phan Le Thao My
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Vuong Hoai Thanh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Kim Ngan
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Ngo Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Hoang Minh Nam
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trang Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
24
|
Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Sci Rep 2021; 11:1896. [PMID: 33479335 PMCID: PMC7820505 DOI: 10.1038/s41598-021-81386-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Poly-β-hydroxybutyrate (PHB) is a biodegradable polymer, synthesized as carbon and energy reserve by bacteria and archaea. To the best of our knowledge, this is the first report on PHB production by a rare actinomycete species, Rhodococcus pyridinivorans BSRT1-1. Response surface methodology (RSM) employing central composite design, was applied to enhance PHB production in a flask scale. A maximum yield of 3.6 ± 0.5 g/L in biomass and 43.1 ± 0.5 wt% of dry cell weight (DCW) of PHB were obtained when using RSM optimized medium, which was improved the production of biomass and PHB content by 2.5 and 2.3-fold, respectively. The optimized medium was applied to upscale PHB production in a 10 L stirred-tank bioreactor, maximum biomass of 5.2 ± 0.5 g/L, and PHB content of 46.8 ± 2 wt% DCW were achieved. Furthermore, the FTIR and 1H NMR results confirmed the polymer as PHB. DSC and TGA analysis results revealed the melting, glass transition, and thermal decomposition temperature of 171.8, 4.03, and 288 °C, respectively. In conclusion, RSM can be a promising technique to improve PHB production by a newly isolated strain of R. pyridinivorans BSRT1-1 and the properties of produced PHB possessed similar properties compared to commercial PHB.
Collapse
|
25
|
Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforcement. Molecules 2020; 25:molecules25204653. [PMID: 33065965 PMCID: PMC7587351 DOI: 10.3390/molecules25204653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Cellulose nanocrystals (CNC) have attracted the attention of many engineering fields and offered excellent mechanical and physical properties as polymer reinforcement. However, their application in composite products with high material demand is complex due to the current production costs. This work explores the use of cellulose microfibers (MF) obtained by a straightforward water dispersion of kraft paper to reinforce polyhydroxyalkanoate (PHA) and polylactic acid (PLA) films. To assess the influence of this type of filler material on the properties of biopolymers, films were cast and reinforced at different scales, with both CNC and MF separately, to compare their effectiveness. Regarding mechanical properties, CNC has a better reinforcing effect on the tensile strength of PLA samples, though up to 20 wt.% of MF may also lead to stronger PLA films. Moreover, PHA films reinforced with MF are 23% stronger than neat PHA samples. This gain in strength is accompanied by an increment of the stiffness of the material. Additionally, the addition of MF leads to an increase in the crystallinity of PHA that can be controlled by heat treatment followed by quenching. This change in the crystallinity of PHA affects the hygroscopicity of PHA samples, allowing the modification of the water barrier properties according to the required features. The addition of MF to both types of polymers also increases the surface roughness of the films, which may contribute to obtaining better interlaminar bonding in multi-layer composite applications. Due to the partial lignin content in MF from kraft paper, samples reinforced with MF present a UV blocking effect. Therefore, MF from kraft paper may be explored as a way to introduce high fiber concentrations (up to 20 wt.%) from other sources of recycled paper into biocomposite manufacturing with economic and technical benefits.
Collapse
|
26
|
Ojha N, Das N. Fabrication and characterization of biodegradable PHBV/SiO 2 nanocomposite for thermo-mechanical and antibacterial applications in food packaging. IET Nanobiotechnol 2020; 14:785-795. [PMID: 33399109 DOI: 10.1049/iet-nbt.2020.0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the present study, biogenic silica nanoparticles (bSNPs) were synthesized from groundnut shells, and thoroughly characterized to understand its phase, and microstructure properties. The biopolymer was synthesized from yeast Wickerhamomyces anomalus and identified as Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by GC-MS and NMR analysis. The bSNPs were reinforced to fabricate PHBV/SiO2 nanocomposites via solution casting technique. The fabricated PHBV/SiO2 nanocomposites revealed intercalated hybrid interaction between the bSNPs and PHBV matrix through XRD analysis. PHBV/SiO2 nanocomposites showed significant improvement in physical, chemical, thermo-mechanical and biodegradation properties as compared to the bare PHBV. The cell viability study revealed excellent biocompatibility against L929 mouse fibroblast cells. The antibacterial activity of PHBV/SiO2 nanocomposites was found to be progressively improved upon increasing bSNPs concentration against E. coli and S. aureus.
Collapse
Affiliation(s)
- Nupur Ojha
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Nilanjana Das
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
27
|
Ojha N, Das N. Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int J Biol Macromol 2020; 156:691-703. [PMID: 32315680 DOI: 10.1016/j.ijbiomac.2020.04.082] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 11/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) have been actively studied in academia and industry for their properties comparable to petroleum-derived plastics and high biocompatibility. However, the major limitation for commercialization is their high cost. Feedstock costs, especially carbon costs, account for the majority of the final cost. Finding cheap feedstocks for PHA production and associated process development are critical for a cost-effective PHA production. In this study, waste materials from different sources, particularly lignocellulosic biomass, were proposed as suitable feedstocks for PHA production. Strains involved in the conversion of these feedstocks into PHA were reviewed. Newly isolated strains were emphasized. Related process development, including the factors that affect PHA production, fermentation modes and downstream processing, was elaborated upon.
Collapse
|
29
|
Wei Y, Salih KAM, Lu S, Hamza MF, Fujita T, Vincent T, Guibal E. Amidoxime Functionalization of Algal/Polyethyleneimine Beads for the Sorption of Sr(II) from Aqueous Solutions. Molecules 2019; 24:E3893. [PMID: 31671819 PMCID: PMC6864727 DOI: 10.3390/molecules24213893] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023] Open
Abstract
There is a need for developing new sorbents that incorporate renewable resources for the treatment of metal-containing solutions. Algal-polyethyleneimine beads (APEI) (reinforced with alginate) are functionalized by grafting amidoxime groups (AO-APEI). Physicochemical characteristics of the new material are characterized using FTIR, XPS, TGA, SEM, SEM-EDX, and BET. AO-APEI beads are tested for the recovery of Sr(II) from synthetic solutions after pH optimization (≈ pH 6). Uptake kinetics is fast (equilibrium ≈ 60-90 min). Sorption isotherm (fitted by the Langmuir equation) shows remarkable sorption capacity (≈ 189 mg Sr g-1). Sr(II) is desorbed using 0.2 M HCl/0.5 M CaCl2 solution; sorbent recycling over five cycles shows high stability in terms of sorption/desorption performances. The presence of competitor cations is studied in relation to the pH; the selectivity for Sr(II) is correlated to the softness parameter. Finally, the recovery of Sr(II) is carried out in complex solutions (seawater samples): AO-APEI is remarkably selective over highly concentrated metal cations such as Na(I), K(I), Mg(II), and Ca(II), with weaker selectivity over B(I) and As(V). AO-APEI appears to be a promising material for selective recovery of strontium from complex solutions (including seawater).
Collapse
Affiliation(s)
- Yuezhou Wei
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Khalid A M Salih
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Siming Lu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Mohammed F Hamza
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
- C2MA, IMT-Mines Ales, Univ. Montpellier, F-30319 Alès cedex, France.
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Thierry Vincent
- C2MA, IMT-Mines Ales, Univ. Montpellier, F-30319 Alès cedex, France.
| | - Eric Guibal
- C2MA, IMT-Mines Ales, Univ. Montpellier, F-30319 Alès cedex, France.
| |
Collapse
|
30
|
Mazzucco MB, Ganga MA, Sangorrín MP. Production of a novel killer toxin from Saccharomyces eubayanus using agro-industrial waste and its application against wine spoilage yeasts. Antonie van Leeuwenhoek 2019; 112:965-973. [PMID: 30671692 DOI: 10.1007/s10482-019-01231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/12/2019] [Indexed: 11/28/2022]
Abstract
The juicing industry generates large amounts of waste that mostly lack commercial value and, in the absence of waste treatment policies, produces environmental pollution. Also, microbiological spoilage is a major concern in the wine industry and control tools are limited. Taking these challenges into account, agro-industrial waste coming from ultrafiltrated apple and pear juice were used to grow Saccharomyces eubayanus and to produce its killer toxin (SeKT). A Plackett-Burman screening was performed in order to optimize SeKT production in ultrafiltrated apple and pear juice. The optimized medium was characterized: 75% v/v WUJ, 0.5% m/v KH2PO4, 0.5% m/v MgSO4, 0.5% m/v (NH4)SO4, 0.5% g/L urea, 10% v/v glycerol and 0.1% v/v Triton X-100. SeKT produced in WUJ optimised medium was used to perform killer assays against wine spoilage yeasts and showed antagonistic activity against Brettanomyces bruxellensis, Pichia guilliermondii, Pichia manshurica and Pichia membranifaciens. Different inhibition percentages against spoilage species in a wine environment (49-69%) were detected and preserved for at least 48 h. For the first time, this work reports the ability of S. eubayanus to produce a killer toxin with potential use as a biocontrol tool in winemaking. Producing SeKT using agro-industrial waste as an alternative medium to cultivate S. eubayanus would have industrial, economic and ecological benefits.
Collapse
Affiliation(s)
- María Belén Mazzucco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas - Universidad Nacional del Comahue), Buenos Aires 1400, 8300, Neuquén, Argentina
| | - María Angélica Ganga
- Laboratorio de Biotecnología y Microbiología Aplicada, Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile
| | - Marcela Paula Sangorrín
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas - Universidad Nacional del Comahue), Buenos Aires 1400, 8300, Neuquén, Argentina.
| |
Collapse
|
31
|
Optimization of preparing a high yield and high cationic degree starch graft copolymer as environmentally friendly flocculant: Through response surface methodology. Int J Biol Macromol 2018; 118:1431-1437. [DOI: 10.1016/j.ijbiomac.2018.06.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023]
|
32
|
Selvi A, Aruliah R. A statistical approach of zinc remediation using acidophilic bacterium via an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology. CHEMOSPHERE 2018; 207:753-763. [PMID: 29859487 DOI: 10.1016/j.chemosphere.2018.05.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to isolate an indigenous acidophilic bacterium from tannery effluent contaminated sludge (TECS) sample and evaluate its potentiality towards the removal of zinc using an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology in zinc spiked soil at an initial concentration of 1000 mg/kg. The isolated acidophilic bacterium was characterized by biochemical and 16S rRNA molecular identification and was named as Serratia marcescens SMAR1 bearing an accession no. MG742410 in NCBI database. The effect of pH and inoculum dosage of SMAR 1 strain showed an optimal growth at pH 5.0 and 4% (v/v) respectively. Based on these experimental data, a statistical analysis was done using Design Expert computer software, v11 to study the interaction between the process parameters with respect to zinc reduction as an output response. Electrokinetic experiments were conducted in a customised EK cell under optimised process conditions, employing titanium electrodes. Experiments for zinc removal were demonstrated for bioleaching, electrokinetic (EK) and BEER technology. On comparing, the integrated process was found to evidence as an excellent metal remediation option with a maximum zinc removal of 93.08% in 72 h than plain bioleaching (72.86%) and EK (56.67%) in 96 h. This is the first report of zinc removal in a short period of time using Serratia marcescens. It is therefore concluded that the BEER approach can be regarded as an effective technology in cleaning up the metal contaminated environment with an easy recovery and reuse option within short period of time.
Collapse
Affiliation(s)
- Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| | - Rajasekar Aruliah
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| |
Collapse
|
33
|
Zafar SB, Asif T, Qader SAU, Aman A. Enhanced biosynthesis of dextransucrase: A multivariate approach to produce a glucosyltransferase for biocatalysis of sucrose into dextran. Int J Biol Macromol 2018; 115:776-785. [PMID: 29680501 DOI: 10.1016/j.ijbiomac.2018.04.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/27/2022]
Abstract
The current study reported the statistically designed experimental method to enhance the biocatalytic efficacy of dextransucrase from Weissella confusa. Various environmental and nutritional parameters were optimized using multiple responses under submerged fermentation environment. Statistical models were constructed to screen the influence of nine factors on the biocatalysis of dextransucrase. Among them, fermentation time, pH, sucrose and peptone exhibited significant probability (P < 0.05) and are considered as substantial constituents in accordance with Plackett-Burman design. Central composite design was further implemented to optimize the levels of selected variables for maximum enzyme yield. The predicted optimum conditions were pH of 7.5 under fermentation time of 8 h with 30.0 g l-1 sucrose and 1.0 g l-1 peptone. The overall enzyme yield increased from 11.4 DSU ml-1 to 52.75 DSU ml-1 with 4.62-fold upsurge after the implementation of the statistical models. Furthermore, SEM analysis showed the biocatalytic conversion of sucrose into highly porous dextran when utilizing dextransucrase. The biopolymer produced under the current optimized model could be utilized as an emulsifying, gelling, stabilizing and thickening agent in food industry.
Collapse
Affiliation(s)
- Syeda Bushra Zafar
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Tayyaba Asif
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|