1
|
Abdull Rahim U, Mustapa M, Mohamed Shakrin NNS, Nurdin A, Mohamad Taridi N, Yusof YAM, Mad Nordin MF, Che Roos NA. Current evidence and future direction on evaluating the anticancer effects of curcumin, gingerols, and shogaols in cervical cancer: A systematic review. PLoS One 2024; 19:e0314280. [PMID: 39576841 PMCID: PMC11584093 DOI: 10.1371/journal.pone.0314280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
Cervical cancer ranked fourth most common malignancy among women worldwide despite the establishment of vaccination programmes. This systematic review evaluates the anti-cancer properties of turmeric and ginger bioactive compounds, specifically curcumin, 6/10-gingerol, and 6/10-shogaol, and their combination in cervical cancer through in-vitro and in-vivo models. A comprehensive electronic search was performed using Science Direct, PubMed, and Scopus from inception until the second week of June 2024 for studies published in English. Only studies investigating the effects of curcumin, gingerol, shogaol, and/or their combination in human cervical cancer cell lines and/or rodent animal models implanted with cervical cancer xenografts were included. Altogether, 27 studies were included in this review. The evidence gathered indicated that curcumin, 6/10-gingerol and 6-shogaol exert their anticancer action through modulation of cell signalling pathways, including AMPK, WNT, PI3K/AKT, and NF-κB pathway, and mediators including Bax/Bcl2, TNF-α, EGFR, COX-2, caspases-3, -9, p53, and pRb. However, the synergistic effect of these bioactive compounds is not known due to lack of evidence. In conclusion, curcumin, 6/10-gingerols, and 6-shogaols hold promise as therapeutic agents for cervical cancer. Yet, further research is essential to understand their combined efficacy, emphasising the need for additional studies exploring the synergistic anticancer effects of these bioactive compounds. Additional factors to explore include long-term effects and susceptibility of chemoresistant cervical cancer cells towards curcumin, shogaols, and gingerols.
Collapse
Affiliation(s)
- Unwaniah Abdull Rahim
- Biochemistry Unit, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Marami Mustapa
- Anatomy Unit, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Nik Noorul Shakira Mohamed Shakrin
- Centre for Tropicalization (CENTROP), National Defence University of Malaysia, Kuala Lumpur, Malaysia
- Medical Microbiology and Immunology Unit, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Armania Nurdin
- Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nursiati Mohamad Taridi
- Biochemistry Unit, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Yasmin Anum Mohd Yusof
- Biochemistry Unit, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Mariam Firdhaus Mad Nordin
- Malaysia-Japan International Institute of Technology, UTM Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Nur Aishah Che Roos
- Pharmacology Unit, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Jia N, Zhang B, Huo Z, Qin J, Ji Q, Geng Y. Binding patterns of inhibitors to different pockets of kinesin Eg5. Arch Biochem Biophys 2024; 756:109998. [PMID: 38641233 DOI: 10.1016/j.abb.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The kinesin-5 family member, Eg5, plays very important role in the mitosis. As a mitotic protein, Eg5 is the target of various mitotic inhibitors. There are two targeting pockets in the motor domain of Eg5, which locates in the α2/L5/α3 region and the α4/α6 region respectively. We investigated the interactions between the different inhibitors and the two binding pockets of Eg5 by using all-atom molecular dynamics method. Combined the conformational analysis with the free-energy calculation, the binding patterns of inhibitors to the two binding pockets are shown. The α2/L5/α3 pocket can be divided into 4 regions. The structures and binding conformations of inhibitors in region 1 and 2 are highly conserved. The shape of α4/α6 pocket is alterable. The space of this pocket in ADP-binding state of Eg5 is larger than that in ADP·Pi-binding state due to the limitation of a hydrogen bond formed in the ADP·Pi-binding state. The results of this investigation provide the structural basis of the inhibitor-Eg5 interaction and offer a reference for the Eg5-targeted drug design.
Collapse
Affiliation(s)
- Ning Jia
- School of Science, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Bingbing Zhang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Ziling Huo
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Jingyu Qin
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Qing Ji
- School of Science, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Yizhao Geng
- School of Science, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
3
|
Zhao K, Li X, Feng Y, Wang J, Yao W. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside. Biomark Res 2024; 12:30. [PMID: 38433242 PMCID: PMC10910842 DOI: 10.1186/s40364-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
As a major component of the digestive system malignancies, tumors originating from the hepatic and biliary ducts seriously endanger public health. The kinesins (KIFs) are molecular motors that enable the microtubule-dependent intracellular trafficking necessary for mitosis and meiosis. Normally, the stability of KIFs is essential to maintain cell proliferation and genetic homeostasis. However, aberrant KIFs activity may destroy this dynamic stability, leading to uncontrolled cell division and tumor initiation. In this work, we have made an integral summarization of the specific roles of KIFs in hepatocellular and biliary duct carcinogenesis, referring to aberrant signal transduction and the potential for prognostic evaluation. Additionally, current clinical applications of KIFs-targeted inhibitors have also been discussed, including their efficacy advantages, relationship with drug sensitivity or resistance, the feasibility of combination chemotherapy or other targeted agents, as well as the corresponding clinical trials. In conclusion, the abnormally activated KIFs participate in the regulation of tumor progression via a diverse range of mechanisms and are closely associated with tumor prognosis. Meanwhile, KIFs-aimed inhibitors also carry out a promising tumor-targeted therapeutic strategy that deserves to be further investigated in hepatobiliary carcinoma (HBC).
Collapse
Affiliation(s)
- Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, 430064, Wuhan, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Sebastian J, Raghav D, Rathinasamy K. MD simulation-based screening approach identified tolvaptan as a potential inhibitor of Eg5. Mol Divers 2022:10.1007/s11030-022-10482-w. [DOI: 10.1007/s11030-022-10482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
|
5
|
Mahanty S, Rathinasamy K. The natural anthraquinone dye purpurin exerts antibacterial activity by perturbing the FtsZ assembly. Bioorg Med Chem 2021; 50:116463. [PMID: 34700238 DOI: 10.1016/j.bmc.2021.116463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
There is an increasing demand to discover novel antibacterial drugs to counter the ever-evolving genetic machinery of bacteria. The cell division protein FtsZ plays a vital role in bacterial cytokinesis and has been recognized as an effective antibacterial drug target. In this study, we have shown that the madder dye purpurin inhibited bacterial cytokinesis through perturbation of FtsZ assembly. Purpurin inhibited the growth of bacterial cells in a concentration-dependent manner and induced bacterial cell filamentation. Microscopy studies showed that it inhibited the localization of the Z ring at the midcell, and FtsZ was dispersed throughout the cells. Further, purpurin bound firmly to FtsZ with a dissociation constant of 11 µM and inhibited its assembly in vitro. It reduced the GTP hydrolysis by binding closer to the nucleotide-binding site of FtsZ. Purpurin inhibited the proliferation of mammalian cancer cells at higher concentrations without disturbing the polymerization of tubulin. The results collectively suggest that the natural anthraquinone purpurin can potently inhibit the growth of bacteria and serve as a lead molecule for the development of antibacterial agents.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
6
|
Li G, Fang S, Shao X, Li Y, Tong Q, Kong B, Chen L, Wang Y, Yang J, Yu H, Xie X, Zhang J. Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells. Biomolecules 2021; 11:1295. [PMID: 34572508 PMCID: PMC8470329 DOI: 10.3390/biom11091295] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) plays multiple roles in improving the aggressiveness of colorectal cancer (CRC) and enhancing resistance to 5-Fluorouracil (5-FU), making it an attractive therapeutic target. Curcumin (Cur) is a promising natural compound, exhibiting multiple antitumor effects and potentiating the effect of 5-FU. The aim of the present study is to explore the effect of Cur on attenuating NNMT-induced resistance to 5-FU in CRC. A panel of CRC cell lines with different NNMT expressions are used to characterize the effect of Cur. Herein, it is observed that Cur can depress the expression of NNMT and p-STAT3 in CRC cells. Furthermore, Cur can induce inhibition of cell proliferation, G2/M phase cell cycle arrest, and reactive oxygen species (ROS) generation, especially in high-NNMT-expression CRC cell lines. Cur can also re-sensitize high-NNMT-expression CRC cells to 5-FU both in vitro and in vivo. In summary, it is proposed that Cur can reverse NNMT-induced cell proliferation and 5-FU resistance through ROS generation and cell cycle arrest. Given that Cur has long been used, we suppose that Cur is a promising anticancer drug candidate with minimal side effects for human CRC therapy and can attenuate NNMT-induced resistance to 5-FU.
Collapse
Affiliation(s)
- Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Sining Fang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Xiao Shao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Yejia Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Qingchao Tong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Beibei Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Lifen Chen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Jun Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Haitao Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (G.L.); (S.F.); (X.S.); (Y.L.); (Q.T.); (B.K.); (L.C.); (Y.W.); (J.Y.); (H.Y.); (X.X.)
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
7
|
Vanadocene dichloride induces apoptosis in HeLa cells through depolymerization of microtubules and inhibition of Eg5. J Biol Inorg Chem 2021; 26:511-531. [PMID: 34057639 DOI: 10.1007/s00775-021-01872-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Vanadocene dichloride (VDC), a vanadium containing metallocene dihalide exhibits promising anticancer activity. However, its mechanism of action remains elusive as several diverse targets and pathways have been proposed for its anticancer activity. In this study, we observed that VDC inhibited the proliferation of mammalian cancer cells and induced apoptotic cell death by altering the mitochondrial membrane potential and the expression of bcl2 and bax. Probing further into its anticancer mechanism, we found that VDC caused depolymerization of interphase microtubules and blocked the cells at mitosis with considerable proportion of cells exhibiting monopolar spindles. The reassembly of cold depolymerized microtubules was strongly inhibited in the presence of 10 μM VDC. VDC perturbed the microtubule-kinetochore interactions during mitosis as indicated by the absence of cold stable spindle microtubules in the cells treated with 20 μM VDC. Using goat brain tubulin, we found that VDC inhibited the steady-state polymer mass of microtubules and bound to tubulin at a novel site with a Kd of 9.71 ± 0.19 μM and perturbed the secondary structure of tubulin dimer. In addition, VDC was also found to bind to the mitotic kinesin Eg5 and inhibit its basal as well as microtubule stimulated ATPase activity. The results suggest that disruption of microtubule assembly dynamics and inhibition of the ATPase activity of Eg5 could be a plausible mechanism for the antiproliferative and antimitotic activity of VDC.Graphic abstract.
Collapse
|
8
|
Zanetti TA, Biazi BI, Coatti GC, Baranoski A, Marques LA, Corveloni AC, Mantovani MS. Dimethoxycurcumin reduces proliferation and induces apoptosis in renal tumor cells more efficiently than demethoxycurcumin and curcumin. Chem Biol Interact 2021; 338:109410. [PMID: 33582110 DOI: 10.1016/j.cbi.2021.109410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Curcumin (Cur), is a pigment with antiproliferative activity but has some pharmacokinetic limitations, which led researchers to look for more effective structure analogs. This work investigated the effects of Cur and compared them with the two analogs, demethoxycurcumin (DeMC) and dimethoxycurcumin (DiMC), to elucidate their mechanisms of action. The cytotoxic, antiproliferative, and genotoxic effects these compounds were correlated based on gene expression analysis in the human renal adenocarcinoma cells (786-O). Cur decreased CYP2D6 expression and exhibited cytotoxic effects, such as inducing monopolar spindle formation and mitotic arrest mediated by the increase in CDKN1A (p21) mRNA. This dysregulation induced cell death through a caspase-independent pathway but was mediated by decrease in MTOR and BCL2 mRNA expression, suggesting that apoptosis occurred by autophagy. DeMC and DiMC had similar effects in that they induced monopolar spindle and mitotic arrest, were genotoxic, and activated GADD45A, an important molecule in repair mechanisms, and CDKN1A. However, the induction of apoptosis by DeMC was delayed and regulated by the decrease of antiapoptotic mRNA BCL.XL and subsequent activation of caspase 9 and caspase 3/7. DiMC treatment increased the expression of CYP1A2, CYP2C19, and CYP3A4 and exhibited higher cytotoxicity compared with other compounds. It induced apoptosis by increasing mRNA expression of BBC3, MYC, and CASP7 and activation of caspase 9 and caspase 3/7. These data revealed that different gene regulation processes are involved in cell death induced by Cur, DeMC, and DiMC. All three can be considered as promising chemotherapy candidates, with DiMC showing the greatest potency.
Collapse
Affiliation(s)
- Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil.
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | | | - Adrivanio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Lilian Areal Marques
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Amanda Cristina Corveloni
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Mario Sergio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| |
Collapse
|
9
|
Garcia-Saez I, Skoufias DA. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem Pharmacol 2020; 184:114364. [PMID: 33310050 DOI: 10.1016/j.bcp.2020.114364] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Eg5, the product of Kif11 gene, also known as kinesin spindle protein, is a motor protein involved in the proper establishment of a bipolar mitotic spindle. Eg5 is one of the 45 different kinesins coded in the human genome of the kinesin motor protein superfamily. Over the last three decades Eg5 has attracted great interest as a promising new mitotic target. The identification of monastrol as specific inhibitor of the ATPase activity of the motor domain of Eg5 inhibiting the Eg5 microtubule motility in vitro and in cellulo sparked an intense interest in academia and industry to pursue the identification of novel small molecules that target Eg5 in order to be used in cancer chemotherapy based on the anti-mitotic strategy. Several Eg5 inhibitors entered clinical trials. Currently the field is faced with the problem that most of the inhibitors tested exhibited only limited efficacy. However, one Eg5 inhibitor, Arry-520 (clinical name filanesib), has demonstrated clinical efficacy in patients with multiple myeloma and is scheduled to enter phase III clinical trials. At the same time, new trends in Eg5 inhibitor research are emerging, including an increased interest in novel inhibitor binding sites and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of Eg5-inhibitor complexes, traces the possible development of resistance to Eg5 inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this active field in drug discovery.
Collapse
Affiliation(s)
- Isabel Garcia-Saez
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dimitrios A Skoufias
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
10
|
Vlasiou MC, Pafiti KS. Spectroscopic evaluation of Zn (II) complexes with drug analogues: Interactions with BSA and the pH effect on the drug-Zn (II) system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118641. [PMID: 32622047 DOI: 10.1016/j.saa.2020.118641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Using UV-Vis, FT-IR, fluorescence spectroscopy and protein-ligand docking, the interactions between the zinc complexes with drug analogues and bovine serum albumin were investigated. In addition, considering the ubiquitous presence of zinc ions in the human system, we studied the interactions between this ion with hymecromone, dihydropyridine analogue, and acetamide, as well as the pH influence on these systems. The complexes were synthesized by interaction between the ligands and the Zn (II) ion in a 2:1 M ratio. Elemental analysis, FT-IR, and UV-Vis spectroscopy studies investigated the structure of the synthesized complexes. Fluorescence spectroscopy, UV-Vis, molecular docking and molecular dynamics were used to study the interactions of the Zn complexes with the BSA. The drug-Zn (II) system's pH effect was investigated using UV-Vis spectroscopy. After the complexation with the zinc, the drug molecules exhibited higher apparent binding affinity to BSA. BSA's fluorescence efficiency by the drug analogues was enhanced. In addition, molecular modelling was used to classify the residue of amino acids in the BSA playing key roles in this binding interaction. An increase in pH appears to contribute to alkaline hydrolysis of the Zn (II) molecules.
Collapse
Affiliation(s)
- Manolis C Vlasiou
- Department of Health and Life Sciences, University of Nicosia, Nicosia 2417, Cyprus.
| | - Kyriaki S Pafiti
- Department of Health and Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
11
|
Raghav D, Mahanty S, Rathinasamy K. Characterizing the interactions of the antipsychotic drug trifluoperazine with bovine serum albumin: Probing the drug-protein and drug-drug interactions using multi-spectroscopic approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117584. [PMID: 31698317 DOI: 10.1016/j.saa.2019.117584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Trifluoperazine is a potent antipsychotic drug used in the treatment of neurological disorders. The usage of trifluoperazine is often found to be associated with more adverse side effects as compared to other low-potency antipsychotic agents. Plasma proteins play an inevitable role in determining the pharmacokinetic properties of a drug. Hence, this study was conducted with an aim to characterize the interactions of trifluoperazine with bovine serum albumin and determine the influence of other small molecules on its interaction with serum albumin. Trifluoperazine bound to BSA at two independent sites with Kd values of 9.5 and 172.6 μM. Förster resonance energy transfer and computational docking analysis revealed that both the binding sites of trifluoperazine were located closer to TRP 213 in subdomain IIA of BSA. Evaluation of trifluoperazine-BSA interactions at three different temperatures indicated that there was a stable complex formation between the two molecules at the ground state and that the static quenching mechanism was predominant behind these interactions. Binding studies in the presence of pharmaceutically relevant drugs indicated that warfarin, paracetamol, and caffeine negatively influenced the binding of trifluoperazine on BSA. Lastly, Fourier transformed infrared spectroscopy and circular dichroism spectroscopy indicated that the binding of trifluoperazine induced a conformational change by reducing the α-helical content of BSA. The study implicates that the small molecules which prefer binding to the Sudlow site I of BSA might compete with trifluoperazine for its binding site thereby increasing the concentration of free trifluoperazine in the plasma which could lead to adverse side effects in patients.
Collapse
Affiliation(s)
- Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
12
|
Ems-McClung SC, Walczak CE. In Vitro FRET- and Fluorescence-Based Assays to Study Protein Conformation and Protein-Protein Interactions in Mitosis. Methods Mol Biol 2020; 2101:93-122. [PMID: 31879900 PMCID: PMC7189611 DOI: 10.1007/978-1-0716-0219-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proper cell division and the equal segregation of genetic material are essential for life. Cell division is mediated by the mitotic spindle, which is composed of microtubules (MTs) and MT-associated proteins that help align and segregate the chromosomes. The localization and characterization of many spindle proteins have been greatly aided by using GFP-tagged proteins in vivo, but these tools typically do not allow for understanding how their activity is regulated biochemically. With the recent explosion of the pallet of GFP-derived fluorescent proteins, fluorescence-based biosensors are becoming useful tools for the quantitative analysis of protein activity and protein-protein interactions. Here, we describe solution-based Förster resonance energy transfer (FRET) and fluorescence assays that can be used to quantify protein-protein interactions and to characterize protein conformations of MT-associated proteins involved in mitosis.
Collapse
Affiliation(s)
| | - Claire E Walczak
- Indiana University School of Medicine-Bloomington, Medical Sciences, Bloomington, IN, USA.
| |
Collapse
|
13
|
Zanetti TA, Biazi BI, Coatti GC, Baranoski A, Marques LA, Corveloni AC, Mantovani MS. Mitotic spindle defects and DNA damage induced by dimethoxycurcumin lead to an intrinsic apoptosis pathway in HepG2/C3A cells. Toxicol In Vitro 2019; 61:104643. [DOI: 10.1016/j.tiv.2019.104643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023]
|
14
|
Bioinspired oral insulin delivery system using yeast microcapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109753. [DOI: 10.1016/j.msec.2019.109753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
|
15
|
Sebastian J, Rathinasamy K. Benserazide Perturbs Kif15‐kinesin Binding Protein Interaction with Prolonged Metaphase and Defects in Chromosomal Congression: A Study Based on
in silico
Modeling and Cell Culture. Mol Inform 2019; 39:e1900035. [DOI: 10.1002/minf.201900035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/12/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Jomon Sebastian
- School of BiotechnologyNational Institute of Technology Calicut Calicut-673601 India
| | - Krishnan Rathinasamy
- School of BiotechnologyNational Institute of Technology Calicut Calicut-673601 India
| |
Collapse
|
16
|
Hudson EA, de Paula HMC, da Silva RM, Pires ACDS, da Silva LHM. Curcumin-micellar casein multisite interactions elucidated by surface plasmon resonance. Int J Biol Macromol 2019; 133:860-866. [DOI: 10.1016/j.ijbiomac.2019.04.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
|
17
|
Raghav D, Mahanty S, Rathinasamy K. Biochemical and toxicological investigation of karanjin, a bio-pesticide isolated from Pongamia seed oil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:108-121. [PMID: 31153458 DOI: 10.1016/j.pestbp.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/06/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Karanjin, a furanoflavonol from Pongamia pinnata L is used in agricultural practices for its pesticidal, insecticidal and acaricidal activities. It is commercially available as a bio-pesticide targeting a wide variety of pests. The present study was intended to evaluate the biochemical interactions of karanjin with bovine serum albumin (BSA) and study its toxicological effects on mammalian and bacterial cell lines. Karanjin bound to BSA at a single site with a dissociation constant of 19.7 μM. Evaluation of BSA-karanjin interactions at three different temperatures indicated the involvement of static mode of quenching. Binding experiments in the presence of warfarin and computational docking analysis indicated that karanjin bound closer to the warfarin binding site located in the Subdomain IIA of BSA. Using Förster resonance energy transfer analysis the distance between TRP 213 of BSA and karanjin was found to be 20 Å. Collective results from synchronous fluorescence spectra analysis, differential scanning calorimetry, and circular dichroism analysis indicated that binding of karanjin induced conformational changes in the secondary structure of BSA. Karanjin exhibited low toxicity against human cervical cancer cells and normal mouse fibroblast L929 cells and modestly inhibited the growth of B. subtilis and E. coli cells. The data presented in this study provides insights for understanding the binding interactions of karanjin with BSA and its possible toxicological effects on mammalian cell lines and bacteria.
Collapse
Affiliation(s)
- Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
18
|
Ashraf SM, Sebastian J, Rathinasamy K. Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Prolif 2018; 52:e12558. [PMID: 30525278 PMCID: PMC6496756 DOI: 10.1111/cpr.12558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/19/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives The aim of this study was to elucidate the antimitotic mechanism of zerumbone and to investigate its effect on the HeLa cells in combination with other mitotic blockers. Materials and methods HeLa cells and fluorescence microscopy were used to analyse the effect of zerumbone on cancer cell lines. Cellular internalization of zerumbone was investigated using FITC‐labelled zerumbone. The interaction of zerumbone with tubulin was characterized using fluorescence spectroscopy. The Chou and Talalay equation was used to calculate the combination index. Results Zerumbone selectively inhibited the proliferation of HeLa cells with an IC50 of 14.2 ± 0.5 μmol/L through enhanced cellular uptake compared to the normal cell line L929. It induced a strong mitotic block with cells exhibiting bipolar spindles at the IC50 and monopolar spindles at 30 μmol/L. Docking analysis indicated that tubulin is the principal target of zerumbone. In vitro studies indicated that it bound to goat brain tubulin with a Kd of 4 μmol/L and disrupted the assembly of tubulin into microtubules. Zerumbone and colchicine had partially overlapping binding site on tubulin. Zerumbone synergistically enhanced the anti‐proliferative activity of vinblastine and paclitaxel through augmented mitotic block. Conclusion Our data suggest that disruption of microtubule assembly dynamics is one of the mechanisms of the anti‐cancer activity of zerumbone and it can be used in combination therapy targeting cell division.
Collapse
Affiliation(s)
- Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Jomon Sebastian
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|