1
|
Jia Y, Yang Z, Xu L, Khalifa I, Hu L, Nie Y, Li B, Liu B, Yang W. Tailoring ternary complexes of lactoferrin, EGCG, and α-lactalbumin by assembly sequence strategies: Structural characterization, assembly mechanism, and emulsification elucidation. Food Chem 2025; 465:142047. [PMID: 39579400 DOI: 10.1016/j.foodchem.2024.142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Three distinct ternary complexes (TC-M1, TC-M2, and TC-M3) based on lactoferrin (LF), (-)-epigallocatechin-3-gallate (EGCG), and α-lactalbumin (ALA) were prepared by varying the assembly sequence and EGCG concentrations (ranging from 0 to 2.0 mM). Structural characterization was performed using various spectroscopic techniques, while the assembly mechanisms were investigated through ITC and molecular docking. These ternary complexes were further evaluated as stabilizers in Pickering emulsions. Nephelometry and DLS analysis showed that TC-M1 exhibited the highest turbidity and largest particle size, followed by TC-M2 and TC-M3. FT-IR and fluorescence spectroscopy revealed strong binding between EGCG and both ALA and LF, enhancing the hydrophilicity and extending structure of proteins. ITC and molecular docking studies indicated spontaneous interactions primarily driven by hydrogen bonding and hydrophobic forces, with LF (Ka1 = 1.9 × 105 M-1) and ALA (Ka1 = 3.6 × 104 M-1) binding approximately 3.3 and 2.9 EGCG molecules, respectively. Pickering emulsions formed by these complexes demonstrated superior emulsification properties, with TC-M1 showing the smallest CI (10.09 % ± 0.19 %), particle size (1 to 2 μm), and higher MVI (1.2) and EI (2.5) at 2.0 mM EGCG, outperforming TC-M2 and TC-M3 in stability. Overall, the assembly sequence of LF, ALA, and EGCG, along with EGCG concentration, lays the foundation for designing protein-polyphenol-protein ternary complexes, offering enhanced stability and functionality for diverse EGCG delivery applications.
Collapse
Affiliation(s)
- Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ziying Yang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Linshuang Xu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Yuanyang Nie
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Bo Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Wei Yang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China..
| |
Collapse
|
2
|
Mi S, Hu X, Yuan S, Yu H, Guo Y, Cheng Y, Yao W. Unveiling the Correlation between Protein, Protein Corona, and Target Signal Loss in SERS Detection. Anal Chem 2024; 96:19768-19777. [PMID: 39591559 DOI: 10.1021/acs.analchem.4c05084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
The application of surface-enhanced Raman scattering (SERS) technology is hindered by the protein corona in a protein-rich complex matrix, which is a hot and important issue that needs consideration. However, the impact of the protein corona on SERS detection has not been fully studied. Herein, we selected three proteins, α-lactalbumin (α-La), β-lactoglobulin (β-Lg), and bovine serum albumin (BSA), as models for forming a protein corona, and melamine was employed as the target in SERS detection. The results indicate that three proteins form a protein corona on gold nanoparticles (AuNPs), leading to a significant loss of melamine signals. With increasing protein concentration, the degree of loss increases. The protein corona significantly inhibits target-induced nanoparticle aggregation, increases the distance between neighboring nanoparticles, and reduces the formation of "hot-spot" regions. Moreover, the adsorption capacity of AuNPs for melamine decreases, reducing the number of molecules that can achieve direct chemical enhancement. The Raman signal loss caused by different types of proteins, varies, even at the same molecule number, which is related to the deformability of proteins. This deformability determines the density of the protein corona formed on the surface of the AuNPs. Our results advance the fundamental understanding of the relationship between proteins, protein corona, and target signal loss in SERS detection, offering valuable insights for establishing models to predict Raman signal loss in protein-rich samples.
Collapse
Affiliation(s)
- Shuna Mi
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122 Wuxi Jiangsu Province, China
| | - Xinyuan Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122 Wuxi Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122 Wuxi Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122 Wuxi Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122 Wuxi Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122 Wuxi Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122 Wuxi Jiangsu Province, China
| |
Collapse
|
3
|
Mi S, Du Y, Gao F, Yuan S, Yu H, Guo Y, Cheng Y, Li G, Yao W. Probing the effect of protein corona on SERS signals: insights from melamine detection in milk matrix. Food Chem 2024; 459:140416. [PMID: 39024877 DOI: 10.1016/j.foodchem.2024.140416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Matrix effects limit the application of surface-enhanced Raman scattering (SERS) technology in the field of food safety. This study elucidated it from the perspective of protein corona by employing a model system for melamine SERS detection in milk. Compared with the melamine standard solution, higher detection limits (1 mg/L and 10 mg/L) are observed in milk matrix. The melamine signal exhibits an 80% reduction in whey protein solution, suggesting that protein has a significant impact on SERS signals. The changes in particle size, zeta potential and UV-vis spectra indicate the AuNPs interact with whey protein. Forming protein corona inhibits the melamine-induced AuNPs aggregation, reducing the number of 'hot spot' and the adsorption of melamine on AuNPs (from 0.28 mg/L to 0.07 mg/L), which may be responsible for signal loss. The found matrix effect from protein corona provides new insights for developing strategies about reducing matrix effect in SERS application.
Collapse
Affiliation(s)
- Shuna Mi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yuhang Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Fang Gao
- Center of Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Gang Li
- Inner Mongolia Agricultural and Livestock Product Quality and Safety Center, Hohhot, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
4
|
Nath S, Shyanti RK, Singh RP, Mishra M, Pathak B. Thespesia lampas mediated green synthesis of silver and gold nanoparticles for enhanced biological applications. Front Microbiol 2024; 14:1324111. [PMID: 38304863 PMCID: PMC10832436 DOI: 10.3389/fmicb.2023.1324111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
The present study investigated the synthesis and biological applications of green, economical, and multifunctional silver and gold nanoparticles (TSAgNPs and TSAuNPs) using the ethnomedical important medicinal plant Thespesia lampas for biological activities. Relatively higher levels of antioxidant components were measured in T. lampas compared to the well-known Adhatoda vasica, and Diplocyclos palmatus suggested the potential of T. lampas for the study. Synthesized TSAgNPs and TSAuNPs were characterized through UV-Vis, XRD, SEM-EDS, HR-TEM, SAED, and FTIR techniques. SEM revealed that TSAgNPs and TSAuNPs were predominantly spherical in shape with 19 ± 7.3 and 43 ± 6.3 nm crystal sizes. The sizes of TSAgNPs and TSAuNPs were found to be12 ± 4.8 and 45 ± 2.9 nm, respectively, according to TEM measurements. The FTIR and phytochemical analyses revealed that the polyphenols and proteins present in T. lampas may act as bio-reducing and stabilizing agents for the synthesis. Synthesized NPs exhibited enhanced scavenging properties for ABTS and DPPH radicals. TSAgNPs and TSAuNPs were able to protect DNA nicking up to 13.48% and 15.38%, respectively, from oxidative stress. TSAgNPs possessed efficient antibacterial activities in a concentration-dependent manner against human pathogenic bacteria, such as E. coli, B. subtilis, P. vulgaris, and S. typhi. Furthermore, TSAgNPs and TSAuNPs showed significant cytotoxicity against FaDu HNSCC grown in 2D at 50 and 100 μg mL-1. Tumor inhibitory effects on FaDu-derived spheroid were significant for TSAgNPs > TSAuNPs at 100 μg mL-1 in 3D conditions. Dead cells were highest largely for TSAgNPs (76.65% ± 1.76%), while TSAuNPs were non-significant, and Saq was ineffectively compared with the control. However, the diameter of the spheroid drastically reduced for TSAgNPs (3.94 folds) followed by TSAuNPs (2.58 folds), Saq (1.94 folds), and cisplatin (1.83 folds) at 100 μg mL-1. The findings of the study suggested the bio-competence of TSAgNPs and TSAuNPs as multi-responsive agents for antioxidants, DNA protection, antibacterial, and anti-tumor activities to provide a better comprehension of the role of phytogenic nanoparticles in healthcare systems.
Collapse
Affiliation(s)
- Sunayana Nath
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Ritis Kumar Shyanti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rana Pratap Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Bhawana Pathak
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Fatehi Y, Sahraei A, Mohammadi F. Myricetin and morin hydrate inhibit amyloid fibril formation of bovine α-lactalbumin (BLA). Int J Biol Macromol 2024; 254:127908. [PMID: 37939780 DOI: 10.1016/j.ijbiomac.2023.127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Amyloid fibrils are self-assembled aggregates of proteins and peptides that can lead to a broad range of diseases called amyloidosis. So far, no definitive and approved treatment to target directly amyloid fibrils has been introduced. Nevertheless, the search for small molecules with ability to inhibit and suppress fibril formation is an active and promising area of the research. Herein, the binding interactions and inhibitory effects of myricetin and morin hydrate on the in vitro fibrillation of bovine α-lactalbumin (BLA) have been investigated. The intrinsic fluorescence of BLA was quenched by myricetin and morin hydrate through combination of the static and dynamic quenching along with non-radiative Förster energy transfer mechanisms. The binding of these two flavonoids to BLA were not accompanied by major alteration in the conformation of BLA as evidenced by CD studies. The results of the fluorescence quenching analyses indicated almost the same binding affinities of myricetin and morin hydrate toward BLA (Kb ~ 106 M-1). However, the results of thioflavin T (ThT) assays showed that myricetin is a stronger inhibitor against BLA fibrillation compared to morin hydrate.
Collapse
Affiliation(s)
- Yaser Fatehi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Amin Sahraei
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran.
| | - Fakhrossadat Mohammadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran.
| |
Collapse
|
6
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Binding of silver ions to alpha-lactalbumin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, Naidu ECS, Rennie CO, Azu OO. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol 2022; 13:1025160. [PMID: 36425574 PMCID: PMC9680985 DOI: 10.3389/fphar.2022.1025160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2025] Open
Abstract
Despite the development of effective combined antiretroviral therapy (cART), the neurocognitive impairments associated with human immunodeficiency virus (HIV) remain challenging. The presence of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCFB) impedes the adequate penetration of certain antiretroviral drugs into the brain. In addition, reports have shown that some antiretroviral drugs cause neurotoxicity resulting from their interaction with nervous tissues due to long-term systemic exposure. Therefore, the research into the effective therapeutic modality that would cater for the HIV-associated neurocognitive disorders (HAND) and ART toxicity is now receiving broad research attention. Thus, this review explores the latest information in managing HAND using a nanoparticle drug delivery system (NDDS). We discussed the neurotoxicity profile of various approved ART. Also, we explained the applications of silver nanoparticles (AgNPs) in medicine, their different synthesis methods and their interaction with nervous tissues. Lastly, while proposing AgNPs as useful nanoparticles in properly delivering ART to enhance effectiveness and minimize neurocognitive disorders, we hypothesize that the perceived toxicity of AgNPs could be minimized by taking appropriate precautions. One such precaution is using appropriate reducing and stabilizing agents such as trisodium citrate to reduce silver ion Ag + to ground state Ag0 during the synthesis. Also, the usage of medium-sized, spherical-shaped AgNPs is encouraged in AgNPs-based drug delivery to the brain due to their ability to deliver therapeutic agents across BBB. In addition, characterization and functionalization of the synthesized AgNPs are required during the drug delivery approach. Putting all these factors in place would minimize toxicity and enhance the usage of AgNPs in delivering therapeutic agents across the BBB to the targeted brain tissue and could cater for the HIV-associated neurocognitive disorders and neurotoxic effects of antiretroviral drugs (ARDs).
Collapse
Affiliation(s)
- Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Matome Nadab Matshipi
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sheu Oluwadare Sulaiman
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Edwin Coleridge Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological and Translational Medical Sciences, School of Medicine, Hage Geingob Campus, University of Namibia, Windhoek, Namibia
| |
Collapse
|
9
|
Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic Nanomaterials versus Polymer-Based Nanoparticles for Overcoming Neurodegeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2337. [PMID: 35889562 PMCID: PMC9317100 DOI: 10.3390/nano12142337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Neurodegenerative disorders (NDs) affect a great number of people worldwide and also have a significant socio-economic impact on the aging population. In this context, nanomedicine applied to neurological disorders provides several biotechnological strategies and nanoformulations that improve life expectancy and the quality of life of patients affected by brain disorders. However, available treatments are limited by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (B-CSFB). In this regard, nanotechnological approaches could overcome these obstacles by updating various aspects (e.g., enhanced drug-delivery efficiency and bioavailability, BBB permeation and targeting the brain parenchyma, minimizing side effects). The aim of this review is to carefully explore the key elements of different neurological disorders and summarize the available nanomaterials applied for neurodegeneration therapy looking at several types of nanocarriers. Moreover, nutraceutical-loaded nanoparticles (NPs) and synthesized NPs using green approaches are also discussed underling the need to adopt eco-friendly procedures with a low environmental impact. The proven antioxidant properties related to several natural products provide an interesting starting point for developing efficient and green nanotools useful for neuroprotection.
Collapse
|
10
|
Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. MATERIALS 2022; 15:ma15030804. [PMID: 35160749 PMCID: PMC8837051 DOI: 10.3390/ma15030804] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.
Collapse
|
11
|
Woon CK, Hui WK, Abas R, Haron MH, Das S, Lin TS. Natural Product-based Nanomedicine: Recent Advances and Issues for the Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1498-1518. [PMID: 34923947 PMCID: PMC9881085 DOI: 10.2174/1570159x20666211217163540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) affects the elderly and is characterized by progressive neurodegeneration caused by different pathologies. The most significant challenges in treating AD include the inability of medications to reach the brain because of its poor solubility, low bioavailability, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges in treating AD is the ineffective treatments and their severe adverse effects. Nanotechnology offers an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to aid in drug delivery for the treatment of AD. The nano-sized entities of NP are great platforms for incorporating active materials from natural products into formulations that can be delivered effectively to the intended action site without compromising the material's bioactivity. The review highlights the applications of medicinal plants, their derived components, and various nanomedicinebased approaches for the treatment of AD. The combination of medicinal plants and nanotechnology may lead to new theragnostic solutions for the treatment of AD in the future.
Collapse
Affiliation(s)
- Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, 47000 Selangor, Malaysia
| | - Wong Kah Hui
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Muhammad Huzaimi Haron
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, 47000 Selangor, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Sultanate of Oman
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Impact of Synthesized AuNPs from Crocin Against Aggregation and Conformational Change in α-Lactalbumin. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Vus K, Tarabara U, Danylenko I, Pirko Y, Krupodorova T, Yemets A, Blume Y, Turchenko V, Klymchuk D, Smertenko P, Zhytniakivska O, Trusova V, Petrushenko S, Bogatyrenko S, Gorbenko G. Silver nanoparticles as inhibitors of insulin amyloid formation: A fluorescence study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Abbas M. Potential Role of Nanoparticles in Treating the Accumulation of Amyloid-Beta Peptide in Alzheimer's Patients. Polymers (Basel) 2021; 13:1051. [PMID: 33801619 PMCID: PMC8036916 DOI: 10.3390/polym13071051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
The disorder of Alzheimer's is marked by progressive pathophysiological neurodegeneration. The amino acid peptides in the amyloid plaques found in the brains of people with Alzheimer's disease (AD) are known as amyloid-beta (Aβ). Current treatments are not curative, and the effects associated with AD are reduced. Improving treatment results involved the targeting of drugs at optimum therapeutic concentration. Nanotechnology is seen as an unconventional, modern technology that plays a key role in the treatment of Alzheimer's disease. Using nanoparticles, molecular detection, effective drug targeting, and their combination offer high sensitivity. The aim of this review is to shed light on the function and successful role of nanoparticles to resolve Aβ aggregation and thus to help cure Alzheimer's disease. The analysis divides these nanoparticles into three categories: polymer, lipid, and gold nanoparticles. A thorough comparison was then made between the nanoparticles, which are used according to their role, properties, and size in the procedure. The nanoparticles can prevent the accumulation of Aβ during the efficient delivery of the drug to the cells to treat Alzheimer's disease. Furthermore, this comparison demonstrated the ability of these nanoparticles to deal efficiently with Alzheimer's disease. The role of these nanoparticles varied from delivering the drug to brain cells to dealing with the disease-causing peptide.
Collapse
Affiliation(s)
- Mohamed Abbas
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Computers and Communications, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| |
Collapse
|
15
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
16
|
Talebpour F, Ghahghaei A. Effect of Green Synthesis of Gold Nanoparticles (AuNPs) from Hibiscus sabdariffa on the Aggregation of α-Lactalbumin. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Kumari A, Sharma R, Shrivastava N, Somvanshi P, Grover A. Bleomycin modulates amyloid aggregation in β-amyloid and hIAPP. RSC Adv 2020; 10:25929-25946. [PMID: 35518630 PMCID: PMC9055351 DOI: 10.1039/d0ra04949b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 12/06/2022] Open
Abstract
Aberrant misfolding and amyloid aggregation, which result in amyloid fibrils, are frequent and critical pathological incidents in various neurodegenerative disorders. Multiple drugs or inhibitors have been investigated to avert amyloid aggregation in individual peptides, exhibiting sequence-dependent inhibition mechanisms. Establishing or inventing inhibitors capable of preventing amyloid aggregation in a wide variety of amyloid peptides is quite a daunting task. Bleomycin (BLM), a complex glycopeptide, has been widely used as an antibiotic and antitumor drug due to its ability to inhibit DNA metabolism, and as an antineoplastic, especially for solid tumors. In this study, we investigated the dual inhibitory effects of BLM on Aβ aggregation, associated with Alzheimer's disease and hIAPP, which is linked to type 2 diabetes, using both computational and experimental techniques. Combined results from drug repurposing and replica exchange molecular dynamics simulations demonstrate that BLM binds to the β-sheet region considered a hotspot for amyloid fibrils of Aβ and hIAPP. BLM was also found to be involved in β-sheet destabilization and, ultimately, in its reduction. Further, experimental validation through in vitro amyloid aggregation assays was obtained wherein the fibrillar load was decreased for the BLM-treated Aβ and hIAPP peptides in comparison to controls. For the first time, this study shows that BLM is a dual inhibitor of Aβ and hIAPP amyloid aggregation. In the future, the conformational optimization and processing of BLM may help develop various efficient sequence-dependent inhibitors against amyloid aggregation in various amyloid peptides. Bleomycin acts as a dual inhibitor against both amyloid β and human islet amyloid polypeptide by binding to the β-sheet grooves considered as the amyloids hotspot.![]()
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi
- India
- School of Biotechnology
| | - Ritika Sharma
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| | | | - Pallavi Somvanshi
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi
- India
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| |
Collapse
|
18
|
Rasouli H. Devil's hand conceals behind the obscure side of AgNPs: A letter to the editor. Int J Biol Macromol 2019; 125:510-513. [PMID: 30537496 DOI: 10.1016/j.ijbiomac.2018.12.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Abstract
From that time AgNPs become one of the most accessible and important antibacterial agents in our world, thousands of papers published regarding investigating all aspects of these materials. When the time elapsed and novel methods contrived to follow the fingerprint of AgNPs in the in vivo models, some critical concerns and arguments also appeared between researchers about the safety of these compounds for living cells and vital organs. The paper by Dehvari and Ghahaghaei published in Volume 108 International Journal of Biological Macromolecules, pages 1128-1139 (Dehvari and Ghahghaei, 2018) suffered some errors from safety concerns to obscurities in the results essentially needing the amendment to enhance its quality. Though the author(s) idea is commended enough, nevertheless, I could not find a profound trace with their results, and my concerns are discussed in detail as the following lines.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Science, Kermanshah, Iran..
| |
Collapse
|
19
|
Ramshini H, Moghaddasi AS, Mollania N, Khodarahmi R. Diverse antithetical effects of the bio-compatible Ag-NPs on the hen egg lysozyme amyloid aggregation: from an efficient inhibitor to obscure inducer. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1478-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Khodarahmi R. Letter to the Editor. Int J Biol Macromol 2018; 114:1084-1085. [PMID: 29627464 DOI: 10.1016/j.ijbiomac.2018.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
I read with great interest the paper by Dehvari and Ghahghaei (Dehvari and Ghahghaei, 2018 [1]). Their paper aimed to prove that biosynthesized AgNPs mediated by Pulicaria undulata L. has the capability in inhibiting amyloid fibril formation and thus could be considered as a therapeutic agent in the treatment of amyloidosis disorders. According to the literature (Jangholi et al., 2018 [2]), Thioflavin T (ThT) is a commonly used probe to monitor in vitro amyloid fibril formation. Also, since ThT fluorescence originates only from the bound population of the dye molecules, the several orders of magnitude increase in the fluorescence intensity makes ThT an unusually sensitive and efficient reporter. The authors used ThT to monitor in vitro amyloid fibril formation of α-lactalbumin and fluorescence emission spectra were recorded upon titration of the indicated concentrations of nanoparticles or α-casein. They excited the assay solutions at 450nm and the emissions were measured over the range 460-600nm. Interestingly, upon binding to α-lactalbumin's amyloid fibrils, ThT displayed a (slight) relative increase of fluorescence signal at approximately ~530-540nm, when excited at 450nm with no background ThT fluorescence subtraction/reportage. Upon binding to amyloid fibrils, ThT generally exhibits a dramatic shift of the excitation maximum (from 385nm to 450nm) and the emission maximum from 445nm to the higher wavelengths, along with a strong fluorescence signal at ~482nm (Biancalana, 1804 [3]). Regarding the wavelength of ThT fluorescence maxima, the obtained results by Dehvari and Ghahghaei are inconsistent with what has yet been reported in the literature. Moreover, the respected authors, in the present work, have not tried to describe these unusual ThT results. However, I could not find evidence/fingerprint of "cotton effect" of ThT and/or absorption flattening within the results.
Collapse
Affiliation(s)
- Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|