1
|
Yuchun L, Chao G, Chao W, Weiqun G. Changes in the physicochemical properties and structural characteristics of rice bran polysaccharides extracted by specific enzyme cocktail and ultrasound. Food Chem 2025; 476:143453. [PMID: 39999497 DOI: 10.1016/j.foodchem.2025.143453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
To maximize insoluble rice bran fiber, rice bran polysaccharides were extracted from it using ultrasound and specific enzyme-assisted methods. Additionally, the specific enzyme cocktail was also produced by Schizophyllum commune cultivated on insoluble rice bran fiber. Based on response surface methodology, the optimal conditions of specific enzyme-assisted extraction were: temperature 42.8 °C, pH 4.3, and enzyme ratio 10.6 mg/g. Then, a three-step method (ultrasound-enzyme-ultrasound assisted extraction) was used for the extraction of polysaccharides. The rice bran polysaccharide yields from three steps were: 5.57 ± 0.34 %, 4.1 ± 0.05 %, and 0.32 ± 0.03 %, respectively, with molecular weight of 266.73, 4.07, and 22.84 kDa. The rice bran polysaccharides exhibited significant differences in the monosaccharide composition, surface morphological, structural characteristics, and antioxidant activities. Additionally, 186 secretory proteins were detected by proteomic analysis in the enzyme cocktail, including complete cellulases and numerous hemicellulases. These findings provide a sustainable, efficient way to extract rice bran polysaccharides with different properties.
Collapse
Affiliation(s)
- Liu Yuchun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Guo Chao
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wang Chao
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Guo Weiqun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
2
|
Liu M, Pu H, Sun DW. Eco-friendly lily bulb-derived polysaccharide aerogel for efficient microplastics and nanoplastics removal. Carbohydr Polym 2025; 357:123410. [PMID: 40158961 DOI: 10.1016/j.carbpol.2025.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 04/02/2025]
Abstract
Microplastics that eventually convert into nanoplastics are emerging global pollutants and the development of efficient adsorbents for their removal is urgently needed. For sustainability and eco-friendliness, in the current study, a polysaccharide aerogel (LPA) was prepared with lily bulbs as the raw material by following water bath extraction, purification and freeze-drying processes. The prepared porous LPA was then applied as a packing material in a mini adsorption column for removing polystyrene (PS) microplastics and nanoplastics. Results revealed that LPA was over 90 kDa in size and consisted mainly of glucomannan and the removal efficiencies for microplastics and nanoplastics were 93.68 % and 96.98 %, respectively, mainly due to hydrogen bonding interactions and porous structure. The adsorption column was robust and maintained a remarkable removal efficiency (over 90 %) for 3 months. In addition, the effects of other extraction methods and pre-freezing conditions before the freeze-drying process were studied. Compared with water bath extraction, ultrasonic-assisted extraction and microwave-assisted extraction transformed the LPA structure, resulting in reduced adsorption ability, while the pre-freezing temperature could be used to adjust the specific surface area. Meanwhile, the effects of temperature and pH of adsorbates were also investigated. The LPA was heat sensitive and not stable under strongly acidic (pH 4) or strongly alkaline (pH 10) conditions, resulting in a sharp decline in removal efficiency. The adsorption behaviour of LPA was further described via adsorption kinetic models, showing that the microplastics and nanoplastics adsorptions could be fitted by pseudo-second-order and pseudo-first-order models, respectively. Moreover, the adsorption performance of LPA was compared with some other aerogels and had a better result. This research provides a promising, sustainable alternative for microplastic and nanoplastic removal that has potential for pollutant adsorption and sample purification as well as a low preparation cost.
Collapse
Affiliation(s)
- Meiting Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Ni S, Zhao H, Yang S, Cui K. The effect of ultrasonic-assisted enzymes extraction on antioxidant polysaccharide activity in dandelion. ULTRASONICS SONOCHEMISTRY 2025; 116:107329. [PMID: 40158263 PMCID: PMC11994387 DOI: 10.1016/j.ultsonch.2025.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
In this study, ultrasonic-assisted enzymatic extraction (UAEE) method was used to obtain the small molecule dandelion polysaccharides. Based on single-factor experiments, the process of extraction the extraction conditions were further optimized by response surface method (RSM) combined with the Box-Behnken design (BBD). The results showed that in combination with enzymes, with a ratio of 1:32 (g/ml), an enzymolysis temperature 55 °C, an ultrasonic temperature 75℃ and the ultrasonic time 55 min. The maximum extraction yield of crude polysaccharides was 3.127 %.After purification by DEAE-cellulose chromatography and Sephadex G-75 gel filtration, a novel polysaccharide (DANP-Ⅱ) was extracted and the results of high performance liquid chromatography (HPLC) indicated its average molecular weight was 3.373 kDa. Gas chromatography (GC) analysis showed that DANP-Ⅱ was mainly contained by glucose and little of glucuronic acid, mannose, galactose, and arabinose. In vitro antioxidant experiments have demonstrated that DANP-Ⅱ can alleviate H2O2-induced cellular damage, reduce apoptosis rates, and exhibit robust antioxidant activity. Hence, DANP-Ⅱ can be utilized as a natural antioxidant to enhance protection against oxidative stress, providing theoretical guidance for the utilization of low-molecular-weight dandelion polysaccharides.
Collapse
Affiliation(s)
- Shuang Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haolan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shaohua Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Li Y, Zhang Y, Wei Y, Xiang Q, Chen Q, Yu X, Zhang L, Peng W, Penttinen P, Gu Y. Exogenous trehalose increased polysaccharide content and altered their properties and metabolism in Lentinula edodes mycelium. Int J Biol Macromol 2025; 310:143387. [PMID: 40267868 DOI: 10.1016/j.ijbiomac.2025.143387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/31/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Trehalose promotes polysaccharide synthesis in edible mushrooms, yet its effect on the antioxidant activity and structure of Lentinula edodes mycelium polysaccharides is still unknown. We investigated the effect of trehalose on the antioxidant activity of L. edodes polysaccharides and expression of genes related to L. edodes polysaccharide metabolism. Five g/L trehalose increased the biomass and polysaccharide content of L. edodes mycelium by over 50 % compared to the control. Trehalose increased the superoxide anion radical scavenging rate of L. edodes polysaccharides up to 80.9 %. Compared to the control, the molecular weight of polysaccharides was lower, and their glucuronic acid content was higher in the trehalose treatment. RNA-seq analysis revealed 1045 differentially expressed genes in the trehalose treatment compared to the control. Genes related to glycolysis/gluconeogenesis pathway, starch and sucrose metabolic pathway, and the pentose and glucuronate interconversions pathway were differentially expressed, possibly accounting for the increased polysaccharide synthesis. In summary, exogenous trehalose has potential to increase the biosynthesis and biological activity of L. edodes polysaccharides.
Collapse
Affiliation(s)
- Yan Li
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Guizhou Tea Research Institute, Guiyang 550006, China
| | - Ying Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuemei Wei
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Weihong Peng
- Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Zhang H, Jiang F, Tang C, Liu Y, Zhang J. Prospects and applications of efficient physical field processing technologies for polysaccharide extraction and quality improvement in edible mushrooms: A systematic review. Int J Biol Macromol 2025; 301:140412. [PMID: 39880257 DOI: 10.1016/j.ijbiomac.2025.140412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.g., acoustic, electromagnetic, electrical, and mechanical field) processing technologies not only overcome the shortcomings of conventional extraction methods, but also improve the structural feature, bioactivity, and solution behavior of EMPs. Moreover, physical field-assisted techniques can induce the degradation or modification of EMPs, thereby effectively altering the physicochemical properties and structural features of EMPs to improve their bioactivities or processing properties. Therefore, a comprehensive review of physical field processing technologies such as ultrasound, high pressure, pulsed electric field, and microwave for extracting and modifying EMPs in recent years, is presented. In addition, recent advances in physical field-assisted extraction/degradation techniques for EMPs, as well as their mechanisms of action and synergistic effects, are discussed and summarized. In summary, this review provides a theoretical basis and practical guidance for the physical field processing technology in improving the extraction yield and quality of EMPs, as well as large-scale industrial production.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
6
|
Zhu J, Dong Z, Wang H. Effects of endogenous metal ions on the structure and antioxidant activity of lentinan. Int J Biol Macromol 2025; 308:142510. [PMID: 40147645 DOI: 10.1016/j.ijbiomac.2025.142510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Lentinan molecules contain a variety of endogenous metal ions, and the purpose of this study was to investigate the effects of metal ions on the structure and antioxidation of lentinan. The endogenous metal ions, molecular weight, monosaccharide composition and triple helix structure of lentinan (LNT-1, LNT-2) and demetallized lentinan (dLNT-1, dLNT-2) were analyzed, followed by comparing their antioxidant activities in vitro and in vivo. The results indicated that LNTs were typical β-1→ 3 glycosidic bonds polysaccharides with ordered triple helix structure and LNT-2 contained more metal ions. After metal ions chelation, the chemical bonds between lentinan and metal ions broke, and the triple helix structure of dLNTs was partially destroyed and became loose, especially for dLNT-2 which lost more metal ions. LNTs had obvious antioxidation in vitro, and the scavenging ability of dLNTs on hydroxyl radical and ABTS significantly decreased mainly due to the loss of radicals scavenging ability of metal ions. LNT-1 possessed significant antioxidant activity in vivo, while it decreased after removal of metal ions which were important for the activity of antioxidant enzymes. So, endogenous metal ions played an important role in stabilizing the triple helix structure and maintaining antioxidation of lentinan.
Collapse
Affiliation(s)
- Junyou Zhu
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhaowei Dong
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hui Wang
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
7
|
Li Y, Li C, Zhang N, Liu Y, Kang H, Wang M, Zhao L, Li D, Tian H. Mitigation of oxidative stress-induced aging by extracellular polysaccharides from Lactiplantibacillus plantarum R6-1 from Sayram ketteki. Int J Biol Macromol 2025; 308:142392. [PMID: 40120913 DOI: 10.1016/j.ijbiomac.2025.142392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Oxidative stress within the body is associated with aging, playing a crucial role in its progression. Polysaccharides from lactic acid bacteria are well recognized for their antioxidant effects, potentially improving the aging process. This study investigated the characterization and antioxidant activities of extracellular polysaccharides (EPS-1: 59,978 Da, 40.9 % mannose, 4.5 % ribose, 5.8 % glucuronic acid, 44.1 % glucose, 2.9 % galactose; EPS-2: 25,686 Da, 22.9 % mannose, 5.4 % ribose, 5.5 % glucuronic acid, 59.6 % glucose, 5.4 % galactose) produced by Lactiplantibacillus plantarum R6-1. The results showed that EPS could increase the survival rates of Caco-2 cells exposed to hydrogen peroxide and mitigate the D-galactose (D-Gal)-induced oxidative stress in mice. Administration of EPS activated the hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in mice. Subsequently, this pathway activated various oxidation-related enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. Meanwhile, EPS regulated mouse intestinal microbiota by increasing the relative abundance of beneficial bacteria secreting anti-inflammatory factors, such as Norank_f_Muribaculaceae and Dubosiella, and restoring the imbalance of Firmicutes to Bacteroidetes caused by oxidative stress. This study shows that L. plantarum R6-1's EPS exhibited the ability to concurrently influence both the liver and intestinal microbiota of mice, thereby achieving an anti-oxidative effect through their interconnected interactions.
Collapse
Affiliation(s)
- Yuwei Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Yajing Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Hongyan Kang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Lina Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan 657000, China.
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
8
|
Guo G, Xu W, Fu J, Ma S, Huang K, Wei Y, Yang Y, Lan X, He X. A novel polysaccharide from Macadamia peel: Extraction, purification, structural characterization and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2681-2696. [PMID: 39579006 DOI: 10.1002/jsfa.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Macadamia peels are the main by-product of postharvest treatment of the whole fresh fruit weight, they contain various bioactive substances, such as polysaccharides, phenols, flavonoids, phenolic acids, saponins, and other nutritional and functional components, that are known to have anti-tumor and anti-oxidation functions. RESULTS Two purified polysaccharide fractions were obtained (MPP-1 and MPP-2) by extracting with ultrasonic-microwave-aided water extraction and purifying by with DEAE-52 and Sephadex G-50 columns, and then characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and NMR, and the antioxidant activity was also investigated. The results indicated that MPP-1 and MPP-2 were mainly glucose, the molecular weight was 8.16 kDa and 7.73 kDa, respectively. Methylation with gas chromatography-mass spectrometry and NMR analyses confirmed that two fractions comprised of →4) -α-d- Glcp -(1→, →6) -β-d- Glcp -(1→ and →3,4) -β-d- Glcp -(1→) as the main chain. In addition, MPP-1 and MPP-2 polysaccharides showed significant antioxidant activity with respect to 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl group and reducing power, and MPP-2 demonstrated excellent antioxidant activities compared to MPP-1 with IC50 values of 35.12, 18.82 and 40.12 μg mL-1, respectively. CONCLUSION The novel polysaccharide, MPP-1 and MPP-2, mainly containing glucose, showed significant antioxidant activity with respect to DPPH, hydroxyl group and reducing power. This study has enhanced waste utilization and reduced environmental pollution, providing some inspiration for the reuse of the waste generated during agricultural production. It may bring good prospects for their use as antioxidants in functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gangjun Guo
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Wenting Xu
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Jiarong Fu
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Shangxuan Ma
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Kechang Huang
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Yuanmiao Wei
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Yuexue Yang
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Xiuhua Lan
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Xiyong He
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| |
Collapse
|
9
|
Thakur M, Andola HC, Silva AS. Unveiling techniques and exploring the potential of Myconutraceticals: Analyzing current applications and future prospects. Food Chem 2025; 466:142162. [PMID: 39615350 DOI: 10.1016/j.foodchem.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
The escalating demand for natural, nutritionally rich food products underscores the significance of exploring the fungal kingdom, comprising yeast, lichens, molds, and mushrooms, as an abundant reservoir of nutritionalcompounds, secondary metabolites and bioactive components. This paper delves into the nutritional profiles of lichen, yeast, and mushrooms, emphasizing their role as prominent sources of myco-nutraceuticals and functional foods. The growing popularity of eco-friendly extraction techniques for mycochemicals is noted, alongside the exploration of established methods for qualitative and quantitative mycochemical analysis. Notably, studies have affirmed that the incorporation of mushroom and yeast extracts, and their derived compounds, enhances the nutritional profile of meals without compromising desirable dietary attributes. The biological health-promoting properties inherent in extracts and chemicals are also discussed. Anticipated trends the incorporation of myconutrients into functional foods and dietary supplements are highlighted. Finally, challenges hindering the optimal utilization of myconutraceuticals are scrutinized.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, India.
| | - Harish Chandra Andola
- School of Environment and Natural Resources (SENR), Doon University, Uttrakhand, India
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
10
|
Wu Q, Liang B, Wang J, Dai Y. Ultrasound-Assisted Extraction of Polysaccharides from Lyophyllum decastes: Structural Analysis and Bioactivity Assessment. Molecules 2025; 30:961. [PMID: 40005271 PMCID: PMC11858794 DOI: 10.3390/molecules30040961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
This study employed ultrasound-assisted extraction (UAE) to isolate polysaccharides from Lyophyllum decastes, which were subsequently fractionated into two components, LDP-A1 and LDP-B1, using DEAE cellulose-52 and Sephacryl S-500. The structural characteristics of the polysaccharides were preliminarily analyzed using high-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Congo red staining. The results indicate significant differences between LDP-A1 and LDP-B1 in terms of molecular weight, monosaccharide composition, and structural features. LDP-A1 (2.27 × 106 Da) exhibits a significantly higher molecular weight compared to LDP-B1 (9.80 × 105 Da), with distinct differences in monosaccharide types and content. Both polysaccharides contain β-glycosidic bonds. LDP-B1 adopts a sheet-like structure with an amorphous internal arrangement and a triple-helix configuration, whereas LDP-A1 is rod-shaped, with a crystalline internal structure, and lacks the triple-helix configuration. In terms of biological activity, both polysaccharides exhibit certain activities, but LDP-B1 shows significantly stronger activity in antioxidant, hypoglycemic, anti-inflammatory, and anticancer effects. In summary, LDPs exhibit significant biological activity, especially outstanding performance in antioxidant, hypoglycemic, anti-inflammatory, and anticancer effects, proving their potential for development in functional foods and pharmaceuticals. Their unique structural characteristics and diverse biological activities provide a solid theoretical foundation for further exploration of LDPs in health promotion and disease prevention, opening up new research directions and application prospects.
Collapse
Affiliation(s)
- Qiong Wu
- College of Food Science and Engineering, Changchun University, Changchun 130012, China; (B.L.); (J.W.)
| | - Bin Liang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China; (B.L.); (J.W.)
| | - Jiaming Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China; (B.L.); (J.W.)
| | - Yonggang Dai
- Jilin Academy of Agricultural Sciences, Changchun 130012, China;
| |
Collapse
|
11
|
Wen C, Ye Z, Liu G, Liang L, Liu X, Li Y, Xu X, Zhang J. Isolation, Purification, and Characterization of Lentinus edodes Polysaccharides Extracted With Subcritical Water Enhanced With Deep Eutectic Solvent. Chem Biodivers 2025:e202402658. [PMID: 39825856 DOI: 10.1002/cbdv.202402658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/20/2025]
Abstract
The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained, and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.97:7.84 and 1:51.18:5.29, respectively. The molecular weights were 9.878 × 104 and 1.976 × 104 Da, respectively. Interestingly, both LEP1 and LEP2 were mainly composed of →4)-β-d-Glcp-(1→, →6)-β-d-Glcp-(1→ and →6)-α-d-Galp-(1→ with different molar ratio. Besides, both LEP1 and LEP2 had strong DPPH free radical scavenging activity and Fe2+ chelating capacity. Moreover, they could reduce the level of reactive oxygen species (ROS) and regulate the activities of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) in HepG2 cells, demonstrating strong antioxidant activity. Furthermore, both LEP1 and LEP2 could improve the phagocytic capacity, nitric oxide (NO) release, and the content of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) in RAW264.7 cells, exhibiting significant immunostimulatory activity. It was worth noting that LEP2 exhibited stronger biological activities than LEP1. Therefore, the SWE enhanced with DES is an ideal method for extracting polysaccharides, which can be further applied to extract other polysaccharides.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhiqiang Ye
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Javed A, Song BR, Lee CH, Alam MB, Kim SL, Lee SH. Glycoprotein from Sargassum fusiforme exhibiting anti-inflammatory responses in vitro and in vivo via modulation of TLR4/MyD88 and NF-κB signaling. Int J Biol Macromol 2024; 272:132574. [PMID: 38810846 DOI: 10.1016/j.ijbiomac.2024.132574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
This study focuses on the identification and characterization of a glycoprotein from Sargassum fusiforme (Harvey) Setchell (SFGP), as well as investigating its potential anti-inflammatory properties both in vitro and in vivo, along with the underlying mechanism. SDS-PAGE analysis revealed a prominent band with a molecular weight of <10 kDa, consisting of 58.39 % protein and 41.61 % carbohydrates, which was confirmed through glycoprotein staining and Coomassie blue staining. Various analytical techniques, including high-resolution mass spectrometry (HRMS), FTIR, amino acid analysis, and UV-visible spectrometry, provided evidence for the presence of monosaccharides (such as d-glucose and mannose) and 17 amino acids linked by an O-glycopeptide bond. In vitro and in vivo studies were conducted to assess the anti-inflammatory activities of SFGP. The results demonstrated that SFGP effectively attenuated nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in LPS-treated RAW264.7 cells. Moreover, SFGP administration significantly and dose-dependently suppressed TLR4/MyD88 signaling as well as the phosphorylation of MAPKs, IκB, and NF-κB, leading to a reduction in the production of TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW264.7 cells. Furthermore, the anti-inflammatory efficacy of SFGP was validated in a carrageenan-induced inflammatory mouse model. These findings indicate that SFGP exhibits anti-inflammatory characteristics and has the potential to be utilized as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Solomon L Kim
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
Tang Y, Wei Z, He X, Ling D, Qin M, Yi P, Liu G, Li L, Li C, Sun J. A comparison study on polysaccharides extracted from banana flower using different methods: Physicochemical characterization, and antioxidant and antihyperglycemic activities. Int J Biol Macromol 2024; 264:130459. [PMID: 38423432 DOI: 10.1016/j.ijbiomac.2024.130459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
This work investigated and compared the physicochemical characteristics, and antioxidant and antihyperglycemic properties in vitro of polysaccharides from a single banana flower variety (BFPs) extracted by different methods. BFPs extracted using hot water (HWE), acidic (CAE), alkaline (AAE), enzymatic (EAE), ultrasonic (UAE) and hot water-alkaline (HAE) methods showed different chemical composition, monosaccharide composition, molecular weight, chain conformation and surface morphology, but similar infrared spectra characteristic, main glycosidic residues, crystalline internal and thermal stability, suggesting that six methods have diverse impacts on the degradation of BFPs without changing the main structure. Then, among six BFPs, the stronger antioxidant activity in vitro was found in BFP extracted by HAE, which was attributed to its maximum uronic acid content (21.67 %) and phenolic content (0.73 %), and moderate molecular weight (158.48 kDa). The highest arabinose and guluronic acid contents (18.59 % and 1.31 % in molar ratios, respectively) and the lowest uronic acid content (14.30 %) in BFP extracted by HWE contributed to its better α-glucosidase inhibitory activity in vitro (66.55 %). The data offered theoretical evidence for choosing suitable extraction methods to acquire BFPs with targeted biological activities for applications, in which HAE and HWE could serve as beneficial methods for preparing antioxidant BFP and antihyperglycemic BFP, respectively.
Collapse
Affiliation(s)
- Yayuan Tang
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Zhen Wei
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China.
| | - Dongning Ling
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Miao Qin
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Ping Yi
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Guoming Liu
- Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Changbao Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China; Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China.
| |
Collapse
|
14
|
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol 2024; 262:129923. [PMID: 38325677 DOI: 10.1016/j.ijbiomac.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengqi Zhang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Can Zhang
- School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, No.74 Xuefu Road, Nangang District, Harbin 150080, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
15
|
Geng X, Guo D, Wu B, Wang W, Zhang D, Hou S, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Qian H, Chang M. Effects of different extraction methods on the physico-chemical characteristics and biological activities of polysaccharides from Clitocybe squamulosa. Int J Biol Macromol 2024; 259:129234. [PMID: 38216007 DOI: 10.1016/j.ijbiomac.2024.129234] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
This study comparatively evaluated the effects of the commonly used six extraction methods (acidic, alkaline, enzymatic, ultrasonic, high-pressure, and microwave) on the physico-chemical properties, processing characteristics, and biological activities of polysaccharides from Clitocybe squamulosa (CSFPs). The results show that polysaccharides extracted using an enzyme-assisted extraction method has a relatively high extraction yield (4.46 ± 1.62 %) and carbohydrate content (70.79 ± 6.25 %) compared with others. Furthermore, CSFPs were all composed of glucose, galactose, mannose, xylose, and glucosamine hydrochloride. Only ultrasonic-assisted extraction of polysaccharides (CSFP-U) has a triple helix chain conformation. Scanning electron microscopy (SEM) revealed significant differences in the microstructure of polysaccharides prepared using different methods. Besides that, the polysaccharides prepared by alkali extraction (CSFP-B) and high-pressure assisted extraction (CSFP-H) have good water (2.86 ± 0.29 g/g and 3.15 ± 0.29 g/g) and oil (8.13 ± 0.32 g/g and 7.97 ± 0.04 g/g) holding properties. The rheological behavior demonstrated that CSFPs solutions were typical non-Newtonian fluid. Apart from this, the antioxidant capacity (clearing DPPH (IC50 = 0.29) and ABTS free radicals (IC50 = 0.19), total reduction ability (IC50 = 3.02)) of polysaccharides prepared by the microwave-assisted extraction (CSFP-M) method was significantly higher than that of other extraction methods. By contrast, the polysaccharide prepared by acid extraction (CSFP-A) has the optimum binding capacity (bile acid salt (71.30 ± 6.78 %) and cholesterol (57.07 ± 3.26 mg/g)). The antibacterial activity of CSFPs was positively correlated with their concentration. Thus, the research results can provide a theoretical basis for the development and utilization of polysaccharides from C. squamulosa.
Collapse
Affiliation(s)
- Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Bin Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wuxia Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Defang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Tergun Bau
- Inner Mongolia Agriculture, Animal Husbandry, Fishery, Biology Experiment Research Centre, Inner Mongolia Agricultural University, Hohhot 010019, PR China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
16
|
Chen L, Cui C, Wang Z, Che F, Chen Z, Feng S. Structural Characterization and Antioxidant Activity of β-Glucans from Highland Barley Obtained with Ultrasonic-Microwave-Assisted Extraction. Molecules 2024; 29:684. [PMID: 38338428 PMCID: PMC10856557 DOI: 10.3390/molecules29030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In order to efficiently extract β-glucan from highland barley (HBG) and study its structural characterization and antioxidant activity, ultrasonic-microwave-assisted extraction (UME) was optimized by the response surface method (RSM). Under the optimal extraction conditions of 25.05 mL/g liquid-solid ratio, 20 min ultrasonic time, and 480 W microwave intensity, the DPPH radical scavenging activity of HBG reached 25.67%. Two polysaccharide fractions were purified from HBG, namely HBG-1 and HBG-2. Structural characterization indicated that HBG-1 and HBG-2 had similar functional groups, glycosidic linkages, and linear and complex chain conformation. HBG-1 was mainly composed of glucose (98.97%), while HBG-2 primarily consisted of arabinose (38.23%), galactose (22.01%), and xylose (31.60%). The molecular weight of HBG-1 was much smaller than that of HBG-2. Both HBG-1 and HBG-2 exhibited concentration-dependent antioxidant activity, and HBG-1 was more active. This study provided insights into the efficient extraction of HBG and further investigated the structure and antioxidant activities of purified components HBG-1 and HBG-2. Meanwhile, the results of this study imply that HBG has the potential to be an antioxidant in foods and cosmetics.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Chunfeng Cui
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Zhiheng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Fuhong Che
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Zhanxiu Chen
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Shengbao Feng
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| |
Collapse
|
17
|
Sun M, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106763. [PMID: 38219551 PMCID: PMC10825639 DOI: 10.1016/j.ultsonch.2024.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Edible mushrooms are high in nutrients, low in calories, and contain bioactive substances; thus, they are a valuable food source. However, the high moisture content of edible mushrooms not only restricts their storage and transportation after harvesting, but also leads to a shorter processable cycle, production and processing limitations, and a high risk of deterioration. In recent years, ultrasonic technology has been widely applied to various food production operations, including product cleaning, post-harvest preservation, freezing and thawing, emulsifying, and drying. This paper reviews applications of ultrasonic technology in the production and processing of edible mushrooms in recent years. The effects of ultrasonic technology on the drying, extraction of bioactive substances, post-harvest preservation, shelf life/preservation, freezing and thawing, and frying of edible mushrooms are discussed. In summary, the application of ultrasonic technology in the edible mushroom industry has a positive effect and promotes the development of this industry.
Collapse
Affiliation(s)
- Mianli Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| |
Collapse
|
18
|
Wang D, Zhang M, Law CL, Zhang L. Natural deep eutectic solvents for the extraction of lentinan from shiitake mushroom: COSMO-RS screening and ANN-GA optimizing conditions. Food Chem 2024; 430:136990. [PMID: 37536067 DOI: 10.1016/j.foodchem.2023.136990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Using natural deep eutectic solvents (NDES) for green extraction of lentinan from shiitake mushroom is a high-efficiency method. However, empirical and trial-and-error methods commonly used to select suitable NDES are unconvincing and time-consuming. Conductor-like screening model for realistic solvation (COSMO-RS) is helpful for the priori design of NDES by predicting the solubility of biomolecules. In this study, 372 NDES were used to evaluate lentinan dissolution capability via COSMO-RS. The results showed that the solvent formed by carnitine (15 wt%), urea (40.8 wt%), and water (44.2 wt%) exhibited the best performance for the extraction of lentinan. In the extraction stage, an artificial neural network coupled with genetic algorithm (ANN-GA) was developed to optimize the extraction conditions and to analyze their interaction effects on lentinan content. Therefore, COSMO-RS and ANN-GA can be used as powerful tools for solvent screening and extraction process optimization, which can be extended to various bioactive substance extraction.
Collapse
Affiliation(s)
- Dayuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia
| | - Lujun Zhang
- Shandong Qihe Biotechnology Co., Ltd, 255022 Zibo, China
| |
Collapse
|
19
|
Dai Y, Wang L, Chen X, Song A, He L, Wang L, Huang D. Lentinula edodes Sing Polysaccharide: Extraction, Characterization, Bioactivities, and Emulsifying Applications. Foods 2023; 12:3289. [PMID: 37685222 PMCID: PMC10486737 DOI: 10.3390/foods12173289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In the present work, the optimization of extraction, emulsifying properties, and biological activities of polysaccharides from Lentinula edodes Sing (LES) were studied. The results showed LES polysaccharides extracted by hot water or ultrasonication are a group of β-glucan. Among all the samples, the one extracted by hot water showed the best emulsifying capacity. In addition, the results demonstrated that LES polysaccharide had strong scavenging activities in vitro on DPPH and ABTS radicals, which reached the highest level for the one extracted by 90 min ultrasonication (p < 0.05). Overall, Lentinula edodes Sing polysaccharides (LESPs) may have potential applications as emulsifying agents in food industries.
Collapse
Affiliation(s)
- Yan Dai
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Lei Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Xingyi Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Angxin Song
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Lingyuan Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Diandian Huang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| |
Collapse
|
20
|
Jiang B, Chen P, Guo J, Han B, Jin H, Li D, Liu C, Feng Z. Structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by ethanol/(NH 4) 2SO 4 ATPS. Int J Biol Macromol 2023:125451. [PMID: 37331540 DOI: 10.1016/j.ijbiomac.2023.125451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Exopolysaccharides (EPS) from lactic acid bacteria (LAB) as edible and safe bioproducts with health benefits have become an interesting topic. In this study, aqueous two-phase system (ATPS) was established using ethanol and (NH4)2SO4 as phase-forming substances to separate and purify LAB EPS from Lactobacillus plantarum 1.0665. The operating conditions were optimized by a single factor and response surface method (RSM). The results indicated that an effectively selective separation of LAB EPS was achieved by the ATPS consisted of 28 % (w/w) ethanol and 18 % (w/w) (NH4)2SO4 at pH 4.0. Under optimized conditions, the partition coefficient (K) and recovery rate (Y) were well matched with the predicted value of 3.83 ± 0.019 and 74.66 ± 1.05 %. The physicochemical properties of purified LAB EPS were characterized by various technologies. According to the results, LAB EPS was a complex polysaccharide with a triple helix structure mainly composed of mannose, glucose and galactose in the molar ratio of 1.00: 0.32: 0.14, and it proved that the ethanol/(NH4)2SO4 system had good selectivity for LAB EPS. In addition, LAB EPS displayed excellent antioxidant activity, antihypertension activity, anti-gout capacity and hypoglycemic activity in vitro analysis. The results suggested that LAB EPS could be a dietary supplement applied in functional foods.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiaxuan Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Bing Han
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongwei Jin
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen 518107, People's Republic of China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
21
|
Yin C, Li C, Ma K, Fan X, Yao F, Shi D, Wu W, Qiu J, Hu G, Gao H. The physicochemical, antioxidant, hypoglycemic and prebiotic properties of γ-irradiated polysaccharides extracted from Lentinula edodes. Food Sci Biotechnol 2023; 32:987-996. [PMID: 37123066 PMCID: PMC10130297 DOI: 10.1007/s10068-022-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, the influence of γ-irradiation with different dose (0, 4, 8, and 16 kGy) on chemical composition, physicochemical features and bioactivities of polysaccharides extracted from Lentinula edodes (LEP) were investigated. The carbohydrate content (from 59.47 to 70.96%), the solubility, the ⋅OH and DPPH scavenging ability of LEP increased with the increased γ-irradiation dose, while the protein content, the weight-average and number-average molecular weight of LEP were significantly decreased with the increased γ-irradiation dose. Moreover, γ-irradiation treatment caused LEP color changes and surface topography destroyed. γ-Irradiated LEP showed higher hypoglycemic activities in vitro than that of non-irradiated LEP. Moreover, γ-irradiated LEP had better proliferation promoting effects on Lactobacillus rhamnosus and L. plantarum. These results showed that γ-irradiation treatment changes the physicochemical features of LEP, thus affects its antioxidant, hypoglycemic and prebiotic properties, which suggests that γ-irradiated LEP has potential application in the pharmaceutical industries and functional foods. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01234-5.
Collapse
Affiliation(s)
- Chaomin Yin
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Chen Li
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205 China
| | - Kun Ma
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xiuzhi Fan
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Fen Yao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Defang Shi
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Wenjing Wu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jianhui Qiu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205 China
| | - Hong Gao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Research Center of Under-Forest Economy in Hubei Province, Wuhan, 430064 China
| |
Collapse
|
22
|
Tao X, Hu X, Wu T, Zhou D, Yang D, Li X, Fu Y, Zheng F, Yue H, Dai Y. Characterization and screening of anti-melanogenesis and anti-photoaging activity of different enzyme-assisted polysaccharide extracts from Portulaca oleracea L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154879. [PMID: 37229889 DOI: 10.1016/j.phymed.2023.154879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.
Collapse
Affiliation(s)
- Xingyu Tao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xuan Hu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tongchuan Wu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyue Zhou
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Yang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xue Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunhua Fu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fei Zheng
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
23
|
Zhang X, Wang X, Zhang Y, Wang F, Zhang C, Li X. Development of isopentenyl phosphate kinases and their application in terpenoid biosynthesis. Biotechnol Adv 2023; 64:108124. [PMID: 36863457 DOI: 10.1016/j.biotechadv.2023.108124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
As the largest class of natural products, terpenoids (>90,000) have multiple biological activities and a wide range of applications (e.g., pharmaceutical, agricultural, personal care and food industries). Therefore, the sustainable production of terpenoids by microorganisms is of great interest. Microbial terpenoid production depends on two common building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In addition to the natural biosynthetic pathways, mevalonate and methyl-D-erythritol-4-phosphate pathways, IPP and DMAPP can be produced through the conversion of isopentenyl phosphate and dimethylallyl monophosphate by isopentenyl phosphate kinases (IPKs), offering an alternative route for terpenoid biosynthesis. This review summarizes the properties and functions of various IPKs, novel IPP/DMAPP synthesis pathways involving IPKs, and their applications in terpenoid biosynthesis. Furthermore, we have discussed strategies to exploit novel pathways and unleash their potential for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Zeng X, Jiang W, Li H, Li Q, Kokini JL, Du Z, Xi Y, Li J. Interactions of Mesona chinensis Benth polysaccharides with different polysaccharides to fabricate food hydrogels: A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
26
|
Xu M, Qu Y, Li H, Tang S, Chen C, Wang Y, Wang H. Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Lentinan has important applications in the food and medicine fields. Fermenting Lentinula edodes with Bacillus subtilis natto increased the lentinan extraction yield by 87.13% and greatly altered the molecular structure and antioxidant activity of lentinan. The uronic acid content in the lentinan molecular structure increased from 2.08% to 4.33%. The fermentation process did not affect the monosaccharide composition of lentinan, comprised of more than 90% glucose residues. Fermentation significantly reduced the molecular weight of lentinan and altered its apparent structure. The water solubility of fermented lentinan was increased by 165.07%, and the antioxidant activity was significantly improved. Fermentation using soybean as a substrate may be beneficial for enhancing the activity of Bacillus subtilis natto and producing lentinan with different molecular weights.
Collapse
|
27
|
Zhu Y, Wu M, Li X, Wang Y, Li M, Zhou H. Flash Extraction, Characterization, and Immunoenhancement Activity of Polysaccharide from Hippophae rhamnoides Linn. Chem Biodivers 2023; 20:e202200776. [PMID: 36652073 DOI: 10.1002/cbdv.202200776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Hippophae rhamnoides L. polysaccharide was optimized with flash extraction by response surface design. The optimum process conditions were: rotation rate 5000 r/min, extraction time 15 s, extraction temperature 90 °C and liquid-to-material ratio 38 mL/g, the extraction yield was 15.28±0.02 %. HRP-1 and HRP-2 obtained by 40 % and 60 % graded alcohol precipitation were characterized. The results indicated that HRP-1 and HRP-2 both composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose with different molar ratio and the molecular weights were 380.59 kDa and 288.24 kDa, respectively. In addition, the in vitro antioxidant and immunoenhancement activities of HRP-1 and HRP-2 were analyzed, and the two fractions showed good free radical scavenging activity against ⋅OH, ABTS⋅+ , DPPH⋅, and extremely strong immunomodulatory activity against RAW264.7 cells. Indicating that flash extraction is suitable for extraction of HRP, the structural study of HRP provides a scientific theoretical basis for the development of Hippophae rhamnoides.
Collapse
Affiliation(s)
- Yunwen Zhu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, P. R. China
| | - Meifu Wu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, P. R. China
| | - Xue Li
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, P. R. China
| | - Yahong Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, P. R. China
| | - Mei Li
- Pharmacy Department, Jilin Cancer Hospital, Changchun, 130000, P. R. China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, P. R. China
| |
Collapse
|
28
|
Khakpour S, Hojjati M, Jooyandeh H, Noshad M. Microwave-assisted extraction, optimization, structural characterization, and functional properties of polysaccharides from Crataegus azarolus seeds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
MO M, JIANG F, CHEN W, DING Z, BI Y, KONG F. Preparation, characterization, and bioactivities of polysaccharides fractions from sugarcane leaves. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Yin C, Li Y, Li J, Fan X, Yao F, Shi D, Cheng Y, Liu M, Lu Q, Gao H. Gastrointestinal digestion, probiotic fermentation behaviors and immunomodulatory effects of polysaccharides from Sanghuangporus vaninii. Int J Biol Macromol 2022; 223:606-617. [PMID: 36356870 DOI: 10.1016/j.ijbiomac.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
In this study, the crude polysaccharides (CSVP) and the preliminary purified polysaccharides (PSVP) from Sanghuangporus vaninii were obtained. The physicochemical properties, gastrointestinal digestion, and probiotic fermentation behaviors of CSVP and PSVP as well as the immunomodulatory effects of PSVP in cyclophosphamide-treated mice were investigated. The results showed that PSVP had higher total polysaccharides content and solubility, but lower radical scavenging activity than CSVP. Moreover, PSVP showed lower hydrolysis degree and better probiotic effects than CSVP. In immunosuppression mice model, PSVP supplement increased the body weight, spleen and thymus index, improved the release of cytokines IFN-γ, immunoglobulins IgM and IgG, and enhanced the lysozyme activity. Moreover, PSVP supplement significantly prevented the oxidative stress in vivo, increased the level of beneficial gut microbiota, especially Bacteroidaceae and Lactobscillsceae, as well as the content of short-chain fatty acids (SCFAs). These results indicated that PSVP could recover the immune response in cyclophosphamide-treated mice by regulating gut microbiota and intestinal barrier. The findings will lay a theoretical foundation for equitable utilization of S. vaninii resources as well as the product development.
Collapse
Affiliation(s)
- Chaomin Yin
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yuhong Li
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jiangtao Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiuzhi Fan
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fen Yao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Defang Shi
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yaqing Cheng
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mengfan Liu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Lu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hong Gao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Research Center of Under-forest Economy in Hubei Province, Wuhan 430064, China.
| |
Collapse
|
31
|
Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the upcoming years, the world will face societal challenges arising, in particular, from the impact of climate change and the inefficient use of natural resources, in addition to an exponential growth of the world population, which according to the United Nations (UN) estimations will be 9.8 billion in 2050. This increasing trend requires optimized management of natural resources with the use of value-added waste and a significant reduction in food loss and food waste. Moreover, the recent pandemic situation, COVID-19, has contributed indisputably. Along with the agri-food supply chain, several amounts of waste or by-products are generated. In most cases, these biomass wastes cause serious environmental concerns and high costs to enterprises. The valorisation of the agri-food loss and food industry wastes emerged as a useful strategy to produce certain value-added compounds with several potential applications, namely in the food, health, pharmaceutical, cosmetic, and environmental fields. Therefore, in this review, some of the crucial sustainable challenges with impacts on the valorisation of agri-food loss/wastes and by-products are discussed and identified, in addition to several opportunities, trends and innovations. Potential applications and usages of the most important compounds found in food loss/waste will be highlighted, with a focus on the food industry, pharmaceutical industry, and the environment.
Collapse
|
32
|
Yang M, Ren W, Li G, Yang P, Chen R, He H. The effect of structure and preparation method on the bioactivity of polysaccharides from plants and fungi. Food Funct 2022; 13:12541-12560. [PMID: 36421015 DOI: 10.1039/d2fo02029g] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polysaccharides are not only the main components in the cell walls of plants and fungi, but also a structure that supports and protects cells. In the process of obtaining polysaccharides from raw materials containing cell walls, the polysaccharides on the cell walls are the products and also a factor that affects the extraction rate. Polysaccharides derived from plants and fungi have mild characteristics and exhibit various biological activities. The biological activity of polysaccharides is related to their chemical structure. This review summarizes the effects of the physicochemical properties and structure of polysaccharides, from cell walls in raw materials, that have an impact on their biological activities, including molecular weight, monosaccharide composition, chain structure, and uronic acid content. Also, the structure of certain natural polysaccharides limits their biological activity. Chemical modification and degradation of these structures can enhance the pharmacological properties of natural polysaccharides to a certain extent. At the same time, the processing method affects the structure and yield of polysaccharides on the cell wall and in the cell. The extraction and purification methods are summarized, and the effects of preparation methods on the structure and physiological effects of polysaccharides from plants and fungi are discussed.
Collapse
Affiliation(s)
- Manli Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Wenjing Ren
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Geyuan Li
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Rong Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
33
|
Tang Y, He X, Liu G, Wei Z, Sheng J, Sun J, Li C, Xin M, Li L, Yi P. Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide. Food Chem 2022; 405:134804. [DOI: 10.1016/j.foodchem.2022.134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
|
34
|
Sun Y, He H, Wang Q, Yang X, Jiang S, Wang D. A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities. Polymers (Basel) 2022; 14:polym14204454. [PMID: 36298031 PMCID: PMC9609814 DOI: 10.3390/polym14204454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Because of their distinctive flavor and exceptional nutritional and medicinal value, they have been a frequent visitor to people’s dining tables and have become a hot star in the healthcare, pharmaceutical, and cosmetics industries. Edible fungal polysaccharides (EFPs) are an essential nutrient for edible fungi to exert bioactivity. They have attracted much attention because of their antioxidant, immunomodulatory, antitumor, hypoglycemic, and hypolipidemic bioactivities. As a result, EFPs have demonstrated outstanding potential over the past few decades in various disciplines, including molecular biology, immunology, biotechnology, and pharmaceutical chemistry. However, the complexity of EFPs and the significant impact of mushroom variety and extraction techniques on their bioactivities prevents a complete investigation of their biological features. Therefore, the authors of this paper thoroughly reviewed the comparison of different extraction methods of EFPs and their advantages and disadvantages. In addition, the molecular weight, monosaccharide composition, and glycosidic bond type and backbone structure of EFPs are described in detail. Moreover, the in vitro and in vivo bioactivities of EFPs extracted by different methods and their potential regulatory mechanisms are summarized. These provide a valuable reference for improving the extraction process of EFPs and their production and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
- Correspondence:
| | - Huaqi He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Qian Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengjuan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Daobing Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
35
|
Tian M, Wang L, Dong Z, Wang X, Qin X, Wang C, Wang J, Huang Q. Preparation, structural characterization, antioxidant activity and protection against cisplatin-induced acute kidney injury by polysaccharides from the lateral root of Aconitum carmichaelii. Front Pharmacol 2022; 13:1002774. [PMID: 36339535 PMCID: PMC9632954 DOI: 10.3389/fphar.2022.1002774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 03/19/2024] Open
Abstract
Response surface methodology (RSM) and Box- Behnken design (BBD) based on one-way experiments were used to optimize the extraction parameters of the lateral root polysaccharides of Aconitum carmichaelii. The extracted polysaccharides were named as refined fucose polysaccharide. The optimal conditions included a water to raw material ratio of 43, an extraction time of 2 h, and an extraction temperature of 90°C. The shape of RFP was shown by infrared spectroscopy (IR) and scanning electron microscopy (SEM) analysis. The monosaccharide composition and molecular weight of RFP was determined by high-performance liquid chromatography (HPLC). Furthermore, RFP exhibited moderate antioxidant activity by analyzing the scavenging rates of 2,2-diphenyl-1-picrylhydrazyl radical, superoxide anion radical, hydroxyl radical, and ABTS + radical. RFP exerted cytoprotective effects against hydrogen peroxide (H2O2)-induced injury in the rat renal tubular epithelial cell line rat renal tubular epithelial cells (NRK-52E) and inhibited apoptosis. In addition, researches found that RFP could alleviate cisplatin-induced acute kidney injury in mice by enhancing the levels of glutathione (GSH) and glutathione peroxidase-4 (GPX-4), decreasing the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), reducing lipid peroxidation, and thus inhibiting ferroptosis. In conclusion, this study provides a good strategy for obtaining bioactive polysaccharides from Fuzi.
Collapse
Affiliation(s)
- Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, Chengdu, China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Zhou C, Huang Y, Chen J, Chen H, Wu Q, Zhang K, Li D, Li Y, Chen Y. Effects of high-pressure homogenization extraction on the physicochemical properties and antioxidant activity of large-leaf yellow tea polysaccharide conjugates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Comparative analysis of physicochemical characteristics and in vitro biological activities of polysaccharides from γ-irradiated and nonirradiated Schizophyllum commune. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Li L, Zhang H, Chen X, Yan S, Yang L, Song H, Li J, Liu J, Yu H, Liu H, Zhu D. Chemical composition and sugar spectroscopy of soy hull polysaccharides obtained by microwave‐assisted salt extraction. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Li
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Hongyun Zhang
- College of Food Science and Technology Bohai University Jinzhou China
| | - Xinru Chen
- College of Food Science and Technology Bohai University Jinzhou China
| | - Shiyu Yan
- College of Food Science and Technology Bohai University Jinzhou China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Hong Song
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Jun Li
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Jun Liu
- Shandong Yuwang Ecogical Food Industry Co. Ltd. Yucheng China
| | - Hansong Yu
- College of Food Science and Technology Jilin Agricultural University Changchun China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Danshi Zhu
- College of Food Science and Technology Bohai University Jinzhou China
| |
Collapse
|
39
|
Pang X, Jing Y, Li P, Qiu X, Zheng Y, Wang Q, Wu L. Structural characterization and antioxidant activities of polysaccharides from Angelica dahurica as extracted by optimized ultrasonic-assisted method. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xinyue Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Pengyue Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China
| | - Qian Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
40
|
Astragalus Shiitake—A Novel Functional Food with High Polysaccharide Content and Anti-Proliferative Activity in a Colorectal Carcinoma Cell Line. Nutrients 2022; 14:nu14112333. [PMID: 35684133 PMCID: PMC9182587 DOI: 10.3390/nu14112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
The chemical and nutritional constituents of mushrooms can alter significantly when grown on different substrates. Based on this fact, an approach was made to cultivate a new type of mushroom, Hengshan Astragalus Shiitake, by growing Shiitake mushrooms on beds supplemented with the roots of an edible herbal plant, Astragalus membranaceus. In this study, three green extraction techniques, including microwave-enzyme assisted (MEA), ultrasound-enzyme assisted (UEA) and microwave-ultrasound-enzyme assisted (MUEA) extractions, were used to compare both the yield and antiproliferative activity of the polysaccharide-rich extracts (PREs) from HAS in human colorectal carcinoma cells (HCT 116). Both HAS-A and HAS-B extracts contain significantly higher amounts of polysaccharides when compared to the control (Shiitake extract), regardless of the extraction methods. The PREs from HAS-B have significantly higher anti-proliferative activity in HCT 116 compared to the control when using the UEA extraction method. Our findings demonstrate that HAS-B can become a novel functional food with anti-proliferative activities and the optimization of UEA extraction would help to develop new active extract-based health products.
Collapse
|
41
|
Two glycoproteins from medicinal insect Periplaneta americana (L.) promote diabetic wound healing via macrophage polarization modulation. Int J Biol Macromol 2022; 209:2130-2141. [PMID: 35500775 DOI: 10.1016/j.ijbiomac.2022.04.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Along with the increasing attempts to explore the wound healing effective substances of Periplaneta americana (L.) (PA), a medicinal insect in traditional Chinese medicine, researchers' attention turned to the endogenetic macromolecules, such as polysaccharides and peptides. Herein, we innovatively isolated two glycoproteins from PA, named PAGP-1 and PAGP-2, which were obtained by Cellulose DE-52 chromatography and purified by Sephadex G-100 gel in succession. The structural characterization of the two PAGPs were performed, including molecular weight, amino acid and monosaccharide composition, morphology analysis, FT-IR and 1H NMR analysis, CD spectroscopy, and glycosides linkage. As a result, two PAGPs belonged to O-glycopeptide bonds linked glycoproteins. The content of carbohydrate and protein of PAGP-1 was approximately 25.23% and 65.92% respectively, which of PAGP-2 was approximately 25.71% and 71.23%. Based on the remarkable anti-inflammatory effects of PAGPs on LPS-induced RAW264.7 cells, the topical administration of PAGP-1 and PAGP-2 could significantly accelerate full-thickness wound healing in diabetic mice, involving to alleviate the inflammation, increase the ratio of type I and type III collagen fibers, and promote the polarization of macrophages M1 to M2. In short, this study provides clear evidence that the glycoproteins would be the potential wound healing bioactive substances in PA.
Collapse
|
42
|
Zhang M, Wang X, Wang X, Han M, Li H, Yue T, Wang Z, Gao Z. Effects of fermentation with Lactobacillus fermentum 21828 on the nutritional characteristics and antioxidant activity of Lentinus edodes liquid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3405-3415. [PMID: 34825372 DOI: 10.1002/jsfa.11688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Few studies to date have evaluated the use of Lactobacillus and Bifidobacterium in edible fungus fermentation. To obtain a fermented Lentinus edodes liquid product with good taste and effects, a strain with good fermentation performance from nine strains tested was selected, and the physicochemical properties and antioxidant capacity of the resulting product were evaluated. RESULTS Lactobacillus fermentum 21828 exhibited adhesion, tolerance to low pH and bile salts, and good fermentation performance. The number of viable bacteria was 1.05 × 108 CFU mL-1 , and the extraction rate of crude polysaccharide from L. edodes was 2.79% after fermentation. The effects of fermentation on the contents and composition of nutrients in L. edodes liquid were marked, with changes in total soluble protein, total soluble sugar, total acid, and total phenol levels. The 2,2-diphenyl-1-picrylhydrazyl radical-scavenging rate in the fermentation liquid was 93.01%, which was significantly higher than that in non-fermented liquid (80.33%). Furthermore, analysis of volatile and 5'-nucleotide contents showed that fermentation altered the flavor of the product, whereas sensory evaluation showed that the fermented product was preferred. CONCLUSION Our study demonstrated that the fermented L. edodes liquid exhibited better nutritional and functional properties, as well as sensory characteristics, compared with unfermented liquid. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meina Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaowei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
43
|
Krishnamoorthi R, Srinivash M, Mahalingam PU, Malaikozhundan B. Dietary nutrients in edible mushroom, Agaricus bisporus and their radical scavenging, antibacterial, and antifungal effects. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Javed M, Belwal T, Ruyuan Z, Xu Y, Li L, Luo Z. Optimization and Mechanism of Phytochemicals Extraction from Camellia Oleifera Shells Using Novel Biosurfactant Nanobubbles Solution Coupled with Ultrasonication. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Lin Y, Pi J, Jin P, Liu Y, Mai X, Li P, Fan H. Enzyme and microwave co-assisted extraction, structural characterization and antioxidant activity of polysaccharides from Purple-heart Radish. Food Chem 2022; 372:131274. [PMID: 34638061 DOI: 10.1016/j.foodchem.2021.131274] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
A novel method of simultaneous extraction and separation of diverse polysaccharides from Purple-heart Radish was developed by integrating EAE with MAATPE. The effects of different enzymes, the ATPS composition, extraction temperature, time etc. were investigated by single-factor experiments and RSM. Under the optimum conditions, the extraction yields of PTP, PBP and total polysaccharides were 9.107 ± 0.391%, 32.506 ± 0.046% and 41.613 ± 0.437%, respectively. By means of HPGPC and PMP-HPLC, Mw of PTP and Mw of PBP were 15935 Da and 27962 Da, respectively. PTP and PBP were mainly composed of mannose, glucuronic acid, aminogalactose, glucose, galactose and arabinose. Moreover, both polysaccharides exhibited stronger antioxidant activities for scavenging multiple radicals and anti-lipid peroxidation. Compared to the conventional extraction methods, EAE-MAATPE achieved higher extraction efficiency due to the synergistic effect between EAE and MAATPE leading to rupture and enzymolysis of cell. Thus, EAE-MAATPE provided an efficient alternative to simultaneous extraction of different polysaccharides from natural products.
Collapse
Affiliation(s)
- Yuyang Lin
- School of Food Engineering and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaju Pi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peiyi Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingtao Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoman Mai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingfan Li
- School of Food Engineering and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
46
|
Fu X, Song M, Lu M, Xie M, Shi L. Hypoglycemic and hypolipidemic effects of polysaccharide isolated from Sphacelotheca sorghi in diet-streptozotocin-induced T2D mice. J Food Sci 2022; 87:1882-1894. [PMID: 35275401 DOI: 10.1111/1750-3841.16091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 01/16/2023]
Abstract
Edible fungus has attracted great interest with many health benefits, and polysaccharides from them have shown great potentials. In this study, polysaccharides were extracted from Sphacelotheca sorghi (Link) Clint. Monosaccharide composition of S. sorghi polysaccharides (SSP) was detected by high-performance anion exchange chromatography (HPAEC) and mainly consists of glucose (70.5%), galactose (15.6%), mannose (7.2%), arabinose (5.8%), and rhamnose (0.9%). Type 2 diabetes (T2D) was induced by a high-fat, high-sugar diet-fed (HFSD) diet with streptozotocin (STZ) injection in mice, and hypoglycemic and hypolipidemic regulations of SSP were evaluated. After oral treatment of high dose of SSP (200 mg/kg/day), the fasting blood glucose (FBG) was reduced by 39.3%, the insulin resistance of T2D mice was relieved, the lipids metabolism disorder caused by diabetes was improved, and the levels of liver glycogen was increased by 34.1%, compared with the model control. Histopathological examination showed that SSP relieved liver damage. Furthermore, SSP regulated glucose and lipid metabolism by activating phosphoinositide 3-kinase/Akt signaling pathway. Overall, SPP is promising to be used as a functional food for the improvement of metabolic disorders. PRACTICAL APPLICATION: For enhancing the utilization rate and economic value of an edible fungi Sphacelotheca sorghi (Link) Clint., the total polysaccharides were isolated and used to investigate the effect of fungi in terms of balancing the levels of blood glucose and lipids. The S. sorghi polysaccharide treatment resolved the symptoms and insulin resistance in mice with diabetes, signifying its potential application in producing different functional foods for preventing or controlling diabetes.
Collapse
Affiliation(s)
- Xin Fu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Mengxue Song
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China.,College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ming Lu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China.,College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mengxi Xie
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
47
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
48
|
Guo X, Guo H, Wu S, Yu X. Extraction, Bioactive Composition, and Antioxidant Activity of Polysaccharides from the Mushroom
Rugiboletus Extremiorientalis. STARCH-STARKE 2022. [DOI: 10.1002/star.202100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao‐Ying Guo
- College of Biological Science and Technology Shenyang Agricultural University Shenyang 110866 China
| | - Hong‐Bo Guo
- College of Life Engineering Shenyang Institute of Technology Fushun 113122 China
| | - Shuang‐Yan Wu
- College of Biological Science and Technology Shenyang Agricultural University Shenyang 110866 China
| | - Xiao‐Dan Yu
- College of Biological Science and Technology Shenyang Agricultural University Shenyang 110866 China
| |
Collapse
|
49
|
Zhu Z, Chen J, Chen Y, Ma Y, Yang Q, Fan Y, Fu C, Limsila B, Li R, Liao W. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Cao Z, Guo Y, Liu Z, Zhang H, Zhou H, Shang H. Ultrasonic enzyme-assisted extraction of comfrey (Symphytum officinale L.) polysaccharides and their digestion and fermentation behaviors in vitro. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|