1
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
2
|
Zhang J, Li J, Gong J, Liu J, Wang Y, Zhao F, Sun S, Wang W. A novel highly thermostable and stress resistant ROS scavenging metalloprotein from Paenibacillus. Arch Biochem Biophys 2024; 751:109837. [PMID: 38007074 DOI: 10.1016/j.abb.2023.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Reactive oxygen species (ROS) are unstable metabolites produced during cellular respiration that can cause extensive damage to the body. Here we report a unique structural metalloprotein called RSAPp for the first time, which exhibits robust ROS-scavenging activity, high thermostability, and stress resistance. RSAPp is a previously uncharacterized DUF2935 (domain of unknown function, accession number: cl12705) family protein from Paenibacillus, containing a highly conserved four-helix bundle with binding sites for variable-valence metal ions (Mn2+/Fe2+/Zn2+). Enzymatic characterization results indicated that RSAPp displays the functionality of three different antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). In particular, RSAPp exhibits a significant SOD-like activity that is remarkably effective in eliminating superoxide radicals (up to kcat/KM = 2.27 × 1011 mol-1 s-1), and maintains the catalytical active in a wide range of temperatures (25-100 °C) and pH (pH 2.0-9.0), as well as resistant to high temperature, alkali and acidic pH, and 55 different concentrations of detergent agents, chemical solvents, and inhibitors. These properties make RSAPp an attractive candidate for various industrial applications, including cosmetics, food, and pharmaceuticals.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Jiabin Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Jingbo Gong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Jingjing Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, PR China
| | - Fang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Shenmei Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, PR China.
| |
Collapse
|
3
|
Satvati S, Ghasemi Y, Najafipour S, Eskandari S, Mahmoodi S, Nezafat N, Hashemzaei M. Finding and engineering the newly found bacterial superoxide dismutase enzyme to increase its thermostability and decrease the immunogenicity: a computational and experimental research. Arch Microbiol 2023; 205:260. [PMID: 37291420 DOI: 10.1007/s00203-023-03601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Superoxide dismutase (SOD) is one of the most important antioxidant enzymes that can reduce oxidative stress in the cell environment. Nowadays, bacterial sources of enzyme are commercially applicable in the cosmetics and pharmaceutical industries, but the allergenic effect of proteins from non-human sources has been mentioned as disadvantage of these kinds of enzymes. In this study, to find the suitable bacterial SOD candidate for decreasing immunogenicity, the sequences of five thermophilic bacteria were selected as reference species. Then, linear and conformational B-cell epitopes of the SOD were analyzed by different servers. The stability and immunogenicity of mutant positions were also evaluated. The mutant gene was inserted into the pET-23a expression vector and transformed into E. Coli BL21 (DE3) for expression of the recombinant enzyme. Afterward, the expression of the mutant enzyme was evaluated by SDS-PAGE analysis and the recombinant enzyme activity was assessed. Anoxybacillus gonensis was selected as a reasonable SOD source according to BLAST search, physicochemical properties analysis, and prediction of allergenic features. Regarding our results, five residues including E84, E142, K144, G147, and M148 were predicted as candidates for mutagenesis. Finally, the K144A was chosen as the final modification due to the increase in the stability of the enzyme and decreased immunogenicity of the enzyme as well. The enzyme activity was 240 U/ml at room temperature. Alternation in K144 to alanine caused increased stability of the enzyme. In silico studies confirmed non-antigenic protein after mutation.
Collapse
Affiliation(s)
- Saha Satvati
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Najafipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sedigheh Eskandari
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Masoud Hashemzaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in Bacillus cereus 905. Appl Microbiol Biotechnol 2021; 105:5943-5957. [PMID: 34350477 DOI: 10.1007/s00253-021-11402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 10/20/2022]
Abstract
Bacillus cereus 905, originally isolated from wheat rhizosphere, exhibits strong colonization ability on wheat roots. Our previous studies showed that root colonization is contributed by the ability of the bacterium to efficiently utilize carbon sources and form biofilms and that the sodA2 gene-encoded manganese-containing superoxide dismutase (MnSOD2) plays an indispensable role in the survival of B. cereus 905 in the wheat rhizosphere. In this investigation, we further demonstrated that the ability of B. cereus 905 to resist adverse environmental conditions is partially attributed to activation of the alternative sigma factor σB, encoded by the sigB gene. The sigB mutant experienced a dramatic reduction in survival when cells were exposed to ethanol, acid, heat, and oxidative stress or under glucose starvation. Analysis of the sodA2 gene transcription revealed a partial, σB-dependent induction of the gene during glucose starvation or when treated with paraquat. In addition, the sigB mutant displayed a defect in biofilm formation under stress conditions. Finally, results from the root colonization assay indicated that sigB and sodA2 collectively contribute to B. cereus 905 colonization on wheat roots. Our study suggests a diverse role of SigB in rhizosphere survival and root colonization of B. cereus 905 under stress conditions. KEY POINTS : • SigB confers resistance to environmental stresses in B. cereus 905. • SigB plays a positive role in glucose utilization and biofilm formation in B. cereus. • SigB and SodA2 collectively contribute to colonization on wheat roots by B. cereus.
Collapse
|
6
|
Xia J, Liu C, Niu H, Hou W, Li S. Screening and isolation of potential lipoxidase and superoxide dismutase inhibitors from Scutellaria baicalensis Georgi using high-speed countercurrent chromatography target-guided by ultrafiltration-liquid chromatography-mass spectrometry. J Sep Sci 2021; 44:1371-1382. [PMID: 33433962 DOI: 10.1002/jssc.202001072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
We present a simple and efficient method based on ultrafiltration high-performance liquid chromatography coupled with a photodiode array detector and electrospray ionization mass spectrometry for the rapid screening and identification of ligands obtainable from the extract of Scutellaria baicalensis. Five major compounds (chrysin-6-C-arabinosyl-8-C-glucoside, chrysin-6-C-glucosyl-8-C-arabinoside, baicalin, oroxylin A-7-O-glucuronide, and wogonoside) were identified as potentially effective inhibitors of lipoxidase and superoxide dismutase. Subsequently, specific binding ligands were separated by high-speed countercurrent chromatography, using ethyl acetate/ethyl alcohol/water acetate (0.1%) (1.0:0.1:1.0, v/v/v) as the solvent system. To the best of our knowledge, this is the first report of S. baicalensis extracts containing potent lipoxidase and superoxide dismutase inhibitors. Our results demonstrate that the systematic isolation of bioactive components from the n-butyl alcohol layer of S. baicalensis guided by ultrafiltration high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry represents a feasible and efficient technique that could also be employed for the identification and isolation of other enzyme inhibitors.
Collapse
Affiliation(s)
- Jianli Xia
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Huazhou Niu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Wanchao Hou
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| |
Collapse
|
7
|
Chovanová K, Böhmer M, Poljovka A, Budiš J, Harichová J, Szemeš T, Zámocký M. Parallel Molecular Evolution of Catalases and Superoxide Dismutases-Focus on Thermophilic Fungal Genomes. Antioxidants (Basel) 2020; 9:antiox9111047. [PMID: 33120873 PMCID: PMC7712995 DOI: 10.3390/antiox9111047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Catalases (CAT) and superoxide dismutases (SOD) represent two main groups of enzymatic antioxidants that are present in almost all aerobic organisms and even in certain anaerobes. They are closely interconnected in the catabolism of reactive oxygen species because one product of SOD reaction (hydrogen peroxide) is the main substrate of CAT reaction finally leading to harmless products (i.e., molecular oxygen and water). It is therefore interesting to compare the molecular evolution of corresponding gene families. We have used a phylogenomic approach to elucidate the evolutionary relationships among these two main enzymatic antioxidants with a focus on the genomes of thermophilic fungi. Distinct gene families coding for CuZnSODs, FeMnSODs, and heme catalases are very abundant in thermophilic Ascomycota. Here, the presented results demonstrate that whereas superoxide dismutase genes remained rather constant during long-term evolution, the total count of heme catalase genes was reduced in thermophilic fungi in comparison with their mesophilic counterparts. We demonstrate here, for the newly discovered ascomycetous genes coding for thermophilic superoxide dismutases and catalases (originating from our sequencing project), the expression patterns of corresponding mRNA transcripts and further analyze translated protein sequences. Our results provide important implications for the physiology of reactive oxygen species metabolism in eukaryotic cells at elevated temperatures.
Collapse
Affiliation(s)
- Katarína Chovanová
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravska cesta 21, SK-84551 Bratislava, Slovakia; (K.C.); (A.P.); (J.H.)
| | - Miroslav Böhmer
- Department of Molecular Biology, Faculty of Nat. Sciences, Science Park of Comenius University, Comenius University, Ilkovičova 8, SK-84104 Bratislava, Slovakia; (M.B.); (J.B.); (T.S.)
| | - Andrej Poljovka
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravska cesta 21, SK-84551 Bratislava, Slovakia; (K.C.); (A.P.); (J.H.)
| | - Jaroslav Budiš
- Department of Molecular Biology, Faculty of Nat. Sciences, Science Park of Comenius University, Comenius University, Ilkovičova 8, SK-84104 Bratislava, Slovakia; (M.B.); (J.B.); (T.S.)
| | - Jana Harichová
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravska cesta 21, SK-84551 Bratislava, Slovakia; (K.C.); (A.P.); (J.H.)
| | - Tomáš Szemeš
- Department of Molecular Biology, Faculty of Nat. Sciences, Science Park of Comenius University, Comenius University, Ilkovičova 8, SK-84104 Bratislava, Slovakia; (M.B.); (J.B.); (T.S.)
| | - Marcel Zámocký
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravska cesta 21, SK-84551 Bratislava, Slovakia; (K.C.); (A.P.); (J.H.)
- Department of Chemistry, Institute of Biochemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Correspondence:
| |
Collapse
|
8
|
The recA gene is crucial to mediate colonization of Bacillus cereus 905 on wheat roots. Appl Microbiol Biotechnol 2020; 104:9251-9265. [PMID: 32970180 DOI: 10.1007/s00253-020-10915-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Bacillus cereus 905, one of the plant growth-promoting rhizobacteria (PGPRs), is capable of colonizing wheat roots in a large population size. From previous studies, we learned that the sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) is important for B. cereus 905 to survive in wheat rhizosphere. In this investigation, we demonstrated that deletion of the recA gene, which codes for the recombinase A, significantly reduced MnSOD2 expression at both the mRNA and the protein levels. Through comparison with the wild-type, the ∆recA showed a dramatic decrease in cell survival after exposure to 50 μM paraquat or 15 mM H2O2. Evidence indicated that the recA gene of B. cereus 905 also notably regulated nutrition utilization efficiency, biofilm formation, and swarming motility. The root colonization examination showed that the ∆recA had a 1000- to 2500-fold reduction in colonization on wheat roots, suggesting that RecA plays an indispensable role in effective colonization on wheat roots by B. cereus 905. Taken together, the recA gene positively regulates MnSOD2 production and nutrition utilization and protects B. cereus 905 cells against paraquat and H2O2. Besides, biofilm formation and swarming motility of B. cereus 905 are promoted by RecA. Finally, RecA significantly contributes to wheat root colonization of B. cereus 905. Our results showed the important role of RecA during physiological processes in B. cereus 905, especially for colonization on wheat roots. Our findings will point out a research direction to study the colonization mechanisms of B. cereus 905 in the future and provide potential effective strategy to enhance the biocontrol efficacy of PGPR strains. KEY POINTS : • RecA plays an indispensable role in root colonization of B. cereus.
Collapse
|
9
|
Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp. ANT108. Protein Expr Purif 2020; 173:105661. [DOI: 10.1016/j.pep.2020.105661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
|
10
|
Zhang J, Wang H, Huang Q, Zhang Y, Zhao L, Liu F, Wang G. Four superoxide dismutases of Bacillus cereus 0-9 are non-redundant and perform different functions in diverse living conditions. World J Microbiol Biotechnol 2020; 36:12. [PMID: 31897767 DOI: 10.1007/s11274-019-2786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Abstract
Superoxide dismutases (SODs) have been shown to exhibit high levels of conservation and exist in almost all aerobic organisms and even many strict anaerobes. There are four SODs in Bacillus cereus 0-9, and this coexistence of multiple homologous enzymes is of great significance in the evolution of bacteria. We hypothesized that the four sod genes in B. cereus 0-9 constituted non-redundant protection against oxidative damage in vivo and played unique roles in the pathogenicity of B. cereus 0-9 during different phases or growth environments. To test this hypothesis, we constructed four single-knockout mutants (∆sodA1, ∆sodA2, ∆sodS, and ∆sodC) and a mutant lacking all four sod genes (∆sod-4) of B. cereus 0-9 and assessed their various phenotypes. Our results indicated that sodA1 plays a major role in tolerance to intracellular oxidative stress and spore formation. The ∆sodA1 and ∆sod-4 mutants were very sensitive to oxidants. The spore formation of the ∆sodA1 mutant was dramatically delayed, and the ∆sod-4 mutant did not form any spores under our experimental conditions. The sodA2 gene may play an important role in negative regulation of swarming motility, pathogenicity, and phospholipase and haemolytic activity of B. cereus but also a role in positive regulation of biofilm formation under our experimental conditions. The other two genes, sodS and sodC, were key to the pathogenicity of B. cereus. The lethal rates of Helicoverpa armigera infected by the ∆sodS and ∆sodC mutants were only 26.67%, while wild-type B. cereus 0-9 caused lethality in up to 86.67% of the insects at 24 h after injection. Moreover, the ∆sod-4 mutant caused a reduced death rate of H. armigera of 46.70%, which was slightly higher than that caused by the ∆sodS and ∆sodC strains. Thus, these four sod genes were non-redundant for oxidative stress and may play different additional roles in B. cereus 0-9. These results can help us to further understand the biocontrol characteristics of B. cereus 0-9 and lay a theoretical foundation for further research.
Collapse
Affiliation(s)
- Juanmei Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,Pharmaceutical College, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Haodong Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Qiubin Huang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Ying Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Linlin Zhao
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Fengying Liu
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Gang Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China. .,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
11
|
Matilda C, Mannully S, Viditha R, Shanthi C. Protein profiling of metal‐resistantBacillus cereusVITSH1. J Appl Microbiol 2019; 127:121-133. [DOI: 10.1111/jam.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023]
Affiliation(s)
- C.S. Matilda
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - S.T. Mannully
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - R.P. Viditha
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - C. Shanthi
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| |
Collapse
|
12
|
Selvaraj K, Katare DP, Kumar P, Chaudhary N. Juglans regia and Ribes nigrum as potential nutraceuticals: Source of thermostable superoxide dismutase enzyme. J Food Biochem 2019; 43:e12823. [PMID: 31353523 DOI: 10.1111/jfbc.12823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/16/2023]
Abstract
In the present study, superoxide dismutase (SOD) extracted from dry fruits; Juglans regia (Walnut; W) and Ribes nigrum (Munakka; M) was partially purified into 0%-40% and 40%-80% fractions based on ammonium sulfate saturation levels. The partially purified fractions (0%-40%) exhibited purification level of 3.09- (W) and 3.22- (M) fold with specific activity 79.32 Umg-1 (W) and 125.23 Umg-1 (M). SOD from both the sources was found to be thermally stable, that is, 80°C (W) and 70°C (M). Kinetic studies showed Km values to be 3.33 mM (W) and 2.86 mM (M), whereas the activation energy (Ea ) calculated as 24.52 KJ mol-1 (W) and 26.25 KJ mol-1 (M). Na+ , Mn2+ , and Ba2+ ions acted as potential inhibitors, whereas Fe2+ stimulated SOD from both the sources. Among these metal ions, Na+ exhibited uncompetitive inhibition in both cases; with Ki values of 0.7 mM (W) and 0.9 mM (M), suggesting the more prominent binding affinity and effectiveness. PRACTICAL APPLICATIONS: Awareness need to be created among people for multifactorial health benefits of nutraceuticals in day-to-day life. Nutritional consumption from fruits, nuts, and vegetables safeguard against various maladies like cardiovascular diseases, diabetes, and cancers. Superoxide dismutase (EC 1.15.1.1) is a standout among the most critical metal-containing enzymes that act as a main line of defense against oxidative stress. Antioxidant-based drugs and formulations have been developed in the recent years and research is emphasized on its impact on oxidative stress levels. In this study, Juglans regia (W) and Ribes nigrum (M) were found to have thermostable SOD enzyme with excellent antioxidant properties. Thermal stability of an enzyme improves its significance making it industry friendly with therapeutically vital products, alongside their utilization as supplement in numerous therapeutic formulations.
Collapse
Affiliation(s)
- Kanagarethinam Selvaraj
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Deepshikha Pande Katare
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Prabhanshu Kumar
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nidhee Chaudhary
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
13
|
Liu J, Wei B, Che C, Gong Z, Jiang Y, Si M, Zhang J, Yang G. Enhanced stability of manganese superoxide dismutase by amino acid replacement designed via molecular dynamics simulation. Int J Biol Macromol 2019; 128:297-303. [PMID: 30685308 DOI: 10.1016/j.ijbiomac.2019.01.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/27/2022]
Abstract
In order to improve manganese-SOD stability, three mutations were constructed via site-directed mutagenesis, and the root mean square fluctuation (RMSF) and root mean square deviation (RMSD) were used as stability assessment indexes. The amino acids of V140, E155 and E215 from wild-type mouse Mn-SOD was replaced to L140, W155 and W215, and a recombinant plasmid containing DNA segment coding wild-type and mutant Mn-SOD protein was transformed into Escherichia coli BL21 for expression. The highest enzyme activity of the mutations-MnSOD was 2050 U/mg. In addition, the recombinant protein, TM-MnSODV140L, E155W, E215W exhibited higher working temperature and improved stability compared with the wild-type Mn-SOD. Furthermore, CD spectrum analysis of the improved mutants and wild-type enzyme showed that there was no significant change in their secondary structures. This study not only expands the scope of the application of enzymes, but also helps us understand the relationship between protein structure and function.
Collapse
Affiliation(s)
- Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Beibei Wei
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Chengchuan Che
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhijin Gong
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yueshui Jiang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Junming Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|