1
|
Malani H, Kumar S, Rathore AS. Elucidation of Mg 2+ induced size and charge heterogeneity in monoclonal antibody therapeutics. Int J Biol Macromol 2024; 283:137736. [PMID: 39551289 DOI: 10.1016/j.ijbiomac.2024.137736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Changes in charge variant profile are known to affect mAb stability and vice versa. This report elucidates the effects of magnesium metal (0.5 mM Mg2+) on trastuzumab (IgG1 antibody). Mg2+ is often used as an excipient (50-100 mM) and lubricant (5-10 % w/w) in biopharmaceutical formulations. Analytical size-exclusion chromatography (SEC) and cation-exchange chromatography (CEX) coupled with mass spectrometry (MS) were used to evaluate the size and charge heterogeneity in the thermal and metal stressed samples and compared to the control sample (room temperature). The present study unveils that presence of Mg2+ significantly increases the rate of aggregation with 9 % aggregation observed in Mg2+ stressed samples as compared to that from thermal stress (~2 %) or control sample (<1 %). Similarly, a 2-fold elevation in acidic variants was observed both in presence of Mg2+ and thermal stress, when contrasted with the control sample. Application of stress also led to the formation of 17 additional chemical modifications (7 due to thermal stress and 10 due to Mg2+ stress) which were not identified in control, predominantly involving deamidation, isomerization of aspartic acid, oxidation, and succinimide modifications. The results indicate the need for a detailed analysis of the impact of presence of metals in biotherapeutic formulations.
Collapse
Affiliation(s)
- Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Gomes C, Gridley K, Anastasiou I, Sinkó B, Mrsny RJ. Hydrogel formats to model potential drug interactions occurring at the subcutaneous injection site. Eur J Pharm Biopharm 2024; 199:114308. [PMID: 38688439 DOI: 10.1016/j.ejpb.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
We have previously developed an in vitro instrument, termed subcutaneous injection site simulator (SCISSOR), that can be used to monitor release properties of an active pharmaceutical ingredient (API) and formulation components of a medicine designed for SC injection. Initial studies to validate the SCISSOR instrument applications used a simple hyaluronic acid (HA) hydrogel to monitor early release events. We now report a type of cross-linked HA that can, when combined with HA, provide a hydrogel (HA-XR) with optical clarity and rheological properties that remain stable for at least 6 days. Incorporation of 0.05-0.1 mg/mL of collagens isolated from human fibroblasts (Col F), bovine type I collagen (Col I), chicken collagen type II (Col II), or chondroitin sulphate (CS) produced HA or HA-XR hydrogel formats with optical clarity and rheological properties comparable to HA or HA-XR alone. HA + Col F hydrogel had a much greater effect on release rates of 70 kDa compared to 4 kDa dextran, while Col F incorporated into the HA-XR hydrogel accentuated differences in release rates of prandial and basal forms of insulin as well as decreased the release rate of denosumab. A hydrogel format of HA + Col I was used to examine the complex events for bevacizumab release under conditions where a target ligand (vascular endothelial growth factor) can interact with extracellular matrix (ECM). Together, these data have demonstrated the feasibility of using a cross-linked HA format to examine API release over multiple days and incorporation of specific ECM elements to prepare more biomimetic hydrogels that allow for tractable examination of their potential impact of API release.
Collapse
Affiliation(s)
| | - Kate Gridley
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | | | | | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
3
|
Aslan M, Aydın F, Levent A. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor. Talanta 2023; 265:124893. [DOI: https:/doi.org/10.1016/j.talanta.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
|
4
|
Aslan M, Aydın F, Levent A. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor. Talanta 2023; 265:124893. [PMID: 37437394 DOI: 10.1016/j.talanta.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
A sensitive, simple, fast electrochemical biosensor for the DNA interaction of bevacizumab (BEVA), which is used as a targeted drug in cancer treatment, was developed using the differential pulse voltammetry (DPV) technique with pencil graphite electrode (PGE). In the work, PGE was electrochemically activated in a supporting electrolyte medium of +1.4 V/60 s (PBS pH 3.0). Surface characterization of PGE was carried out by SEM, EDX, EIS, and CV techniques. Determination and electrochemical properties of BEVA were examined with CV and DPV techniques. BEVA gave a distinct analytical signal on the PGE surface at a potential of +0.90 V (vs. Ag/AgCl). In the procedure proposed in this study, BEVA gave a linear response on PGE in PBS (pH 3.0 containing 0.02 M NaCl) (0.1 mg mL-1 - 0.7 mg mL-1) with LOD and LOQ values of 0.026 mg mL-1 and 0.086 μg mL-1, respectively. BEVA was reacted with 20 μg mL-1 DNA in PBS for 150 s and analytical peak signals for adenine and guanine bases were evaluated. The interaction between BEVA-DNA was supported by UV-Vis. Absorption spectrometry and the binding constant was determined as 7.3 × 104.
Collapse
Affiliation(s)
- Mehmet Aslan
- Department of Chemistry, Faculty of Sciences, Dicle University, Diyarbakir, Turkey
| | - Fırat Aydın
- Department of Chemistry, Faculty of Sciences, Dicle University, Diyarbakir, Turkey
| | - Abdulkadir Levent
- Department of Chemistry, Faculty of Arts and Sciences, Batman University, Batman, Turkey.
| |
Collapse
|
5
|
Bana AA, Sajeev N, Halder S, Abbas Masi H, Patel S, Mehta P. Comparative stability study and aggregate analysis of Bevacizumab marketed formulations using advanced analytical techniques. Heliyon 2023; 9:e19478. [PMID: 37810070 PMCID: PMC10558615 DOI: 10.1016/j.heliyon.2023.e19478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Bevacizumab (Bvz) is the most preferred recombinant humanized monoclonal antibody in biosimilar development due to its prominence as a standard treatment in the oncology space. Therapeutic monoclonal antibodies are typically more complex and unlikely to produce a replica. As a result, regulatory agencies allow approval of biosimilars that differ structurally and functionally from their reference product, but these differences should not have any clinical significance. To identify these significant discrepancies, it is essential to perform a thorough characterization of critical product attributes both in real-time and after storage until the product's expiration. In the present study, two Bvz biosimilar brands (Bio-1 and Bio-2) marketed in India were evaluated and compared with the reference product Avastin® to assess their degree of similarity. A comprehensive physicochemical characterization of biosimilars and reference product was performed using orthogonal techniques including LC-ESI-QTOF, MALDI-TOF, FTIR-ATR, iCIEF, rCE, nrCE, UV280, and RP-HPLC. Furthermore, Bvz formulations under study were subjected to various stress conditions of thermal (elevated temperature 50 ± 2 °C), chemical (acidic pH 3.0 ± 0.2, neutral pH 7.0 ± 0.2, and basic pH 10.0 ± 0.2), and mechanical (agitation 200 rpm) for comparative stability evaluation. Any alteration in the secondary structure of the native protein was detected and quantified using far-UV circular dichroism (CD), indicating an average of 15% and 11% loss in native antiparallel β-sheet conformation respectively in Bio-1 and Bio-2 upon exposure to elevated temperature and high pH. Additionally, covalent or non-covalent aggregates formed as a function of elevated temperature and agitation were quantified using SEC-MALS.
Collapse
Affiliation(s)
- Arpit Arunkumar Bana
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Nithin Sajeev
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Sabyasachi Halder
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Haidar Abbas Masi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, 382011, Gujarat, India
| | - Shikha Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
6
|
Dumoncel RFP, Xavier B, Cardoso Júnior CDA, da Silva FS, Motta LGJ, Cavalheiro TN, Dalmora SL. Analysis of Denosumab by a Validated CZE Method and Determination of Sialic Acids by the RP-HPLC Method. J Chromatogr Sci 2023; 61:177-185. [PMID: 35279712 DOI: 10.1093/chromsci/bmac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/14/2022]
Abstract
A capillary zone electrophoresis (CZE) method was developed and validated to quantitate the monoclonal antibody denosumab (DmAb) and its charge variants in pharmaceutical products, demonstrating excellent precision, linearity and accuracy. Separations were obtained with migration times of 11.3 min for DmAb and the calibration curve was linear in the range of 0.95-20 mg/mL. The analytical comparability of seven batches of Prolia® showed mean differences of the estimated content/potencies of 1.87% lower, and 0.84 and 1.21% higher compared with the size-exclusion and reversed-phase liquid chromatography (SE-HPLC and RP-HPLC) methods and the osteoclast antiproliferative bioassay, respectively, with non-significant differences (P > 0.05). An RP-HPLC method with fluorescence detection (RP-HPLC-F), performed on a Kinetex® EVO C18 column (5 μm, 100 Å, 250 mm × 4.6 mm), was optimized to determine the levels of sialic acids of DmAb biomolecules, giving mean concentrations of 0.16 and 0.17 μg N-acetylneuraminic acid/mg DmAb for Prolia® and Xgeva® pharmaceutical products, respectively. The results demonstrated the capability of each one of the methods, and their use in combination constitutes a strategy to monitor instability, thereby assuring the quality and the batch-to-batch consistency of the biotechnology-derived medicine.
Collapse
Affiliation(s)
- Rafaela Ferreira Perobelli Dumoncel
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Bruna Xavier
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Clóvis Dervil Appratto Cardoso Júnior
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Francielle Santos da Silva
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Luís Gustavo Jung Motta
- Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Thaís Neuhaus Cavalheiro
- Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Sérgio Luiz Dalmora
- Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
7
|
Pérez-Robles R, Salmerón-García A, Clemente-Bautista S, Jiménez-Lozano I, Cabañas-Poy MJ, Cabeza J, Navas N. Method for identification and quantification of intact teduglutide peptide using (RP)UHPLC-UV-(HESI/ORBITRAP)MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4359-4369. [PMID: 36263764 DOI: 10.1039/d2ay01254e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Teduglutide (Revestive®, 10 mg mL-1) is a recombinant human glucagon-like peptide 2 analogue, used in the treatment of short bowel syndrome, a serious and highly disabling condition which results from either too small a length of intestine or loss of critical intestinal function. The determination of therapeutic compounds of protein-nature is always challenging due to their complex structure. In this work, we present a fast, straightforward reversed phase (RP)UHPLC-UV-(HESI/ORBITRAP)MS method for the identification and quantification of the intact teduglutide peptide. The method has been developed and validated in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines; therefore, linearity, limits of detection and quantification, accuracy (precision and trueness), robustness, system suitability and specificity using the signal from the UV and MS, have been evaluated. The validation performance parameters obtained from the UV and MS signals were compared throughout the work, to select the most suitable. To study the specificity of the method and the impact of medicine mishandling under hospital conditions, force degradation studies were performed, i.e. thermal (40 °C and 60 °C), shaking (mechanical) and light (accelerated exposition) effects. Identification by the exact mass of teduglutide was achieved and it was confirmed that the peptide does not undergo any post-translational modifications (PTMs). To the best of our knowledge, the present work reports the first method developed for the simultaneous identification, structural characterization, and quantification of the therapeutic teduglutide peptide. Finally, the proposed method is able to indicate stability when quantifying the intact teduglutide since detects and characterises the exact mass of the degradation/modification products.
Collapse
Affiliation(s)
- Raquel Pérez-Robles
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero, Granada, Spain
| | - Antonio Salmerón-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | | | - Inés Jiménez-Lozano
- Maternal and Child Pharmacy Service, Vall d'Hebron Hospital, Pharmacy, Barcelona, Spain
| | | | - Jose Cabeza
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | - Natalia Navas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Torrente-López A, Hermosilla J, Pérez-Robles R, Salmerón-García A, Cabeza J, Navas N. Combined use of UV and MS data for ICH Stability-Indication Method: Quantification and isoforms identification of intact nivolumab. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
10
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Perez-Robles R, Navas N. Degradation and in-use stability study of five marketed therapeutic monoclonal antibodies by generic weak cation exchange liquid chromatographic method ((WCX)HPLC/DAD). J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123295. [DOI: 10.1016/j.jchromb.2022.123295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
11
|
Shatat SM, Al-Ghobashy MA, Fathalla FA, Abbas SS, Eltanany BM. Coupling of Trastuzumab chromatographic profiling with machine learning tools: A complementary approach for biosimilarity and stability assessment. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122976. [PMID: 34656909 DOI: 10.1016/j.jchromb.2021.122976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Biosimilar products present a growing opportunity to improve the global healthcare systems. The amount of accepted variability during the comparative assessments of biosimilar products introduces a significant challenge for both the biosimilar developers and the regulatory authorities. The aim of this study was to explore unsupervised machine learning tools as a mathematical aid for the interpretation and visualization of such comparability under control and stress conditions using data extracted from high throughput analytical techniques. For this purpose, a head-to-head analysis of the physicochemical characteristics of three Trastuzumab (TTZ) approved biosimilars and the originator product (Herceptin®) was performed. The studied quality attributes included the primary structure and identity by peptide mapping (PM) with reversed-phase chromatography-UV detection, size and charge profiles by stability-indicating size exclusion and cation exchange chromatography. Stress conditions involved pH and thermal stress. Principal component analysis (PCA) and two of the widely used cluster analysis tools, namely, K-means and Density-based Spatial Clustering of Applications with Noise (DBSCAN), were explored for clustering and feature representation of varied analytical datasets. It has been shown that the clustering patterns delineated by the used algorithms changed based on the included chromatographic profiles. The applied data analysis tools were found effective in revealing patterns of similarity and variability between i) intact and stressed as well as ii) originator and biosimilar samples.
Collapse
Affiliation(s)
- Sara M Shatat
- National Organization for Research and Control of Biologicals, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, Newgiza University, Egypt
| | - Faten A Fathalla
- National Organization for Research and Control of Biologicals, Egypt
| | - Samah S Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Basma M Eltanany
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
12
|
Souza ALRD, Amorim ACF, Cintra ER, Ferreira NN, Silva LAD, Hayasaki TG, Diniz DGA, Lima EM. Development and validation of a rapid RP-HPLC method for simultaneous quantification of paclitaxel and cetuximab in immunoliposomes. Talanta 2021; 225:121988. [PMID: 33592736 DOI: 10.1016/j.talanta.2020.121988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
The development of rational therapies against complex diseases, such as cancer, has increased in the past few years due to the advances of 'omics' technologies. Concomitantly, several efforts have been made to design sophisticated drug delivery systems in order to increase specificity and drug accumulation in tumor sites. The complexity of these drug delivery systems highlights the need for suitable analytical methods to determine encapsulation/conjugation efficiency of drugs and molecules responsible for the targeted delivery. Therefore, this study focuses on the development and validation of a RP-HPLC-DAD methodology for concurrent quantification of paclitaxel (PTX) and cetuximab (CTX) in immunoliposomes. Chromatographic separation was achieved using a wide pore C8 column, and a gradient mobile phase consisting of 0.1% trifluoroacetic acid (TFA) in Milli-Q water/acetonitrile/isopropanol with a flow rate of 1 mL min-1. Drug peaks were fully separated and detected at 280 nm using UV detector. The method was validated according to ICH and FDA guidelines in terms of specificity and forced degradation studies, system suitability, linearity, limit of detection, limit of quantification, repeatability, intermediate precision, accuracy, robustness, and short-term stability. The developed method was linear over the concentration range of 37.5-150 μg mL-1 of PTX and 75-300 μg mL-1 of CTX. All parameters evaluated satisfied the acceptance criteria, according to both FDA and ICH guidelines. The applicability of the analytical method was assessed following the development of PTX-loaded immunoliposomes conjugated with CTX. Thus, the present study shows a novel, simple, stability-indicating and suitable method to quantify simultaneously PTX and CTX in immunoliposomes.
Collapse
Affiliation(s)
- Ana Luiza Ribeiro de Souza
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems - FarmaTec, School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Amanda Cláudia Ferreira Amorim
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems - FarmaTec, School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Emílio Ramos Cintra
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems - FarmaTec, School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Luís Antônio Dantas Silva
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems - FarmaTec, School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Tacio Gonçalves Hayasaki
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems - FarmaTec, School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Danielle Guimarães Almeida Diniz
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems - FarmaTec, School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems - FarmaTec, School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Filippo LDD, Dos Santos KC, Hanck-Silva G, de Lima FT, Gremião MPD, Chorilli M. A Critical Review of Biological Properties, Delivery Systems and Analytical/Bioanalytical Methods for Determination of Bevacizumab. Crit Rev Anal Chem 2020; 51:445-453. [PMID: 32295395 DOI: 10.1080/10408347.2020.1743641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bevacizumab is a chimeric monoclonal human-murine antibody originated from murine monoclonal antibody (muMAb A4.6.1) with the human immunoglobulin IgG1. BVZ binds the extracellular portion of vascular endothelial growth factor receptors (VEGFR), which have tyrosine kinase activity. The mechanism of action of BVZ involves binding to VEGFR, Flt-1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2), inducing homodimerization of two receptor subunits, and, consequently, autophosphorylation of their tyrosine kinase domains located inside the cytoplasm. With the advent of nanostructured systems it is increasingly necessary to look for safe analytical methods, ensuring the reliability of the results obtained by them, becoming essential to ensure the quality of medicines. In this work, the incorporation of bevacizumab in to different drug delivery systems was presented. Moreover, detailed investigation was performed about methods for qualitative and quantitative analyses of bevacizumab, including, biological fluids, and drug delivery systems, were investigated. Most recently high performance liquid chromatography coupled with various detectors, liquid chromatography, mass spectrometry and ELISA were used for this purpose. Thus, this review was performed to evaluate the benefits of bevacizumab carried by nanostructured systems and the analytical methods available for detection and quantification of these drugs.
Collapse
Affiliation(s)
| | - Karen Cristina Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Felipe Tita de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
14
|
Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical Stability of Monoclonal Antibodies: A Review. J Pharm Sci 2020; 109:169-190. [DOI: 10.1016/j.xphs.2019.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
15
|
Jirjees F, Soliman K, Wang Y, Sonawane R, Sheshala R, Jones D, Thakur RRS. A validated size exclusion chromatography method coupled with fluorescence detection for rapid quantification of bevacizumab in ophthalmic formulations. J Pharm Biomed Anal 2019; 174:145-150. [PMID: 31167158 DOI: 10.1016/j.jpba.2019.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/21/2023]
Abstract
Bevacizumab is a full-length human monoclonal antibody used to treat various neovascular diseases such as wet age-related macular degeneration (AMD), diabetic eye disease and other problems of the retina. Monthly intravitreal injections of bevacizumab (Avastin®) are effective in the treatment of wet AMD. However, there is a growing demand in the development of sustained release ophthalmic formulations. Therefore, this study aims, for the first time, to develop a rapid, simple, and sensitive method using size exclusion chromatography coupled with fluorescence detection for routine quantification of bevacizumab in ophthalmic formulations and during in vitro release studies. The selected chromatographic conditions included an aqueous mobile phase composed of 35 mM sodium phosphate buffer and 300 mM sodium chloride (pH 6.8), a flow rate of 0.5 mL/min, and the fluorescence detector was operated at excitation and emission wavelengths of 280 and 340 nm, respectively. The peak area-concentration relationship maintained its linearity over concentration range of 0.1-20 μg/mL (R2 = 0.9993), and the quantitation limit was 100 ng/mL. The method was validated for specificity, accuracy, precision, and robustness. The developed method had a run time of 6 min at temperature 25 °C, making it a unique validated method for rapid and cost-effective quantification of bevacizumab.
Collapse
Affiliation(s)
- Feras Jirjees
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Karim Soliman
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Yujing Wang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Rahul Sonawane
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ravi Sheshala
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300, Puncak Alam, Kuala Selangor, Malaysia
| | - David Jones
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
16
|
Dyck YFK, Rehm D, Joseph JF, Winkler K, Sandig V, Jabs W, Parr MK. Forced Degradation Testing as Complementary Tool for Biosimilarity Assessment. Bioengineering (Basel) 2019; 6:bioengineering6030062. [PMID: 31330921 PMCID: PMC6783961 DOI: 10.3390/bioengineering6030062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidation of monoclonal antibodies (mAbs) can impact their efficacy and may therefore represent critical quality attributes (CQA) that require evaluation. To complement classical CQA, bevacizumab and infliximab were subjected to oxidative stress by H2O2 for 24, 48, or 72 h to probe their oxidation susceptibility. For investigation, a middle-up approach was used utilizing liquid chromatography hyphenated with mass spectrometry (LC-QTOF-MS). In both mAbs, the Fc/2 subunit was completely oxidized. Additional oxidations were found in the light chain (LC) and in the Fd’ subunit of infliximab, but not in bevacizumab. By direct comparison of methionine positions, the oxidized residues in infliximab were assigned to M55 in LC and M18 in Fd’. The forced oxidation approach was further exploited for comparison of respective biosimilar products. Both for bevacizumab and infliximab, comparison of posttranslational modification profiles demonstrated high similarity of the unstressed reference product (RP) and the biosimilar (BS). However, for bevacizumab, comparison after forced oxidation revealed a higher susceptibility of the BS compared to the RP. It may thus be considered a useful tool for biopharmaceutical engineering, biosimilarity assessment, as well as for quality control of protein drugs.
Collapse
Affiliation(s)
- Yan Felix Karl Dyck
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraße 64, 13347 Berlin, Germany
| | - Daniel Rehm
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- ProBioGen AG, Goethestraße 54, 13086 Berlin, Germany
| | - Jan Felix Joseph
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
- Core Facility BioSupraMol, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | | | - Volker Sandig
- ProBioGen AG, Goethestraße 54, 13086 Berlin, Germany
| | - Wolfgang Jabs
- Department of Life Sciences & Technology, Beuth Hochschule für Technik Berlin, Seestraße 64, 13347 Berlin, Germany
| | - Maria Kristina Parr
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Hermosilla J, Sánchez-Martín R, Pérez-Robles R, Salmerón-García A, Casares S, Cabeza J, Cuadros-Rodríguez L, Navas N. Comparative Stability Studies of Different Infliximab and Biosimilar CT-P13 Clinical Solutions by Combined Use of Physicochemical Analytical Techniques and Enzyme-Linked Immunosorbent Assay (ELISA). BioDrugs 2019; 33:193-205. [DOI: 10.1007/s40259-019-00342-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Development and validation of a (RP)UHPLC-UV-(HESI/Orbitrap)MS method for the identification and quantification of mixtures of intact therapeutical monoclonal antibodies using a monolithic column. J Pharm Biomed Anal 2018; 159:437-448. [DOI: 10.1016/j.jpba.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
|