1
|
Teixeira da Costa L, Bon MC, van Asch B. Revisiting the History and Biogeography of Bactrocera oleae and Other Olive-Feeding Fruit Flies in Africa and Asia. INSECTS 2024; 16:30. [PMID: 39859611 PMCID: PMC11766006 DOI: 10.3390/insects16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Bactrocera oleae Rossi causes important agricultural losses in olive growing regions. Despite its economic relevance, the expansion history and biogeography of B. oleae and other olive-feeding fruit flies remain unclear. We used mitogenomic data of Bactrocera species from a broad geographic range to explore possible historical biogeographic patterns in B. oleae and other olive-feeding fruit flies. Our data suggest that (1) the transition from stenophagy on Oleaceae to oligophagy on Olea most likely occurred in Africa more than 6 million years ago (MYA), and (2) the subsequent transition to monophagy on Olea europaea took place in Asia or in Africa in the Early Pleistocene. Our results support equally the hypotheses that the ancestors of modern B. oleae underwent two waves of migration from Asia to Africa or that they zigzagged between Asia and Africa.
Collapse
Affiliation(s)
| | - Marie-Claude Bon
- USDA ARS, European Biological Control Laboratory, 34980 Montferrier sur Lez, France;
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
2
|
He R, Wang S, Li Q, Wang Z, Mei Y, Li F. Phylogenomic analysis and molecular identification of true fruit flies. Front Genet 2024; 15:1414074. [PMID: 38974385 PMCID: PMC11224437 DOI: 10.3389/fgene.2024.1414074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
The family Tephritidae in the order Diptera, known as true fruit flies, are agriculturally important insect pests. However, the phylogenetic relationships of true fruit flies, remain controversial. Moreover, rapid identification of important invasive true fruit flies is essential for plant quarantine but is still challenging. To this end, we sequenced the genome of 16 true fruit fly species at coverage of 47-228×. Together with the previously reported genomes of nine species, we reconstructed phylogenetic trees of the Tephritidae using benchmarking universal single-copy ortholog (BUSCO), ultraconserved element (UCE) and anchored hybrid enrichment (AHE) gene sets, respectively. The resulting trees of 50% taxon-occupancy dataset for each marker type were generally congruent at 88% nodes for both concatenation and coalescent analyses. At the subfamily level, both Dacinae and Trypetinae are monophyletic. At the species level, Bactrocera dorsalis is more closely related to Bactrocera latifrons than Bactrocera tryoni. This is inconsistent with previous conclusions based on mitochondrial genes but consistent with recent studies based on nuclear data. By analyzing these genome data, we screened ten pairs of species-specific primers for molecular identification of ten invasive fruit flies, which PCR validated. In summary, our work provides draft genome data of 16 true fruit fly species, addressing the long-standing taxonomic controversies and providing species-specific primers for molecular identification of invasive fruit flies.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shuping Wang
- Technical Centre for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Qiang Li
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zuoqi Wang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Guo X, Wang H, Fu K, Ding X, Deng J, Guo W, Rao Q. First report of the complete mitochondrial genome of Carpomya pardalina (Bigot) (Diptera: Tephritidae) and phylogenetic relationships with other Tephritidae. Heliyon 2024; 10:e29233. [PMID: 38681631 PMCID: PMC11053197 DOI: 10.1016/j.heliyon.2024.e29233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Carpomya pardalina is known for its potential invasiveness, which poses a significant and alarming threat to Cucurbitaceae crops. It is considered a highly perilous pest species that requires immediate attention for quarantine and prevention. Due to the challenges in distinguishing pests of the Tephritidae family based on morphological characteristics, it is imperative to elucidate the mitochondrial genomic information of C. pardalina. In this study, the mitochondrial genome sequence of C. pardalina was determined and analyzed using next-generation sequencing. The results revealed that the mitogenome sequence had a total length of 16,257 bp, representing a typical circular molecule. It consisted of 13 PCGs, two rRNA genes, 22 tRNA genes and a non-coding region. The structure and organization of the mitochondrial genome of C. pardalina were found to be typical and similar to the published homologous sequences of other fruit flies in the Tephritidae family. Phylogenetic analysis confirmed that C. pardalina belongs to the Carpomya genus, which is consistent with traditional morphological taxonomy. Additionally, Carpomya and Rhagoletis were identified as sister groups. This study presents the first report of the complete mitochondrial genome of C. pardalina, which can serve as a valuable resource for future investigations in species diagnosis, evolutionary biology, prevention and control measures.
Collapse
Affiliation(s)
- Xianting Guo
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Kaiyun Fu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Xinhua Ding
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Jianyu Deng
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wenchao Guo
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Qiong Rao
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
4
|
The first complete mitochondrial genome sequences for Ulidiidae and phylogenetic analysis of Diptera. Mol Biol Rep 2023; 50:2501-2510. [PMID: 36609752 DOI: 10.1007/s11033-022-07869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Tetanops sintenisi is a pest that mainly damages the root of quinoa (Chenopodium quinoa) and it is first discovered in China in 2018. METHODS AND RESULTS Here, the complete mitochondrial genome (mitogenome) of T. sintenisi was sequenced and compared with the mitogenomes of other Diptera species. The results revealed that the mitogenome of T. sintenisi is 15,763 bp in length (GenBank accession number: MT795181) and is comprised of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA genes, and a non-coding A + T-rich region (959 bp). The highly conserved gene arrangement of the mitogenome of T. sintenisi was identical to that of other Diptera insects. Twelve PCGs contained the typical insect start codon ATN, while cox1 had CGA as the start codon. The genes cox2, nad4, and nad1 contained an incomplete termination codon T; nad3, nad5, and cob contained the complete termination codon TAG; and the remaining seven PCGs contained the termination codon TAA. All tRNA genes were predicted to fold into the typical cloverleaf secondary structure. Phylogenetic analysis of 48 species based on the mitogenome sequence revealed that T. sintenisi clustered with the Tephritidae family, indicating that T. sintenisi and Tephritidae have a close phylogenetic relationship. CONCLUSIONS The phylogenetic relationship of T. sintenisi based on the mitogenome is consistent with the traditional morphological taxonomy, according to which T. sintenisi belongs to the family Otitidae, which is closely related to the family Muscidae.
Collapse
|
5
|
Drosopoulou E, Syllas A, Goutakoli P, Zisiadis GA, Konstantinou T, Pangea D, Sentis G, van Sauers-Muller A, Wee SL, Augustinos AA, Zacharopoulou A, Bourtzis K. Τhe Complete Mitochondrial Genome of Bactrocera carambolae (Diptera: Tephritidae): Genome Description and Phylogenetic Implications. INSECTS 2019; 10:E429. [PMID: 31795125 PMCID: PMC6955806 DOI: 10.3390/insects10120429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Bactrocera carambolae is one of the approximately 100 sibling species of the Bactrocera dorsalis complex and considered to be very closely related to B. dorsalis. Due to their high morphological similarity and overlapping distribution, as well as to their economic impact and quarantine status, the development of reliable markers for species delimitation between the two taxa is of great importance. Here we present the complete mitochondrial genome of B. carambolae sourced from its native range in Malaysia and its invaded territory in Suriname. The mitogenome of B. carambolae presents the typical organization of an insect mitochondrion. Comparisons of the analyzed B. carambolae sequences to all available complete mitochondrial sequences of B. dorsalis revealed several species-specific polymorphic sites. Phylogenetic analysis based on Bactrocera mitogenomes supports that B. carambolae is a differentiated taxon though closely related to B. dorsalis. The present complete mitochondrial sequences of B. carambolae could be used, in the frame of Integrative Taxonomy, for species discrimination and resolution of the phylogenetic relationships within this taxonomically challenging complex, which would facilitate the application of species-specific population suppression strategies, such as the sterile insect technique.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Alexandros Syllas
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Panagiota Goutakoli
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Georgios-Alkis Zisiadis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Theodora Konstantinou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Dimitra Pangea
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - George Sentis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Alies van Sauers-Muller
- Consultant, retired from Ministry of Agriculture, Animal Husbandry and Fisheries, Carambola Fruit Fly Project, Damboentong 282, Tijgerkreek, Saramacca, Suriname;
| | - Suk-Ling Wee
- Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Antonios A. Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, A-1400 Vienna, Austria; (A.A.A.); (K.B.)
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, A-1400 Vienna, Austria; (A.A.A.); (K.B.)
| |
Collapse
|
6
|
The first two complete mitochondrial genome of Dacus bivittatus and Dacus ciliatus (Diptera: Tephritidae) by next-generation sequencing and implications for the higher phylogeny of Tephritidae. Int J Biol Macromol 2019; 140:469-476. [DOI: 10.1016/j.ijbiomac.2019.08.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022]
|
7
|
The complete mitochondrial genome of Bactrocera biguttula (Bezzi) (Diptera: Tephritidae) and phylogenetic relationships with other Dacini. Int J Biol Macromol 2019; 126:130-140. [DOI: 10.1016/j.ijbiomac.2018.12.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/19/2022]
|