1
|
Liu J, Cao A, Liu Y, Zheng X, Tang K. Development and characterization of soluble soybean polysaccharide/pullulan blend films enriched with essential oils. Int J Biol Macromol 2025; 309:143092. [PMID: 40222525 DOI: 10.1016/j.ijbiomac.2025.143092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Soluble soybean polysaccharide (SSPS)/pullulan (PUL) blend films enriched with lavender essential oil (LEO) or clove essential oil (CEO) were prepared using the solution casting method. The structural, optical, mechanical, barrier, thermal, antioxidant, and antibacterial properties of the SSPS/PUL/LEO and SSPS/PUL/CEO films were investigated and compared. Scanning electron microscopy micrographs revealed randomly distributed micropores within the SSPS/PUL matrix after enrichment with essential oils (EOs). The addition of EOs significantly improved the UV-blocking performance, elongation at break (EAB), water resistance, antioxidant activity and hydrophobicity of the films. The results showed that the SSPS/PUL/CEO films exhibited nearly 100 % UV-blocking efficiency in the wavelength range of 190-290 nm, while achieving a maximum EAB of 90.6 ± 5.3 %. However, the tensile strength of the films decreased from 10.8 MPa to 5.6 MPa or 4.8 MPa upon the addition of 15 % LEO or CEO, respectively. Thermogravimetric analysis indicated that the addition of EOs had little effect on the thermal properties of the SSPS/PUL films. Both SSPS/PUL/LEO and SSPS/PUL/CEO films exhibited good antioxidant and antibacterial properties, with the SSPS/PUL/CEO film showing superior performance in both aspects. The results preliminarily suggest that the SSPS/PUL/EOs films have great potential to be used as active food packaging materials.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Ao Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yanchun Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
2
|
Cao L, Li J, Song Y, Shao P, Wang Y, Song H, Zhang R, Liu J, Meng Y, Wu L, Kong F, Guo X. Fortification of soluble soybean polysaccharide edible films with licorice root extract for nut preservation. Int J Biol Macromol 2025; 304:140986. [PMID: 39952527 DOI: 10.1016/j.ijbiomac.2025.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
In order to improve the poor mechanical properties and strong hydrophilicity of soluble soybean polysaccharide (SSPS) based films, licorice residue extract (LE) was introduced into the film-forming matrix. In this study, the effect of the amount of LE on the microstructure, physical and functional performances of the SSPS-based films, and its antioxidant activity and practical application in delaying the oxidation of oil-fried peanuts were investigated. The results showed that the compounding of LE increased the tensile strength (TS) by 4.39 times, decreased the WVP to 62 %, and increased the contact angle by 17.77 %, respectively. FTIR and SEM analyses verified the formation of intermolecular hydrogen bonds among LE, glycerol and SSPS. Furthermore, radical scavenging activity experiments proved that the films possessed a superior capacity to scavenge DPPH and ABTS•+ radicals up to 63.51 % and 93.10 % respectively, when the LE dosage was at 10 %. It is worth noting the shelf life of oil-fried peanut was extended by about 3.25 d at 60 °C (~65 d at 20 °C) with the packaging of SSS-LE8 film. The preparation of SSPS-LEx film could promote the development of biomass-based packaging materials and their preservation applications in nuts and other products.
Collapse
Affiliation(s)
- Lele Cao
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China.
| | - Jie Li
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Yuqi Song
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Pengfei Shao
- Shandong Zhongkeejiao Times Biotechnology Co., LTD, Gaotang 252800, PR China
| | - Yanping Wang
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Haiqing Song
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Rui Zhang
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Jiayi Liu
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Yuzhe Meng
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Lin Wu
- Shandong Juyuan Biotechnology Co., LTD, Yanggu 252300, PR China
| | - Feng Kong
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China
| | - Xingfeng Guo
- School of Pharmaceutical Sciences and Food Engineering, State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Liaocheng University, 1th Hunan Road, Dongchangfu District, Liaocheng 252000, PR China.
| |
Collapse
|
3
|
Varganici CD, Rosu L, Rosu D, Asandulesa M. From Fossil to Bio-Based AESO-TiO 2 Microcomposite for Engineering Applications. Polymers (Basel) 2024; 16:3363. [PMID: 39684107 DOI: 10.3390/polym16233363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Environmental issues and the reduction of fossil fuel resources will lead to the partial or total substitution of petroleum-based materials with natural, raw, renewable ones. One expanding domain is the obtaining of engineering materials from vegetable oils for sustainable, eco-friendly polymers for different applications. Herein, the authors propose a simplified and green synthesis pathway for a thermally curable, acrylated and epoxidized soybean oil matrix formulation containing only epoxidized soybean oil, acrylic acid, a reactive diluent (5%) and just 0.15 mL of catalyst. The small amount of reactive diluent significantly reduced the initial system viscosity while eliminating the need for adding solvent, hardener, activator, etc. Both the thermally cured composite with a 2% TiO2 microparticle filler and its pristine matrix were comparably characterized in terms of structural, thermal, morphological, dielectric and wettability by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry, scanning electron microscopy, broadband dielectric spectrometry and contact angle measurements. The 2% filler in the composite generated superior thermal stability via lower mass loss (48.89% vs. 57.14%) and higher degradation temperatures (395 °C vs. 387 °C), increased the glass transition temperature from -20 °C to -10 °C, rendered the microcomposite hydrophobic by increasing the contact angle from 88° to 96° and enhanced dielectric properties compared to the pristine matrix. All investigations recommend the microcomposite for protective coatings, capacitors, sensors and electronic circuits. This study brings new contributions to green chemistry and sustainable materials.
Collapse
Affiliation(s)
- Cristian-Dragos Varganici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Liliana Rosu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Dan Rosu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Mihai Asandulesa
- Department of Electroactive Polymers and Plasmochemistry, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
4
|
Gao W, Jin X, Jiang L, Zeng XA, Han Z, Lee R. Synthesis, structural characterization and in vitro digestion stability of a soluble soybean polysaccharide‑zinc chelate. Int J Biol Macromol 2024; 279:135186. [PMID: 39216569 DOI: 10.1016/j.ijbiomac.2024.135186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The chelation reaction of soluble soybean polysaccharide (SSPS) with zinc was investigated. Using response surface methodology, the optimum parameters for SSPS-Zn synthesis were obtained: pH 5.3, SSPS-ZnCl2 mass ratio of 9.44:1, reaction temperature 50.44 °C, and reaction time 1.5 h, with the highest zinc content of 24.73 %. Compared with SSPS, SSPS-Zn increased in rhamnogalacturonan content and decreased in that of neutral monosaccharides (Fuc, Ara, Gal, Glu and Xyl). UV-vis spectra indicated that SSPS-Zn was lower than SSPS in protein content. FTIR spectra indicated that CO group of SSPS was bonded to Zn2+. X-ray diffraction spectra demonstrated that SSPS-Zn had higher crystallinity. Congo red reactions showed that SSPS possessed a triple-helix conformation while SSPS-Zn formed an irregular free-coiled conformation. EDX confirmed SSPS-Zn synthesis successfully. TGA curves exhibited that SSPS-Zn required higher temperature to undergo degradation. AFM revealed that SSPS-Zn was clustered while SSPS was filamentous. SEM micrographs showed the cracked fragments on the surface of SSPS-Zn. By in vitro simulation of gastrointestinal digestion, Zn2+ release reached 68.87 % after 2 h digestion. Consequently, the chelation of SSPS with zinc could change structure and provide a basis for research and application of novel zinc supplements.
Collapse
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xueli Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liyuan Jiang
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Rabbin Lee
- Guangzhou Fofiber Biological Industry Co., Ltd, Guangzhou 510655, China
| |
Collapse
|
5
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
6
|
Eid M, Zhu J, Ismail MA, Li B. Dual encapsulation and sequential release of cisplatin and vitamin E from soy polysaccharides and β-cyclodextrin bioadhesive hydrogel nanoparticles. Int J Biol Macromol 2024; 273:133240. [PMID: 38897521 DOI: 10.1016/j.ijbiomac.2024.133240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Chemically cross-linked hydrogel nanoparticles (HGNPs) offer enhanced properties over their physical counterparts, particularly in drug delivery and cell encapsulation. This study applied pH-thermal dual responsive bio-adhesive HGNPs for dual complexation and enhanced the controlled release and bioavailability of cisplatin (CDDP) and Vitamin E (VE) drugs. The CDDP was loaded into the HGNPs via chemical conjugation with the carboxyl groups in the HGNPs surface by soy polysaccharides (SSPS). At the same time, the host-guest interaction complexed the VE through the β-cyclodextrin (β-CD). The HGNPs showed a uniform HGNPs size distribution of 90.77 ± 14.77 nm and 81.425 ± 13.21 nm before and after complexation, respectively. The FTIR, XRD, XPS, and zeta potential confirmed the conjugation. The cumulative release percent of CDDP reached 98 % at pH 1.2, while <45 % was released at pH 7.4. Our HGNPs enhance the incorporation of CDDP by substituting its chlorides with carboxyl groups of the SSPS; the loading of CDDP and VE was 15 ± 0.33 and 11.32 ± 0.25 wt%, respectively. Moreover, the CDDP and VE also released slower from the HGNPs at 25 °C than at 37 °C and 42 °C. The (VE/CDDP)-loaded HGNPs exhibited longer circulation time in vivo than free CDDP and free VE suspension.
Collapse
Affiliation(s)
- Mohamed Eid
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, 13736 Qaliuobia, Egypt.
| | - Jingsong Zhu
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China; College of Biological Science and Technology, Yili Normal University, Yining 835000, China
| | - Muhammad Asif Ismail
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, 1st Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 1st Shizishan Road, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Cai G, Yi X, Wu Z, Zhou H, Yang H. Synchronous reducing anti-nutritional factors and enhancing biological activity of soybean by the fermentation of edible fungus Auricularia auricula. Food Microbiol 2024; 120:104486. [PMID: 38431331 DOI: 10.1016/j.fm.2024.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Auricularia auricula fermentation was performed to reduce anti-nutritional factors, improve nutritional components, and enhance biological activity of soybean. Results showed that the contents of raffinose, stachyose, and trypsin inhibitor were significantly decreased from initial 1.65 g L-1, 1.60 g L-1, and 284.67 μg g-1 to 0.14 g L-1, 0.35 g L-1, and 4.52 μg g-1 after 144 h of fermentation, respectively. Simultaneously, the contents of polysaccharide, total phenolics, and total flavonoids were increased, and melanin was secreted. The isoflavone glycosides were converted to their aglycones, and the contents of glyctin and genistin were decreased from initial 1107.99 μg g-1 and 2852.26 μg g-1 to non-detection after 72 h of fermentation, respectively. After 96 h of fermentation, the IC50 values of samples against DPPH and ABTS radicals scavenging were decreased from 17.61 mg mL-1 and 3.43 mg mL-1 to 4.63 mg mL-1 and 0.89 mg mL-1, and those of samples inhibiting α-glucosidase and angiotensin I-converting enzyme were decreased from 53.89 mg mL-1 and 11.27 mg mL-1 to 18.24 mg mL-1 and 6.78 mg mL-1, respectively, indicating the significant increase in these bioactivities. These results suggested A. auricula fermentation can enhance the nutritional quality and biological activity of soybean, and the fermented soybean products have the potential to be processed into health foods/food additives.
Collapse
Affiliation(s)
- Gonglin Cai
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xiaotong Yi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Zhichao Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Huabin Zhou
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| | - Hailong Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Liu J, Dong Y, Zheng X, Pei Y, Tang K. Citric acid crosslinked soluble soybean polysaccharide films for active food packaging applications. Food Chem 2024; 438:138009. [PMID: 37983991 DOI: 10.1016/j.foodchem.2023.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
In this work, a nontoxic crosslinking agent, citric acid (CA), was used to crosslink glycerol-plasticized SSPS films via a heat activated reaction. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results confirmed the occurrence of esterification reaction between CA and SSPS. Microstructure of the CA-crosslinked SSPS films were characterized by scanning electron microscopy, atomic force microscopy and X-ray diffraction. The water resistance, mechanical, UV-barrier, water vapor barrier, antioxidant and thermal properties of SSPS films were enhanced by CA crosslinking. The SSPS film crosslinked with 5 % CA exhibited a maximum tensile strength of 6.5 MPa and a minimum water solubility of 34.3 %. The CA-crosslinked SSPS film also presented superior antibacterial properties against Gram-positive and Gram-negative bacteria. Application test results showed that the CA-crosslinked SSPS film can effectively delay the oxidative deterioration of lard during storage, suggesting that the developed CA-crosslinked SSPS film could be a promising candidate for active food packaging.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yitong Dong
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
9
|
Cao L, Liu J, Meng Y, Hou M, Li J, Song Y, Wang Y, Song H, Zhang R, Liang R, Guo X. A tear-free and edible dehydrated vegetables packaging film with enhanced mechanical and barrier properties from soluble soybean polysaccharide blending carboxylated nanocellulose. Int J Biol Macromol 2024; 264:130707. [PMID: 38460635 DOI: 10.1016/j.ijbiomac.2024.130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The aim of the study was to develop soybean polysaccharide (SSPS) -carboxylated nanocellulose (CNC) blending films with enhanced mechanical and barrier properties to be used as a tear-free and edible packaging materials. The films were formed by casting method, with CNC as the strengthening unit and glycerol as the plasticizer. The effect of CNC on structural and physical performances of the SSPS-CNC films were studied. SEM indicated that the film will stratify with excess CNC (10 %), but the film remains intact and compact. Incorporation of CNC into SSPS films did not change peak position in the XRD pattern significantly. Hydrogen bonds among SSPS, glycerol and CNC were indicated by the FTIR spectra. The compounding of CNC greatly lessened the light transmittance and hydrophilicity (CA increased from 55.42° to 70.67°), but perfected the barrier (WVP decreased from 3.595 × 10-10 to 2.593 × 10-10 g m-1 s-1 Pa-1) and mechanical properties (TS improved from 0.806 to 1.317 MPa). The results of packaging dehydrated vegetable indicated that the SSPS-8CNC film can effectively inhibit the packaged cabbage absorption water vapor. As a consequence, SSPS film perfected by CNC is hopeful to pack dehydrated vegetables in instant foods.
Collapse
Affiliation(s)
- Lele Cao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China.
| | - Jiayi Liu
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Yuzhe Meng
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Mengyao Hou
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Jie Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Yuqi Song
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Yanping Wang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Haiqing Song
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Rui Zhang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Rong Liang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
10
|
Li L, Liu X, Yang C, Li T, Wang W, Guo H, Lei Z. Synthesis of soybean soluble polysaccharide-based eco-friendly emulsions for soil erosion prevention and control. Int J Biol Macromol 2024; 262:130042. [PMID: 38342266 DOI: 10.1016/j.ijbiomac.2024.130042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
This paper introduces the synthesis of an environmentally friendly emulsion that can be used as a soil anti-water erosion material. SSPS-g-P(BA-co-MMA-co-AA) emulsions were prepared using free radical copolymerization with soybean soluble polysaccharide (SSPS), acrylic acid (AA), butyl acrylate (BA), and methyl methacrylate (MMA). The structure, thermal stability, and morphology were characterized using FT-IR,TG,SEM, and particle diameter analysis. The resistance to water erosion, compressive strength and water retention of emulsion-treated loess/laterite was studied and germination tests were conducted. The results demonstrated that the duration of washout resistance of loess with 0.50 wt% emulsion exceeded 99 h, and the water erosion rate was 56.0 % after 72 h, while the water erosion rate of pure loess is 100.0 % after 4 min;the duration of washout resistance of laterite with 0.50 wt% emulsion exceeded 2 h, which was 8 times longer than pure laterite;The compressive strengths of 0.5 wt% emulsion-treated loess/laterite were 3.5 Mpa and 5.8 MPa, respectively, which were 7 and 9 times higher than that of pure soil. The plant seeds germinated normally half a month after planting. These findings suggest that emulsions can be used to control soil erosion without affecting the germination of plant seeds.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaomei Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cailing Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tingli Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Weiqiang Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haonian Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Perera KY, Jaiswal AK, Jaiswal S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023; 12:2422. [PMID: 37372632 DOI: 10.3390/foods12122422] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. In recent years, numerous biopolymers-such as starch, chitosan, carrageenan, polylactic acid, etc.-have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging. Some of the packaging materials, e.g., cellulose, starch, polylactic acid, and polybutylene adipate terephthalate, are currently used in the packaging industry. The trend of using biopolymers in the packaging industry has increased immensely; therefore, many legislations have been approved by various organizations. This review article describes various challenges and possible solutions associated with food packaging materials. It covers a wide range of biopolymers used in food packaging and the limitations of using them in their pure form. Finally, a SWOT analysis is presented for biopolymers, and the future trends are discussed. Biopolymers are eco-friendly, biodegradable, nontoxic, renewable, and biocompatible alternatives to synthetic packaging materials. Research shows that biopolymer-based packaging materials are of great essence in combined form, and further studies are needed for them to be used as an alternative packaging material.
Collapse
Affiliation(s)
- Kalpani Y Perera
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
12
|
Liu J, Wang Y, Liu Y, Shao S, Zheng X, Tang K. Synergistic effect of nano zinc oxide and tea tree essential oil on the properties of soluble soybean polysaccharide films. Int J Biol Macromol 2023; 239:124361. [PMID: 37028629 DOI: 10.1016/j.ijbiomac.2023.124361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Soluble soybean polysaccharide (SSPS)-based composite films with the addition of nano zinc oxide (nZnO, 5 wt% based on SSPS) and tea tree essential oil (TTEO, 10 wt% based on SSPS) were developed by the casting method. The effect of the combination of nZnO and TTEO on the microstructure and physical, mechanical and functional properties of SSPS films was evaluated. The results showed that the SSPS/TTEO/nZnO film exhibited enhanced water vapor barrier properties, thermal stability, water resistance, surface wettability, and total color difference, and almost completely prevented ultraviolet light transmission. The addition of TTEO and nZnO had no significant effect on the tensile strength and elongation at break of the films, but decreased the percentage of light transmittance of the films at 600 nm from 85.5 % to 10.1 %. The DPPH radical scavenging activity of the films significantly increased from 46.8 % (SSPS) to 67.7 % (SSPS/TTEO/nZnO) due to the presence of TTEO. Scanning electron microscopy analysis indicated that nZnO and TTEO were evenly dispersed in the SSPS matrix. The synergistic effect of nZnO and TTEO endowed the SSPS film with excellent antibacterial activity against E. coli and S. aureus, suggesting that the SSPS/TTEO/nZnO film could be a promising material for active packaging applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yiwei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yanchun Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Shuaiqi Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
13
|
Dong Y, Li Y, Ma Z, Rao Z, Zheng X, Tang K, Liu J. Effect of polyol plasticizers on properties and microstructure of soluble soybean polysaccharide edible films. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Dong Y, Rao Z, Liu Y, Zheng X, Tang K, Liu J. Soluble soybean polysaccharide/gelatin active edible films incorporated with curcumin for oil packaging. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Salarbashi D, Tafaghodi M, Rajabi O, Fazli Bazzaz BS, Soheili V. Soluble soybean polysaccharide/
TiO
2
nanocomposites: Biological activity, release behavior, biodegradability, and biosafety. J Food Saf 2022. [DOI: 10.1111/jfs.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research Center, School of Medicine Gonabad University of Medical Sciences Gonabad Iran
- Department of Food Science and Nutrition, School of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutics, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Omid Rajabi
- Department of Drug and Food Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Bibi Sedigheh Fazli Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
16
|
Wu X, Luo M, Zhao L, Wang S, Zhu D, Yang L, Liu H. Emulsification characteristics of soy hull polysaccharides obtained by membrane separation. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Membrane separation technology was used to separate and purify the microwave-assisted oxalic acid extraction of soy hull polysaccharides (MOSP) in order to obtain samples of different molecular weights. The emulsification characteristics of the MOSP were investigated including protein adsorption, polysaccharide adsorption, interfacial tension, emulsion index, and particle size; optical microscopy and Phenom electron microscopy were used to elucidate the emulsion structures. In addition, Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and high-performance gel-filtration chromatography (HPGFC) were used to study the differences in the components and structures of MOSP in different molecular weights. The molecular weight had several important effects on the emulsifying properties of MOSP. The adsorption capacities of the emulsion droplets containing low molecular weight MOSP (L-MOSP), middle molecular weight MOSP (M-MOSP), and high molecular weight MOSP (H-MOSP) were relatively low, and those of H-MOSP were slightly higher than those of L-MOSP. With extended storage time, the particle sizes of the emulsions rich in L-MOSP, M-MOSP, and H-MOSP increased. L-MOSP, M-MOSP, and H-MOSP were mainly composed of furans. The conformation of the molecular chain was spherical. The emulsions formed with H-MOSP were the most stable.
Collapse
|
17
|
Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Soluble soybean polysaccharide films containing in-situ generated silver nanoparticles for antibacterial food packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Wen L, Jiang Y, Zhou X, Bi H, Yang B. Structure identification of soybean peptides and their immunomodulatory activity. Food Chem 2021; 359:129970. [PMID: 34015561 DOI: 10.1016/j.foodchem.2021.129970] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Soybean peptides are functional food with good health benefits. The health benefits presented are highly dependent on the peptide structure. In this work, soybean peptides were prepared by alkaline protease hydrolysis of soybean proteins. The peptide structure was identified by UPLC-MS/MS. The full peptide composition was revealed. The sequences of 51 peptides were identified and 46 peptides were assigned as immunomodulatory peptides. By evaluating the immumonodulatory activity and mechanism, soybean peptides could facilitate the proliferation of macrophages. The pinocytotic activity and NO level were increased. Induction of iNOS mRNA expression by soybean peptides was responsible for the increased NO production. The release of cytokines IL-6 and TNF-α was elevated and their levels were equal to positive control. The mRNA expression levels of IL-6 and TNF-α were also improved by soybean peptides, but much lower than positive control. The results were helpful for application of soybean peptides in functional foods.
Collapse
Affiliation(s)
- Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co., Ltd., Guangzhou 510530, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
20
|
Application of Bacterial Cellulose in the Textile and Shoe Industry: Development of Biocomposites. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2030034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several studies report the potential of bacterial cellulose (BC) in the fashion and leather industries. This work aimed at the development of BC-based composites containing emulsified acrylated epoxidized soybean oil (AESO) that are polymerized with the redox initiator system hydrogen peroxide (H2O2) and L-ascorbic acid and ferrous sulfate as a catalyst. BC was fermented under static culture. The polymerization of the emulsified organic droplets was tested before and after their incorporation into BC by exhaustion. The composites were then finished with an antimicrobial agent (benzalkonium chloride) and dyed. The obtained composites were characterized in terms of wettability, water vapor permeability (WVP), mechanical, thermal and antimicrobial properties. When AESO emulsion was polymerized prior to the exhaustion process, the obtained composites showed higher WVP, tensile strength and thermal stability. Meanwhile, post-exhaustion polymerized AESO conferred the composite higher hydrophobicity and elongation. The composites finished with the antimicrobial agent showed activity against S. aureus. Finally, intense colors were obtained more uniformly when they were incorporated simultaneously with the emulsified AESO with all the dyes tested.
Collapse
|
21
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
22
|
Salarbashi D, Tafaghodi M, Bazzaz BSF, Mohammad Aboutorabzade S, Fathi M. pH-sensitive soluble soybean polysaccharide/SiO 2 incorporated with curcumin for intelligent packaging applications. Food Sci Nutr 2021; 9:2169-2179. [PMID: 33841833 PMCID: PMC8020962 DOI: 10.1002/fsn3.2187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
In the present work, the effect of various concentrations of SiO2 nanoparticles (5, 10, and 15%) on physicochemical and antimicrobial properties of soluble soybean polysaccharide (SSPS)-based film was investigated. Then, the migration of SiO2 nanoparticles to ethanol as a food simulant was evaluated. Subsequently, curcumin was added to the nanocomposite formulation to sense the pH changes. Finally, the cytotoxicity of the developed packaging system was investigated. With increasing nanoparticle concentration, the film thickness, water solubility, and water vapor permeability decreased and mechanical performance of the films improved. SSPS/SiO2 nanocomposite did not show antibacterial activity. SEM analysis showed that SiO2 nanoparticles are uniformly distributed in the SSPS matrix; however, some outstanding spots can be observed in the matrix. A very homogeneous surface was observed for neat SSPS film with R a and R q values of 3.48 and 4.26, respectively. With the incorporation of SiO2 (15%) into SSPS film, R a and R q values increased to 5.67 and 5.98, respectively. Small amount of SiO2 nanoparticles was released in food simulant. The nanocomposite incorporated with curcumin showed good physical properties and antibacterial activity. A strong positive correlation was observed between TVBN content of shrimp and a* values of the films during storage time (Pearson's correlation = 0.985).
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterSchool of MedicineGonabad University of Medical SciencesGonabadIran
- Department of Food Science and NutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Control DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | | | - Morteza Fathi
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
23
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Bai Y, Zhao F, Shen J, Zhang Y. Improvement of water resistance of wheat flour‐based adhesives by thermal–chemical treatment and chemical crosslinking. J Appl Polym Sci 2021. [DOI: 10.1002/app.50458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yumei Bai
- Key Laboratory of Bio‐based Material Science and Technology (Ministry of Education) Northeast Forestry University Harbin China
| | - Fan Zhao
- Key Laboratory of Bio‐based Material Science and Technology (Ministry of Education) Northeast Forestry University Harbin China
| | - Jun Shen
- Key Laboratory of Bio‐based Material Science and Technology (Ministry of Education) Northeast Forestry University Harbin China
| | - Yuehong Zhang
- Key Laboratory of Bio‐based Material Science and Technology (Ministry of Education) Northeast Forestry University Harbin China
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
25
|
Le B, Pham TNA, Yang SH. Prebiotic Potential and Anti-Inflammatory Activity of Soluble Polysaccharides Obtained from Soybean Residue. Foods 2020; 9:foods9121808. [PMID: 33291241 PMCID: PMC7762201 DOI: 10.3390/foods9121808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022] Open
Abstract
In the present study, we assessed the extraction of low molecular weight soluble polysaccharides (MESP) from soybean by-products using microwave-assisted enzymatic technology and proposed the chemical structure of MESP using Fourier transform-infrared spectroscopy, gas chromatography, and 1H and 13C nuclear magnetic resonance spectrum analysis. The results suggested that MESP mainly comprised arabinose, rhamnose, and glucuronic acid with (1→4) glycosidic linkages in the backbone. Compared with inulin, MESP was found to selectively stimulate the growth of Lactobacillus probiotics. Moreover, the results of in vitro fermentation indicated that MESP significantly increased the concentrations of both acetate and butyrate (p < 0.05). MESP were treated on lipopolysaccharide (LPS)-stimulated RAW264.7 cells to determine the anti-inflammatory effect in vitro. It was observed that MESP inhibited nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 production. Furthermore, Western blotting results indicated that MESP significantly attenuated LPS-induced downregulation of phosphorylation levels of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) in macrophages. The underlying mechanism might involve inhibition of the expression of pro-inflammatory cytokines, presumably via JAK2/STAT3 pathway. Collectively, the results of our study paved way for the production of MESP, which may be potentially used as nutraceutical ingredients for prebiotics and anti-inflammatory agents, from soybean residue.
Collapse
Affiliation(s)
- Bao Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Thi Ngoc Anh Pham
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea;
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea;
- Correspondence: ; Tel.: +82-61-659-7306
| |
Collapse
|
26
|
Liu J, Liu C, Zheng X, Chen M, Tang K. Soluble soybean polysaccharide/nano zinc oxide antimicrobial nanocomposite films reinforced with microfibrillated cellulose. Int J Biol Macromol 2020; 159:793-803. [PMID: 32422257 DOI: 10.1016/j.ijbiomac.2020.05.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Nanocomposite films of soluble soybean polysaccharide (SSPS)/nano zinc oxide (nZnO) reinforced with microfibrillated cellulose (MFC) were developed by solvent casting method. The structure, optical, barrier, thermal, surface wettability, mechanical properties and antimicrobial activity of the SSPS/MFC, SSPS/nZnO and SSPS/nZnO/MFC nanocomposite films were evaluated. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra indicated interactions between SSPS and the nano-fillers. The nanocomposite films containing MFC showed improved tensile strength, stiffness, ultraviolet (UV) light barrier property, thermal stability and water resistance when compared with the neat SSPS film. The nZnO-incorporated nanocomposite films exhibited good antimicrobial activity against E. coli and B. subtlis. Overall, the MFC-reinforced SSPS/nZnO nanocomposite films possessed desirable characteristics to be considered as potential candidates for antimicrobial packaging and biomedical applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Chang Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Miao Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
27
|
Eid M, Sobhy R, Zhou P, Wei X, Wu D, Li B. β-cyclodextrin- soy soluble polysaccharide based core-shell bionanocomposites hydrogel for vitamin E swelling controlled delivery. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
An Eco-Effective Soybean Meal-Based Adhesive Enhanced with Diglycidyl Resorcinol Ether. Polymers (Basel) 2020; 12:polym12040954. [PMID: 32326006 PMCID: PMC7240682 DOI: 10.3390/polym12040954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Soybean meal-based adhesive is a good wood adhesive mainly due to its renewable, degradable, and environmentally friendly features. To improve the enhancement efficiency for adhesives, diglycidyl resorcinol ether (DRE) containing a benzene ring and flexible chain structure was used as an efficient cross-linker to enhance the adhesive in the study. The physicochemical properties of adhesives, the dry shear strength, and wet shear strength of plywood were measured. Results suggested that DRE reacted with the functional groups of soybean meal adhesive and formed a cross-linking network during hot press process in a ring-opening reaction through a covalent bond. As expected, compared to adhesive control, the soybean meal adhesive with 4 wt% DRE incorporation showed a significant increment in wet shear strength by 227.8% and in dry shear strength by 82.7%. In short, soybean meal adhesive enhanced with DRE showed considerable potential as a wood adhesive for industrial applications.
Collapse
|
29
|
Fernandes M, Souto AP, Gama M, Dourado F. Bacterial Cellulose and Emulsified AESO Biocomposites as an Ecological Alternative to Leather. NANOMATERIALS 2019; 9:nano9121710. [PMID: 31795479 PMCID: PMC6955754 DOI: 10.3390/nano9121710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/21/2023]
Abstract
This research investigated the development of bio-based composites comprising bacterial cellulose (BC), as obtained by static culture, and acrylated epoxidized soybean oil (AESO) as an alternative to leather. AESO was first emulsified; polyethylene glycol (PEG), polydimethylsiloxane (PDMS) and perfluorocarbon-based polymers were also added to the AESO emulsion, with the mixtures being diffused into the BC 3D nanofibrillar matrix by an exhaustion process. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the tested polymers penetrated well and uniformly into the bulk of the BC matrix. The obtained composites were hydrophobic and thermally stable up to 200 °C. Regarding their mechanical properties, the addition of different polymers lead to a decrease in the tensile strength and an increase in the elongation at break, overall presenting satisfactory performance as a potential alternative to leather.
Collapse
Affiliation(s)
- Marta Fernandes
- 2C2T-Centre for Textile Science and Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.F.); (A.P.S.)
| | - António Pedro Souto
- 2C2T-Centre for Textile Science and Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.F.); (A.P.S.)
| | - Miguel Gama
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Correspondence: ; Tel.: +351-253-604-418
| | - Fernando Dourado
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| |
Collapse
|
30
|
Oliveira da Silva A, Cortez-Vega WR, Prentice C, Fonseca GG. Development and characterization of biopolymer films based on bocaiuva (Acromonia aculeata) flour. Int J Biol Macromol 2019; 155:1157-1168. [PMID: 31726125 DOI: 10.1016/j.ijbiomac.2019.11.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/11/2023]
Abstract
This work aimed to produce films based on bocaiuva flour (Acrocomia aculeata) by the casting method, and to characterise them. All obtained films were visually symmetrical, without ruptures or blistering and visually homogeneous, easy to handle with a yellowish colouration. The addition of glycerol allowed greater flexibility to the films. The tensile strength and the elongation increase as the concentration of flour increased (2.04 g 100 mL-1). The addition of oily phases increases the elongation, indicating that the essential oil incorporated into the films acted as plasticizer because it also allowed a greater permeability to water vapor. Peaks at 2Ɵ between 10.00°, 13.81°, 17.67°, 20.0° and 24.34° were observed in films with 12.56 g of starch per 100 g of pulp, which are characteristic of B-starch, due to the presence of long branched chains of amylopectin, with a peak characteristic of lignocellulosic materials. Reflection was more intense at 2Ɵ between 22° for all treatments. The obtained films presented relevant characteristics for the application as edible coating.
Collapse
Affiliation(s)
- Alessandra Oliveira da Silva
- Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - William Renzo Cortez-Vega
- Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Carlos Prentice
- Laboratory of Food Technology, School of Food and Chemistry, Federal University of Rio Grande, RS, Brazil
| | - Gustavo Graciano Fonseca
- Laboratory of Bioengineering, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
31
|
Effects of extraction procedures and plasticizer concentration on the optical, thermal, structural and antioxidant properties of novel ulvan films. Int J Biol Macromol 2019; 135:647-658. [DOI: 10.1016/j.ijbiomac.2019.05.196] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/22/2022]
|