1
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M, Narmani A, Farhood B. Recent advances of hyaluronic acid-based materials in drug delivery systems and regenerative medicine: A review. Arch Pharm (Weinheim) 2025; 358:e2400903. [PMID: 40091562 DOI: 10.1002/ardp.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Nowadays, diseases have a high rate of incidence and mortality worldwide. On the other side, the drawbacks of conventional modalities in the suppression of diseases have encountered serious problematic issues for the health of human beings. For instance, although various approaches have been applied for the treatment of cancer, it has an ever-increasing rate of incidence and mortality throughout the globe. Thus, there is a fundamental requirement for the development of breakthrough technologies in the inhibition of diseases. Hyaluronic acid (HA) is one of the most practical biopolymers in the suppression of diseases. HA has lots of potential physicochemical (like rheological, structural, molecular weight, and ionization, etc.) and biomedical properties (bioavailability, biocompatibility, CD44 targeting and signaling pathways, components of biological organs, mucoadhesion, immunomodulation, etc.), which made it a potential candidate for the development of breakthrough tools in pharmaceutical and biomedical sciences. The ease of surface modification (carboxylation, amidation, hydroxylation, and esterification), high bioavailability and synthesis routes, and various administration routes are considered as other merits of HA-based vehicles. These mucopolysaccharide HA-based materials have been considerably developed for use in drug delivery systems (DDSs), cancer therapy, wound healing, antiaging, and tissue engineering. This review summarizes the advantages of HA-based DDS and scaffolds in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| | - Asghar Narmani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Li J, Ahmed HH, Hussein AM, Kaur M, Jameel MK, Kaur H, Tillaeva U, Al-Hussainy AF, Sameer HN, Hameed HG, Idan AH, Alsaikhan F, Narmani A, Farhood B. Advances in polysaccharide-based materials for biomedical and pharmaceutical applications: A comprehensive review. Arch Pharm (Weinheim) 2025; 358:e2400854. [PMID: 39651831 DOI: 10.1002/ardp.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Polysaccharides, the most abundant biopolymers in nature, have attracted the attention of researchers and clinicians due to its practicality in biomedical and pharmaceutical sciences. These biomaterials have high bioavailability and play structural and functional roles in living organisms. Polysaccharides are classified into several groups based on their origin, including plant polysaccharides and marine polysaccharides (like chitosan, hyaluronic acid, dextran, alginates, etc.) with specific applications. These biopolymers possess unique physicochemical (such as surface functional groups, solubility, and stability), mechanical (like mechanical strength and tensile), and biomedical (such as antioxidant activity, biocompatibility, biodegradability, renewability, and non-immunogenicity) characteristics which have made them excellent platforms for a wide variety of biomedical and pharmaceutical applications. Ease of extraction and different preparation approaches are mentioned as other potential properties of polysaccharides that further improved their practicality in biomedical sciences. They have high drug/bioactive encapsulation capacity and sustained/controlled release manner in in vivo microenvironments. The anti-inflammatory and immunomodulation, stimuli-responsive drug/bioactive release, and passive and active drug/bioactive delivery are considered the potential features of these biopolymers in pharmaceutical sciences. Polysaccharides have indicated practical applications in biomedical sciences, including biosensors, tissue engineering, implantation, wound healing, vascular grafting, and vaccines. This review highlights the advances of polysaccharide-based materials in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Cognitive Neuroscience and Philosophy, University of Skovde, Skovde, Sweden
| | | | - Ali M Hussein
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mohammed Khaleel Jameel
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Alsaikhan F, Farhood B. Recent advances on chitosan/hyaluronic acid-based stimuli-responsive hydrogels and composites for cancer treatment: A comprehensive review. Int J Biol Macromol 2024; 280:135893. [PMID: 39317275 DOI: 10.1016/j.ijbiomac.2024.135893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer, as leading cause of death, has a high rate of mortality worldwide. Although there is a wide variety of conventional approaches for the treatment of cancer (such as surgery and chemotherapy), they have considerable drawbacks in terms of practicality, treatment efficiency, and cost-effectiveness. Therefore, there is a fundamental requirement for the development of safe and efficient treatment modalities based on breakthrough technologies to suppress cancer. Chitosan (CS) and hyaluronic acid (HA) polysaccharides, as FDA-approved biomaterials for some biomedical applications, are potential biopolymers for the efficient treatment of cancer. CS and HA have high biocompatibility, bioavailability, biodegradability, and immunomodulatory function which guarantee their safety and non-toxicity. CS-/HA-based hydrogels (HGs)/composites stand out for their potential anticancer function, versatile preparation and modification, ease of administration, controlled/sustained drug release, and active and passive drug internalization into target cells which is crucial for efficient treatment of cancer compared with conventional treatment approaches. These HGs/composites can respond to external (magnetic, ultrasound, light, and thermal) and internal (pH, enzyme, redox, and ROS) stimuli as well which further paves the way to their manipulation, targeted drug delivery, practicality, and efficient treatment. The above-mentioned properties of CS-/HA-based HGs/composites are unique and practical in cancer treatment which can ignore the deficiencies of conventional approaches. The present manuscript comprehensively highlights the advances in the practical application of stimuli-responsive HGs/composites based on CS/HA polysaccharides.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Saadh MJ, Hsu CY, Mustafa MA, Mutee AF, Kaur I, Ghildiyal P, Ali AJA, Adil M, Ali MS, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based blends as potential drug delivery systems: A review. Int J Biol Macromol 2024; 273:132916. [PMID: 38844287 DOI: 10.1016/j.ijbiomac.2024.132916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
During the last decades, the ever-increasing incidence of diseases has led to high rates of mortality throughout the world. On the other hand, the inability and deficiencies of conventional approaches (such as chemotherapy) in the suppression of diseases remain challenging issues. As a result, there is a fundamental requirement to develop novel, biocompatible, bioavailable, and practical nanomaterials to prevent the incidence and mortality of diseases. Chitosan (CS) derivatives and their blends are outstandingly employed as promising drug delivery systems for disease therapy. These biopolymers are indicated more efficient performance against diseases compared with conventional modalities. The CS blends possess improved physicochemical properties, ease of preparation, high affordability, etc. characteristics compared with other biopolymers and even pure CS which result in efficient thermal, mechanical, biochemical, and biomedical features. Also, these blends can be administrated through different routes without a long-term treatment period. Due to the mentioned properties, numerous formulations of CS blends are developed for pharmaceutical sciences to treat diseases. This review article highlights the progressions in the development of CS-based blends as potential drug delivery systems against diseases.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan; Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA.
| | | | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Almajidi YQ, Ponnusankar S, Chaitanya MVNL, Marisetti AL, Hsu CY, Dhiaa AM, Saadh MJ, Pal Y, Thabit R, Adhab AH, Alsaikhan F, Narmani A, Farhood B. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. Int J Biol Macromol 2024; 264:130683. [PMID: 38458289 DOI: 10.1016/j.ijbiomac.2024.130683] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.
Collapse
Affiliation(s)
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, The Nilgiris, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan.
| | | | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Yogendra Pal
- Department of Pharmaceutical Chemistry, CT College of Pharmacy, Shahpur, Jalandhar, Punjab 144020, India
| | - Russul Thabit
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Almajidi YQ, Gupta J, Sheri FS, Zabibah RS, Faisal A, Ruzibayev A, Adil M, Saadh MJ, Jawad MJ, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127278. [PMID: 37806412 DOI: 10.1016/j.ijbiomac.2023.127278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The treatment of diseases, such as cancer, is one of the most significant issues correlated with human beings health. Hydrogels (HGs) prepared from biocompatible and biodegradable materials, especially biopolymers, have been effectively employed for the sort of pharmaceutical and biomedical applications, including drug delivery systems, biosensors, and tissue engineering. Chitosan (CS), one of the most abundant bio-polysaccharide derived from chitin, is an efficient biomaterial in the prognosis, diagnosis, and treatment of diseases. CS-based HGs possess some potential advantages, like high values of bioactive encapsulation, efficient drug delivery to a target site, sustained drug release, good biocompatibility and biodegradability, high serum stability, non-immunogenicity, etc., which made them practical and useful for pharmaceutical and biomedical applications. In this review, we summarize recent achievements and advances associated with CS-based HGs for drug delivery, regenerative medicine, disease detection and therapy.
Collapse
Affiliation(s)
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U.P., India
| | - Fatime Satar Sheri
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Akbarali Ruzibayev
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, 100011 Tashkent City, Uzbekistan
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Jiang M, Althomali RH, Ansari SA, Saleh EAM, Gupta J, Kambarov KD, Alsaab HO, Alwaily ER, Hussien BM, Mustafa YF, Narmani A, Farhood B. Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. Int J Biol Macromol 2023; 251:126390. [PMID: 37595701 DOI: 10.1016/j.ijbiomac.2023.126390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | | | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Shang J, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Zhao J, Liang W, Zeng B. Recent developments in nanomaterials for upgrading treatment of orthopedics diseases. Front Bioeng Biotechnol 2023; 11:1221365. [PMID: 37621999 PMCID: PMC10446844 DOI: 10.3389/fbioe.2023.1221365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
Nanotechnology has changed science in the last three decades. Recent applications of nanotechnology in the disciplines of medicine and biology have enhanced medical diagnostics, manufacturing, and drug delivery. The latest studies have demonstrated this modern technology's potential for developing novel methods of disease detection and treatment, particularly in orthopedics. According to recent developments in bone tissue engineering, implantable substances, diagnostics and treatment, and surface adhesives, nanomedicine has revolutionized orthopedics. Numerous nanomaterials with distinctive chemical, physical, and biological properties have been engineered to generate innovative medication delivery methods for the local, sustained, and targeted delivery of drugs with enhanced therapeutic efficacy and minimal or no toxicity, indicating a very promising strategy for effectively controlling illnesses. Extensive study has been carried out on the applications of nanotechnology, particularly in orthopedics. Nanotechnology can revolutionize orthopedics cure, diagnosis, and research. Drug delivery precision employing nanotechnology using gold and liposome nanoparticles has shown especially encouraging results. Moreover, the delivery of drugs and biologics for osteosarcoma is actively investigated. Different kind of biosensors and nanoparticles has been used in the diagnosis of bone disorders, for example, renal osteodystrophy, Paget's disease, and osteoporosis. The major hurdles to the commercialization of nanotechnology-based composite are eventually examined, thus helping in eliminating the limits in connection to some pre-existing biomaterials for orthopedics, important variables like implant life, quality, cure cost, and pain and relief from pain. The potential for nanotechnology in orthopedics is tremendous, and most of it looks to remain unexplored, but not without challenges. This review aims to highlight the up tp date developments in nanotechnology for boosting the treatment modalities for orthopedic ailments. Moreover, we also highlighted unmet requirements and present barriers to the practical adoption of biomimetic nanotechnology-based orthopedic treatments.
Collapse
Affiliation(s)
- Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
10
|
Hou Y, Chen R, Wang Z, Lu R, Wang Y, Ren S, Li S, Wang Y, Han T, Yang S, Zhou H, Gao Z. Bio-barcode assay: A useful technology for ultrasensitive and logic-controlled specific detection in food safety: A review. Anal Chim Acta 2023; 1267:341351. [PMID: 37257972 DOI: 10.1016/j.aca.2023.341351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Food safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes. This review systematically summarizes the progress of fluorescence, PCR, and colorimetry-based BCA methods for the detection of various contaminants, including pathogenic bacteria, toxins, pesticides, antibiotics, and other chemical substances in food in over 120 research papers. Current challenges, including long experimental times and strict storage conditions, and the prospects for the application of BCA in biomedicine and environmental analyses, have also been discussed herein.
Collapse
Affiliation(s)
- Yue Hou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China; Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Ruipeng Chen
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Zhiguang Wang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China; Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Ran Lu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Yonghui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shuyue Ren
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Yu Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Tie Han
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| | - Huanying Zhou
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China.
| | - Zhixian Gao
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
11
|
Narmani A, Jahedi R, Bakhshian-Dehkordi E, Ganji S, Nemati M, Ghahramani-Asl R, Moloudi K, Hosseini SM, Bagheri H, Kesharwani P, Khani A, Farhood B, Sahebkar A. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv 2023; 20:937-954. [PMID: 37294853 DOI: 10.1080/17425247.2023.2223941] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ehsan Bakhshian-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ali Khani
- Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Narmani A, Ganji S, Amirishoar M, Jahedi R, Kharazmi MS, Jafari SM. Smart chitosan-PLGA nanocarriers functionalized with surface folic acid ligands against lung cancer cells. Int J Biol Macromol 2023:125554. [PMID: 37356696 DOI: 10.1016/j.ijbiomac.2023.125554] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Lung cancer is the second most prevalent and first killer cancer worldwide, and conventional approaches do not have enough ability to suppress it. Therefore, a novel targeted chitosan (CS)-poly lactic-co-glycolic acid (PLGA)-folic acid (FA) nanocarrier was developed for delivery of sorafenib (Sor) to lung cancer cells. The nanocarrier (CPSF) had a size of 30-40 nm with globular shapes. Surface charge and drug content of CPSF were ascertained at about 1.1 mV and 15 %, respectively. Controlled (4 % within 2 h) and pH-sensitive (18 % within 2 h at pH = 5.0) Sor release were observed for the nanocarrier. The MTT assay demonstrated a cell viability of 13 % after 24 h treatment with 400 nM CPSF in A549 cancer cells while it was 78 % in MSC normal cells. The qRT-PCR revealed >8 folds and 11 folds increase for Caspase9 and P53 genes after 5 h treatment with 100 nM (IC50) CPSF; but a reduction of 5 folds was observed for the Bcl2 gene. Besides, 57 % and 20 % apoptosis were attained in cell cycle arrest and apoptosis assays for CPSF, respectively. CPF indicated about 88 % internalization in cancer cells. These data prove that CPSF is a promising nanodelivery system for lung cancer suppression.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Amirishoar
- Department of Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
13
|
Tătaru AM, Canciu A, Tertiș M, Cristea C, Cernat A. Staphylococcus aureus - Review on potential targets for sensors development. Bioelectrochemistry 2023; 153:108492. [PMID: 37413820 DOI: 10.1016/j.bioelechem.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is accountable for a wide variety of clinical disease with a high rate of morbidity and mortality around the globe. It has a leading place into the ESKAPE group that includes six pathogens and exhibit multidrug resistance and are the major cause of healthcare associated infections: Enterococcus faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. A critical overview regarding the development of sensors for both S. aureus and his, more dangerous alter ego, Methicillin-resistant S. aureus (MRSA) was presented focusing on the bacteria targets starting with the detection of the whole cell, up to specific wall components, toxins or other virulence factors. The literature data was systematically assessed having in sight the design of the sensing platforms, the analytical performances, and possible courses of action to be implemented in real practice as point-of-care (POC) devices. Moreover, a distinct section was dedicated to commercially available devices and out of the box approaches, namely the use of bacteriophages as an alternative to antimicrobial therapy and as sensors modifiers. The reviewed sensors and devices were discussed in terms of their suitability for different biosensing applications, in early screening of contamination regarding food analysis, environmental monitoring and in clinical diagnosis.
Collapse
Affiliation(s)
- Ana-Maria Tătaru
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Alexandra Canciu
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Mihaela Tertiș
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania.
| | - Andreea Cernat
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Louis Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RMR, Abed OH, Abosaooda M, Jalil AT, Mustafa YF, Narmani A, Farhood B. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi, 31001 Anbar, Iraq
| | - Noor Adil Abood
- Medical Laboratory Techniques, Al-Ma'moon University, Baghdad, Iraq
| | - Raghad Z Atta
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Laboratory of Psychometrics, Comparative psychology and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
| | - Reem Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Osama H Abed
- Dentistry Department, Al-Rasheed University College, Baghdad, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Kantak M, Batra P, Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int J Biol Macromol 2023; 230:123262. [PMID: 36646350 DOI: 10.1016/j.ijbiomac.2023.123262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
In recent years' development in nanotechnology utilization of DNA barcodes with potential benefit of nanoparticulate system is a hallmark for novel advancement in healthcare, biomedical and research sector. Interplay of biological barcoding with nanodimensional system encompasses innovative technologies to offer unique advantages of ultra-sensitivity, error-free, accuracy with minimal label reagents, and less time consumption in comparison to conventional techniques like ELISA, PCR, culture media, electrophoresis. DNA barcoding systems used as universal novel tool for identification and multiplex structural detection of proteins, DNAs, toxins, allergens, and nucleic acids of humans, viruses, animals, bacteria, plants as well as personalized treatment in ovarian cancer, AIDS-related Kaposi sarcoma, breast cancer and cardiovascular diseases. Barcoding tools offer substantial attention in drug delivery, in-vivo screening, gene transport for theranostics, bioimaging, and nano-biosensors applications. This review article outlines the recent advances in nano-mediated DNA barcodes to explore various applications in detection of cancer markers, tumor cells, pathogens, allergens, as theranostics, biological sensors, and plant authentication. Furthermore, it summarizes the diverse newer technologies such as bio-barcode amplification (BBA), Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) and CRISPR-Cas9 gene knockout and their applications as sensors for detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Maithili Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Priyanka Batra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
16
|
Chang X, Cheng Y, Wang X, Wang Y, Liu X, Han T, Gao Z, Zhou H. A novel ultrasensitive and fast aptamer biosensor of SEB based on AuNPs-assisted metal-enhanced fluorescence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159977. [PMID: 36347282 DOI: 10.1016/j.scitotenv.2022.159977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A fluorescent biosensor strategy was developed in combination with immunomagnetic separation for rapid and sensitive detection of staphylococcal enterotoxin B (SEB). Magnetic nanoparticles (MNPs) modified with aptamer of SEB could capture the SEB. Then the gold nanoparticles (AuNPs) fluorescent probe was added and a "sandwich structure" was formed between AuNPs, SEB and MNPs. The MNPs-SEB-AuNPs structure could be separated with an additional magnetic field, which resulted the lower signals of AuNPs fluorescent probe. In optimal conditions, the current method displayed a broad quantitative range from 100 to 107 fg/mL and the limit of detection was 3.43 fg/mL. The recovery of SEB-spiked milk samples ranged from 92.00 to 119.00 %, which revealed that the developed method had great accuracy. Furthermore, the method was fast and economical for ultrasensitive detection. Therefore, the fluorescent biosensor based on MNPs-AuNPs is promising for the detection of other environmental and food pollutants.
Collapse
Affiliation(s)
- Xueyu Chang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Yaqian Cheng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Xinke Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Yonghui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Xueli Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China.
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China.
| |
Collapse
|
17
|
Smart nanosystem based on PLGA nanoparticles as potential candidate for photothermal therapy: Characterization and in vitro studies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
18
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
19
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
20
|
A colorimetric sensor for Staphylococcus aureus detection based on controlled click chemical-induced aggregation of gold nanoparticles and immunomagnetic separation. Mikrochim Acta 2022; 189:104. [DOI: 10.1007/s00604-022-05211-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
|
21
|
Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021; 272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, cancer is one of the most prominent issues related to human health since it causes more than one-tenth of death cases throughout the world. On the other hand, routine therapeutic approaches in cancer suppression such as radiation therapy, chemotherapy, surgery, etc. due to their undesirable therapeutic outputs, including low efficiency in cancer inhibition, non-targeted drug delivery, nonselective distribution, and enormous side effects, have been indicated inefficient potency in cancer therapy or at least its growth inhibition. As a result, the development of novel and practical therapeutic methods such as nanoparticle-based drug delivery systems can be outstandingly beneficial in cancer suppression. Among various nanoparticles used in the delivery of bioactive to the tumor site, chitosan (CS) nanoparticles have received high attention. CS, poly [β-(1-4)-linked-2-amino-2-deoxy-d-glucose], is a natural linear amino polysaccharide derived from chitin which is made of irregularly distributed d-glucosamine and N-acetyl-d-glucosamine units. CS nanoparticles owing to their appropriate aspects, including nanometric size, great drug loading efficacy, ease of manipulation, non-toxicity, excellent availability and biocompatibility, good serum stability, long-term circulation time, suitable pharmacokinetic and pharmacodynamics, non-immunogenicity, and enhanced drug solubility in the human body, have been designated as an efficient candidate for drug delivery systems. They can be involved in both passive (based on the enhanced permeability and retention effect cancer targeting) and active (receptor-mediated or stimuli-responsive cancer targeting) drug delivery systems for potential cancer therapy. This review presents the properties, preparation, modification, and numerous pharmaceutical applications of CS-based drug nanodelivery systems in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
22
|
Magnetic-fluorescent nanoliposomes decorated with folic acid for active delivery of cisplatin and gemcitabine to cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Sharma AS, Ali S, Sabarinathan D, Murugavelu M, Li H, Chen Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr Rev Food Sci Food Saf 2021; 20:5765-5801. [PMID: 34601802 DOI: 10.1111/1541-4337.12834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology. To the best of our knowledge, comprehensive review of the GQDs-based fluorescence sensing applications concerning food quality analysis has not yet been done. This review article focuses on the recent progress on the synthesis strategies, electronic properties, and fluorescence mechanisms of GQDs. The various GQDs-based fluorescence detection strategies involving Förster resonance energy transfer- or inner filter effect-driven fluorescence turn-on and turn-off response mechanisms toward trace-level detection of toxic metal ions, toxic adulterants, and banned chemical substances in foodstuffs are summarized. The challenges associated with the pretreatment steps of complex food matrices and prospects and challenges associated with the GQDs-based fluorescent probes are discussed. This review could serve as a precedent for further advancement in interdisciplinary research involving the development of versatile GQDs-based fluorescent probes toward food science and technology applications.
Collapse
Affiliation(s)
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | | | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
25
|
Pakdaman Goli P, Bikhof Torbati M, Parivar K, Akbarzadeh Khiavi A, Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Cai Q, Wang R, Qiao Z, Yang W. Single-digit Salmonella detection with the naked eye using bio-barcode immunoassay coupled with recombinase polymerase amplification and a CRISPR-Cas12a system. Analyst 2021; 146:5271-5279. [PMID: 34355716 DOI: 10.1039/d1an00717c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to visually detect low numbers of Salmonella in food samples is highly valuable but remains a challenge. Here we present a novel platform for ultrasensitive and visual detection of Salmonella Typhimurium by integrating the bio-barcode immunoassay (BCA), recombinase polymerase amplification (RPA), and CRISPR-Cas12a cleavage in a single reaction system (termed as BCA-RPA-Cas12a). In the system, the target bacteria were separated by immunomagnetic nanoparticles and labeled with numerous barcode AuNPs, which carry abundant bio-barcode DNA molecules to amplify the signal. Afterwards, the bio-barcode DNA molecules were amplified by RPA and subsequently triggered the cleavage activity of Cas12a to generate the fluorescence signal. Due to this triplex signal amplification, the BCA-RPA-Cas12a system can selectively detect Salmonella Typhimurium at the single-digit level with the naked eye under blue light within 60 min. Meanwhile, this novel platform was successfully applied to detect Salmonella Typhimurium in spiked milk samples with a similar sensitivity and satisfactory recovery, indicating its potential application in real samples. Furthermore, in virtue of the versatility of the antibody in the stage of BCA, the BCA-RPA-Cas12a system can be extended to further application in other bacteria detection and food safety monitoring.
Collapse
Affiliation(s)
- Qiqi Cai
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | | | | | | |
Collapse
|
27
|
Zhou Y, Wang Z, Peng Y, Wang F, Deng L. Gold Nanomaterials as a Promising Integrated Tool for Diagnosis and Treatment of Pathogenic Infections-A Review. J Biomed Nanotechnol 2021; 17:744-770. [PMID: 34082865 DOI: 10.1166/jbn.2021.3075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes research on functionalized gold nanomaterials as pathogen detection sensors and pathogen elimination integrated tools. After presenting the challenge of current severe threat from pathogenic bacteria and the increasingly serious growth rate of drug resistance, the first section mainly introduces the conspectus of gold nanostructures from synthesis, characterization, physicochemical properties and applications of gold nanomaterials. The next section deals with gold nanomaterials-based pathogen detection sensors such as colorimetric sensors, fluorescence sensors and Surface-Enhanced Raman Scattering sensors. We then discuss strategies based on gold nanomaterials for eliminating pathogenic infections, such as the dual sterilization strategy for grafting gold nanomaterials with antibacterial substances, photothermal antibacterial and photodynamic antibacterial methods. The fourth part briefly introduces the comprehensive strategy for diagnosis and sterilization of pathogen infection based on gold nanomaterials, such as the diagnosis and treatment strategy for pathogen infection using Roman signals real-time monitoring and photothermal sterilization. A concluding section that summarizes the current status and challenges of the novel diagnosis and treatment integrated strategy for pathogenic infections, gives an outlook on potential future perspectives.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zefeng Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yanling Peng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Feiying Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Le Deng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
28
|
Photooxidation-induced fluorescence amplification system for an ultra-sensitive enzyme-linked immunosorbent assay (ELISA). Sci Rep 2021; 11:5831. [PMID: 33712666 PMCID: PMC7954804 DOI: 10.1038/s41598-021-85107-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
This report suggests a method of enhancing the sensitivity of chemifluorescence-based ELISA, using photooxidation-induced fluorescence amplification (PIFA). The PIFA utilized autocatalytic photooxidation of the chemifluorescent substrate, 10-acetyl 3,7-dihydroxyphenoxazine (ADHP, Amplex Red) to amplify the fluorescent product resorufin, initially oxidized by horse radish peroxidase (HRP). As the amplification rate is proportional to the initial level of resorufin, the level of antigen labeled by HRP is quantified by analyzing the profile of fluorescence intensity. The normalized profile was interpolated into an autocatalysis model, and the rate of increase at half-maximum time was quantified by the use of an amplification index (AI). The lower limit of detection, for resorufin or HRP, was less than one-tenth that of the plate reader. It requires only slight modification of the fluorescence reader and is fully compatible with conventional or commercial ELISA. When it is applied to a commercial ELISA kit for the detection of amyloid beta, it is verified that the PIFA assay enhanced the detection sensitivity by more than a factor of 10 and was compatible with a conventional 96-well ELISA assay kit. We anticipate this PIFA assay to be used in research for the detection of low levels of proteins and for the early diagnosis of various diseases with rare protein biomarkers, at ultra-low (pg/mL) concentrations.
Collapse
|
29
|
Naderlou E, Salouti M, Amini B, Amini A, Narmani A, Jalilvand A, Shahbazi R, Zabihian S. Enhanced sensitivity and efficiency of detection of Staphylococcus aureus based on modified magnetic nanoparticles by photometric systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:810-817. [PMID: 32476515 DOI: 10.1080/21691401.2020.1748638] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Staphylococcus aureus is an important infectious factor in the food industry and hospital infections. Many methods are used for detecting bacteria but they are mostly time-consuming, poorly sensitive. In this study, a nano-biosensor based on iron nanoparticles (MNPs) was designed to detect S. aureus. MNPs were synthesized and conjugated to Biosensors. Then S. aureus was lysed and nano-biosensor (MNP-TiO2-AP-SMCC-Biosensors) was added to the lysed bacteria. After bonding the bacterial genome to the nano-biosensor, MNPs were separated by a magnet. Bacterial DNA was released from the surface of nano-biosensor and researched by Nano-drop spectrophotometry. The results of SEM and DLS revealed that the size of MNPs was 20-25 nm which increased to 38-43 nm after modification and addition of biosensors. The designed nano-biosensor was highly sensitive and specific for the detection of S. aureus. The limit of detection (LOD) was determined as 230 CFU mL-1. There was an acceptable linear correlation between bacterial concentration and absorption at 3.7 × 102-3.7× 107 whose linear diagram and regression was Y = 0.242X + 2.08 and R2 = .996. Further, in the presence of other bacteria as a negative control, it was absolutely specific. The sensitivity of the designed nano-biosensor was investigated and compared through PCR.
Collapse
Affiliation(s)
- Ebrahim Naderlou
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Bahram Amini
- Department of Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Amini
- Department of Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Asghar Narmani
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ahmad Jalilvand
- Department of Pathology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Shahbazi
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Saeid Zabihian
- Department of Pathology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
30
|
Chen X, Wang H, Liu C, Qi Y, Guo W. Technical note: Development of a closed-tube isothermal multiple self-matching-initiated amplification assay for visual detection of Staphylococcus aureus in milk samples. J Dairy Sci 2020; 104:3569-3574. [PMID: 33358821 DOI: 10.3168/jds.2020-19023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus is one of the most common mastitis-causing bacteria in dairy cows. It is associated with reduced production performance in animals and with huge financial losses for the dairy industry worldwide. An accurate and sensitive method for the early diagnosis and identification of Staph. aureus in milk samples is essential. The present study aimed to establish a closed-tube isothermal multiple self-matching-initiated amplification (IMSA) technique for visual confirmation of the presence of Staph. aureus targeting the nuc conserved sequence gene. The specific primers successfully amplified the target sequence within 45 min at 63°C reaction temperature and using the optimal components of the reaction system. The positive amplicon showed bright green fluorescence under UV light when mixed with the chromogenic substrate SYBR Green I, and the negative samples remained orange in color. We observed fluorescence and a ladder-like pattern in the IMSA amplicon for all Staph. aureus strains, and we observed no significant change for the non-Staph. aureus strains. The IMSA assay had high specificity compared with loop-mediated isothermal amplification (LAMP): it confirmed the presence of all 7 Staph. aureus strains, and we found no false-positive results for the 12 non-Staph. aureus strains. The lower limit of detection for the IMSA assay was 1 × 102 cfu/mL, 10-fold more sensitive than the results obtained using LAMP. We also successfully applied the IMSA assay to confirm the presence of Staph. aureus in milk samples of cows with mastitis, and the results were consistent with those of LAMP and real-time PCR. The present study reports the use of IMSA to confirm the presence of Staph. aureus and provides a potentially useful method for rapid preliminary screening for Staph. aureus.
Collapse
Affiliation(s)
- Xuelong Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang 233100, China
| | - Honghai Wang
- Daqing Agricultural and Rural Bureau, Daqing 163000, China
| | - Chang Liu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yanping Qi
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang 233100, China.
| | - Weina Guo
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| |
Collapse
|
31
|
Faramarzi N, Mohammadnejad J, Jafary H, Narmani A, Koosha M, Motlagh B. Synthesis and in vitro Evaluation of Tamoxifen-Loaded Gelatin as Effective Nanocomplex in Drug Delivery Systems. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x20500027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, using gelatin nanoparticles as a biocompatible carrier in drug delivery systems is growing up. Drug delivery is one of the most common applications of nanoparticles in cancer treatment in order to optimize the drug efficiency. In this study, gelatin nanoparticles were firstly synthesized and loaded with tamoxifen that subsequently characterized by SEM, TGA and FT-IR analyses. The approximate drug loading efficiency was calculated about 17.43% for tamoxifen-loaded gelatin (TG). Then, the effect of TG on apoptosis induction and cytotoxicity of MCF-7 cell line was evaluated and compared with flow cytometry and MTT assay. The MTT results showed that tamoxifen and TG nanoparticles could inhibit the proliferation of MCF-7 cells in a dose-responsive manner, with an IC[Formula: see text] of IC[Formula: see text] of 200 [Formula: see text]g/mL and 50 [Formula: see text]g/mL after 24[Formula: see text]h and 48[Formula: see text]h, respectively. Moreover, from flow cytometric results, it can be suggested that TG nanoparticles are more potent in inducing apoptosis and cell death through programmed cell death. Actually, TG nanoparticles primarily increased the early apoptotic cells during the 24-h incubation period Our results revealed that tamoxifen-loaded gelatin nanoparticles are more potent than tamoxifen alone. These findings support the use of tamoxifen-loaded gelatin nanoparticles in target-specific therapy for cancer treatment.
Collapse
Affiliation(s)
- Nasrin Faramarzi
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran University, P.O. Box 14515/775, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran 1439957131, Tehran, Iran
- Department of Medical Mycology, University of Tarbiat Modares, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran University, P.O. Box 14515/775, Iran
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran 1439957131, Tehran, Iran
| | - Mojtaba Koosha
- Department of Cellulose and Paper Technology, Shahid Beheshti University, Tehran, Iran
| | - Behrooz Motlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
32
|
Pu H, Xu Y, Sun DW, Wei Q, Li X. Optical nanosensors for biofilm detection in the food industry: principles, applications and challenges. Crit Rev Food Sci Nutr 2020; 61:2107-2124. [PMID: 32880470 DOI: 10.1080/10408398.2020.1808877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biofilms are the universal lifestyle of bacteria enclosed in extracellular polymeric substances (EPS) on the contact surfaces of food processing facilities. The EPS-encapsulated foodborne bacterial pathogens are the main food contaminant sources, posing a serious threat to human health. The microcrystalline, sophisticated and dynamic biofilms necessitate the development of conventional microscopic imaging and spectral technology. Nanosensors, which can transfer the biochemical information into optical signals, have recently emerged for biofilm optical detection with high sensitivity and high spatial resolution at nanoscale scopes. Therefore, the aim of this review is to clarify the main detection scope in biofilms and the detection principles of optical nanosensors arousing Raman enhancement, fluoresce conversion and color change. The difficulties and challenges of biofilm characterization including the secretion and variation of main biochemical components are first discussed, the details about the principles and application examples of bioassays targeting foodborne pathogens based on optical nanosensors are then summarized. Finally, the challenges and future trends in developing optical nanosensors are also highlighted. The current review indicates that optical nanosensors have taken the challenges of detecting biofilm in complex food samples, including the characterization of biofilm formation mechanism, identification of microbial metabolic activities, diagnosis of potential food pathogens and sanitation monitoring of food processing equipment. Numerous in-depth explorations and various trials have proven that the bioassays based on multifunctional optical nanosensors are promising to ensure and promote food safety and quality. However, there still remains a daunting challenge to structure reproducible, biocompatible and applicable nano-sensors for biofilm characterization, identification, and imaging.
Collapse
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Yiwen Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Ireland
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Narmani A, Arani MAA, Mohammadnejad J, Vaziri AZ, Solymani S, Yavari K, Talebi F, Darzi SJ. Breast Tumor Targeting with PAMAM-PEG-5FU- 99mTc As a New Therapeutic Nanocomplex: In In-vitro and In-vivo studies. Biomed Microdevices 2020; 22:31. [PMID: 32335724 DOI: 10.1007/s10544-020-00485-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendrimer-based targeted drug delivery, as an innovative polymeric drug-delivery system, is promising for cancer therapy. Folate receptors (FR) are overexpressed in many types of tumor cells, such as breast cell carcinomas, which allow folate-targeted delivery. Therefor polyethylene glycol (PEG) modified-PAMAM G4 dendrimers were functionalized with folic acid (FA), as targeting agent. Then, 5-FU (5-fluorouracil) and 99mTc (technetium-99 m) as therapeutic agents were respectively loaded and conjugated to previous nano-complex (PEG-PAMAM G4-FA-5FU-99mTc). The value of drug loading was calculated by TGA analysis (16.97%). Drug release profiles of PEG-PAMAM G4-FA-5FU-99mTc and PEG-PAMAM G4-FA-5FU were evaluated. The radiochemical purity of PEG-PAMAM G4-FA-5FU-99mTc and PEG-PAMAM G4-FA-99mTc was obtained at >95% with excellent in-vitro and in-vivo stabilities. PEG-PAMAM G4-FA-5FU-99mTc was synthesized and the stability studies were carried out by the ITLC methods in serum (86.67% and 83.75%) and PBS. Combinational therapy effects of 5-FU and 99mTc containing nano-complexes were evaluated on 4 T1 (mouse breast cancer) and MDA-MB-231 (human breast adenocarcinoma) cancer cell lines. Excellent uptake values were obtained for FA-decorated nano-complexes on 4 T1 and MDA-MB-231 cell lines. Subsequently, tumor inhibition effects of PEG-PAMAM G4-FA-5FU-99mTc and PEG-PAMAM G4-FA-5FU were evaluated using the breast tumor-bearing BALB/C mice. Graphical abstract Breast Tumor Targeting with PAMAM-PEG-5FU- 99mTc As a New Therapeutic Nanocomplex: in In-vitro and In-vivo Studies was presented. This targeted drug delivery system can significantly increase the efficiency of cancer therapy, and reduce the treatment cost and time.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439957131, Islamic Republic of Iran
| | | | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439957131, Islamic Republic of Iran.
| | - Ali Zaman Vaziri
- Department of Molecular Genetics, Tehran Medical Science Branch, Islamic Azad University, Tehran, Iran
| | - Sedigheh Solymani
- Department of Molecular Medicine, Cancer Biomedical Center, Tehran, Iran
| | - Kamal Yavari
- Department of Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Farideh Talebi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
34
|
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, Xiao Z, Li S, Liu H, Deng Y, Chen Z, Chen H, He N. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 2020; 18:62. [PMID: 32316985 PMCID: PMC7171821 DOI: 10.1186/s12951-020-00613-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid is the main material for storing, copying, and transmitting genetic information. Gene sequencing is of great significance in DNA damage research, gene therapy, mutation analysis, bacterial infection, drug development, and clinical diagnosis. Gene detection has a wide range of applications, such as environmental, biomedical, pharmaceutical, agriculture and forensic medicine to name a few. Compared with Sanger sequencing, high-throughput sequencing technology has the advantages of larger output, high resolution, and low cost which greatly promotes the application of sequencing technology in life science research. Magnetic nanoparticles, as an important part of nanomaterials, have been widely used in various applications because of their good dispersion, high surface area, low cost, easy separation in buffer systems and signal detection. Based on the above, the application of magnetic nanoparticles in nucleic acid detection was reviewed.
Collapse
Affiliation(s)
- Congli Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yuyue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Gaojian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziqi Xiao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
35
|
Zhang C, Jiang Z, Jin M, Du P, Chen G, Cui X, Zhang Y, Qin G, Yan F, Abd El-Aty AM, Hacimüftüoğlu A, Wang J. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chem 2020; 326:126813. [PMID: 32438234 DOI: 10.1016/j.foodchem.2020.126813] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 02/26/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
Herein, we developed a multi-analyte fluorescence immunoassay for detection of three organophosphate pesticides (triazophos, parathion, and chlorpyrifos) in various agro-products (rice, wheat, cucumber, cabbage, and apple) using fluorescently labeled oligonucleotide and gold nanoparticle (AuNP) signal amplification technology. The AuNP probes for the three analytes were constructed by simultaneously modifying the corresponding antibodies and fluorescently labeled oligonucleotides on the probe surface. Three fluorophores (6-FAM, Cy3, and Texas red) with high fluorescence intensity and little overlap of excitation/emission wavelengths were selected. The method showed satisfactory linearity for triazophos, parathion, and chlorpyrifos in the ranges of 0.01-20, 0.05-50, and 0.5-1000 μg/L, respectively. For the 3 analytes, the limits of detection (LODs) were 0.007, 0.009, and 0.087 μg/L, respectively. The average recoveries were 77.7-113.6%, with relative standard deviations (RSDs) of 7.1-17.1% in various food matrices. The proposed method offers great potential in food safety surveillance, and could be used as well as a reference for multi-residue analysis of other small-molecule contaminants.
Collapse
Affiliation(s)
- Chan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Zejun Jiang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| | - Pengfei Du
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| | - Ahmet Hacimüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| |
Collapse
|
36
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
37
|
Calabretta MM, Zangheri M, Lopreside A, Marchegiani E, Montali L, Simoni P, Roda A. Precision medicine, bioanalytics and nanomaterials: toward a new generation of personalized portable diagnostics. Analyst 2020; 145:2841-2853. [PMID: 32196042 DOI: 10.1039/c9an02041a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The customization of disease treatment focused on genetic, environmental and lifestyle factors of individual patients, including tailored medical decisions and treatments, is identified as precision medicine. This approach involves the combination of various aspects such as the collection and processing of a large amount of data, the selection of optimized and personalized drug dosage for each patient and the development of selective and reliable analytical tools for the monitoring of clinical, genetic and environmental parameters. In this context, miniaturized, compact and ultrasensitive bioanalytical devices play a crucial role for achieving the goals of personalized medicine. In this review, the latest analytical technologies suitable for providing portable and easy-to-use diagnostic tools in clinical settings will be discussed, highlighting new opportunities arising from nanotechnologies, offering peculiar perspectives and opportunities for precision medicine.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry, Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Taheri H, Amini B, Kamali M, Asadi M, Naderlou E. Functionalization of anti-Brucella antibody based on SNP and MNP nanoparticles for visual and spectrophotometric detection of Brucella. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117891. [PMID: 31818642 DOI: 10.1016/j.saa.2019.117891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
An Immuno-Nano-Biosensor with high sensitivity was designed based on iron and silica nanoparticles to detect B. abortus. Briefly explain, primary polyclonal antibody (IgG1) was conjugated on surface magnetic nanoparticles (MNPs) to form MNP-IgG1. Secondary polyclonal antibody (IgG2) and Horseradish Peroxidase enzyme were conjugated on silica nanoparticles (SNPs) to form HRP-SNP-IgG2. HRP-SNP-IgG2. MNP-IgG1 and HRP-SNP-IgG2 were added to B. abortus. The MNP-IgG1-B.abortus-IgG2-SNP-HRP complex was isolated from the reaction mixture using a magnet. After that, tetramethylbenzidine was added to the complex. The reaction was stopped with HCl and investigated using UV-Vis spectrophotometry. The nanoparticles' structure and size were investigated using SEM and DLS. Immuno-Nano-Biosensor sensitivity and specificity were determined. The SEM and DLS results indicated that the SNPs, MNPs, HRP-SNP-IgG2 and MNP-IgG1 size and structure were 35, 44, 60 and 56 nm, respectively. In addition, a good linear correlation was observed at 102-107 CFU mL-1 concentrations, which their linear equation and regression were Y = 0.3× + 0.18 and R2 0.982, respectively. The limitation of detecting B. abortus was 160 CFU mL-1. Finally, the results demonstrated that those designed Immuno-Nano-Biosensor could be specifically detected B. abortus and B. melitensis in real samples.
Collapse
Affiliation(s)
- Hamidreza Taheri
- Nano biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahram Amini
- Department of biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mehdi Kamali
- Nano biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Masoud Asadi
- Department of biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ebrahim Naderlou
- Department of biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
39
|
Min CY, Wu LQ, Qian TT, Ul Ain N, Liu WJ, Wu XN, Zhang C, Chen Z, Xie HP. Typing and determination of SNP functional gene based on highly selective and signal-amplified fluorescence double-probe with the help of ExoIII nuclease and magnetic bead. J Pharm Biomed Anal 2020; 179:112917. [PMID: 31767222 DOI: 10.1016/j.jpba.2019.112917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 02/01/2023]
Abstract
We have developed a fluorescence double-probe detection system with signal amplification for simple typing and determination of single nucleotide polymorphism (SNP) functional gene based on non-sequence dependence of ExoIII nuclease on dsDNA and rapid separation of magnetic bead. Matched detected gene can cyclically release abundant fluorescence-labeled ssDNA from the probe and the corresponding measured fluorescence signal is amplified up to 6063 times. In this case, the probe cannot release the measured fluorescence signal for the point mutation gene and then the corresponding measured signal is inhibited. According to signal amplification and inhabitation of the probe, we proposed both an accurate genotyping approach with strong specificity and a sensitive determination approach with high selectivity for SNP functional gene. For qualitative genotyping, there are obvious genotype-based differences of measured fluorescence phenotypes among three kinds of the samples of the investigated SNP. The quantitative determinations of its wild-type gene and mutant gene have all a good linearity in the range from 0.5 to 500 pmol/L with the correlation coefficients R2 of 0.9940 and 0.9911, and a high sensitivity with the detection limits of 0.11 and 0.20 pmol/L, respectively. Compared to the usual single-probe detection system, the developed double-probe system can achieve not only accurate genotyping but also the sensitive gene determination. Meanwhile, it is also a simple and reliable method for both quantitative and qualitative analysis of functional gene.
Collapse
Affiliation(s)
- Chun-Yan Min
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Suzhou Institute for Drug Control, Suzhou, 215104, China
| | - Lu-Qian Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ting-Ting Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223000, China
| | - Noor Ul Ain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen-Juan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiao-Ning Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chen Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhe Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Hong-Ping Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
40
|
Li Q, Zhou S, Zhang T, Zheng B, Tang H. Bioinspired sensor chip for detection of miRNA-21 based on photonic crystals assisted cyclic enzymatic amplification method. Biosens Bioelectron 2020; 150:111866. [DOI: 10.1016/j.bios.2019.111866] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023]
|
41
|
Kariminezhad H, Mousapour M, Khorram S, Amani H. Photodynamic Inactivation of Staphylococcus epidermidis: Application of PEGylated Gold Nanoparticles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Cao G, Sun D, Gu T, Dong Y, Wang GL. Photoswitching enzymatic activity of horseradish peroxidase by graphene oxide for colorimetric immunoassay. Biosens Bioelectron 2019; 145:111707. [DOI: 10.1016/j.bios.2019.111707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023]
|
43
|
Elahi N, Kamali M, Baghersad MH, Amini B. A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110113. [DOI: 10.1016/j.msec.2019.110113] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
|
44
|
Mombini S, Mohammadnejad J, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S, Zirak S. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol 2019; 140:278-287. [DOI: 10.1016/j.ijbiomac.2019.08.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
|
45
|
Wang Y, Jin M, Chen G, Cui X, Zhang Y, Li M, Liao Y, Zhang X, Qin G, Yan F, Abd El-Aty A, Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res 2019; 20:23-32. [PMID: 31193255 PMCID: PMC6522771 DOI: 10.1016/j.jare.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of nanotechnology, the bio-barcode assay (BCA), as a new diagnostic tool, has been gradually applied to the detection of protein and nucleic acid targets and small-molecule compounds. BCA has the advantages of high sensitivity, short detection time, simple operation, low cost, good repeatability and good linear relationship between detection results. However, bio-barcode technology is not yet fully formed as a complete detection system, and the detection process in all aspects and stages is unstable. Therefore, studying the optimal reaction conditions, optimizing the experimental steps, exploring the multi-residue detection of small-molecule substances, and preparing immuno-bio-barcode kits are important research directions for the standardization and commercialization of BCA. The main theme of this review was to describe the principle of BCA, provide a comparison of its application, and introduce the single-residue and multi-residue detection of macromolecules and single-residue detection of small molecules. We also compared it with other detection methods, summarized its feasibility and limitations, expecting that with further improvement and development, the technique can be more widely used in the field of stable small-molecule and multi-residue detection.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
46
|
Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, Refahi S, Abdi Goushbolagh N. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res 2019; 80:404-424. [PMID: 31140629 DOI: 10.1002/ddr.21545] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Conventional chemotherapeutic approaches in cancer therapy such as surgery, chemotherapy, and radiotherapy have several disadvantages due to their nontargeted distributions in the whole body. On the other hand, nanoparticles (NPs) based therapies are remarkably progressing to solve several limitations of conventional drug delivery systems (DDSs) including nonspecific biodistribution and targeting, poor water solubility, weak bioavailability and biodegradability, low pharmacokinetic properties, and so forth. The enhanced permeability and retention effect escape from P-glycoprotein trap in cancer cells as a passive targeting mechanism, and active targeting strategies are also other most important advantages of NPs in cancer diagnosis and therapy. Folic acid (FA) is one of the biologic molecules which has been targeted overexpressed-folic acid receptor (FR) on the surface of cancer cells. Therefore, conjugation of FA to NPs most easily enhances the FR-mediated targeting delivery of therapeutic agents. Here, the recent works in FA which have been decorated NPs-based DDSs are discussed and cancer therapy potency of these NPs in clinical trials are presented.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Melina Rezvani
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Parvaneh Darkhor
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahram Amini
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Refahi
- Department of Medical Physics, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
47
|
Narmani A, Mohammadnejad J, Yavari K. Synthesis and evaluation of polyethylene glycol- and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|