1
|
Xu J, Wang Q, Hu Y, Guo Q, Zhu H, Wang H, Hu H, Wang S, Ye J. Production of bacterial cellulose with high active components loading capacity for skin wound repair. Int J Biol Macromol 2025; 311:143963. [PMID: 40334902 DOI: 10.1016/j.ijbiomac.2025.143963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Scutellaria baicalensis extracts (SBACs), a herb that contains a variety of bioactive flavonoids like baicalein and baicalin, which impart antibacterial, antioxidant, and other biological activities, were used to create bacterial cellulose (BC) with a high components-loading capacity in-situ. Higher S-L ratios raised the quantities of the active ingredients (baicalin and baicalein), enhancing antibacterial and antioxidant activities. Considering both components-loading efficiency (322 mg/g of baicalin and 8.79 mg/g of baicalein) and production viability, an S-L ratio of 1:20 was determined as the optimal for preparing BC/SBACs membranes. These membranes exhibited superior mechanical strength and thermal stability compared to pure BC. Furthermore, when compared to membranes made via physical adsorption, the in-situ produced BC/SBACs exhibited a higher capacity for loading components and a more effective release of those components. A three-dimensional network structure was discovered using morphological analysis, which facilitated the integration of active ingredients. In vitro biocompatibility tests showed that BC/SBACs hydrogel was safe, exhibiting no hemolysis and low cytotoxicity. In vivo experiments on a full-thickness skin defect model in mice demonstrated a significantly higher wound-healing rate. The study highlights the potential of BC to improve clinical treatment outcomes by providing an easy way to combine it with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jia Xu
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Qiuhui Wang
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China; Fujian Province, 351100, China Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China
| | - Yishen Hu
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China; Fujian Province, 351100, China Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China
| | - Qingfeng Guo
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Honglin Wang
- Department of Orthopedic Surgery, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing 402360, China.
| | - Hongxin Hu
- The Affiliated Hospital of Putian University, Putian City, Fujian Province 351100, China.
| | - Shouan Wang
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China.
| | - Jianbin Ye
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China; Fujian Province, 351100, China Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China.
| |
Collapse
|
2
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
León-Campos MI, Claudio-Rizo JA, Becerra-Rodriguez JJ, González-Díaz MO, Flores-Guía TE, Soriano-Corral F, Herrera-Guerrero A. Novel tragacanth gum-collagen-polyurethane hydrogels: Super-swelling, antibacterial, and fibrillogenesis-enhancing properties for efficient wound healing. Int J Biol Macromol 2025; 310:143281. [PMID: 40250651 DOI: 10.1016/j.ijbiomac.2025.143281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Tragacanth gum, a biodegradable polymer from Astragalus sap, offers a promising platform for advanced biomaterials due to its thickening, emulsifying, and stabilizing properties. This study synthesized novel tragacanth gum-collagen-polyurethane hydrogels with 20-60 wt% polysaccharide content. Semi-interpenetration of gum chains within the collagen-polyurethane matrix generated hybrid fibrillar-granular surfaces, with granular content increasing with gum concentration. Hydrogels with 40 wt% gum achieved 42 % collagen crosslinking, showing superabsorbent behavior with swelling capacities over 2600 %. Higher gum content improved viscoelastic stability, enhancing resistance to degradation at skin-relevant (pH 5.0) and physiological (pH 7.4) conditions while increasing susceptibility to alkaline (pH 8.5) and collagenase-rich environments. Granular regions efficiently encapsulated methylene blue, achieving 68 % release at skin pH and demonstrating antibacterial activity against E. coli (62 %) and S. aureus (50 %). The hydrogels exhibited excellent biocompatibility, promoting monocyte and fibroblast proliferation without hemolytic or cytotoxic effects. Notably, the 40 wt% gum hydrogel modulated immune responses by enhancing anti-inflammatory (TGF-β) release without increasing pro-inflammatory (CCL-2) cytokines. Additional features include self-healing capacity, fatigue resistance, and strong adhesiveness, highlighting the hydrogel's multifunctional potential for advanced wound healing applications.
Collapse
Affiliation(s)
- María I León-Campos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico
| | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico.
| | - Juan J Becerra-Rodriguez
- Ingeniería en Biotecnología, Universidad Politécnica de Pénjamo, Carretera Irapuato, A La Piedad Km 44, 36900 El Derramadero, Guanajuato, Mexico
| | - María O González-Díaz
- Centro de Investigación Científica de Yucatán, C. 43 No. 130-x 32 y 34 Col, Chuburna de Hidalgo, Pinzón II, 97205 Mérida, Yucatán, Mexico
| | - Tirso E Flores-Guía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico
| | - Florentino Soriano-Corral
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, 25294 Saltillo, Coahuila, Mexico
| | - Adán Herrera-Guerrero
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, 25294 Saltillo, Coahuila, Mexico
| |
Collapse
|
4
|
Kulshrestha P, Arora A, Aggarwal A, Hosseini-Bandegharaei A, Sudhakar MS, Sah MK. Advances in biomedical applications of bacterial cellulose: from synthesis mechanisms to commercial innovations. World J Microbiol Biotechnol 2025; 41:132. [PMID: 40216641 DOI: 10.1007/s11274-025-04354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025]
Abstract
Bacterial cellulose (BC) has various unique properties, such as sustainability and biocompatibility, which make it a "rising star" in biomedical applications. This comprehensive review delves into the intricacies of BC production and elucidates the pivotal role of rosette terminal complexes in the synthesis of BC. Moreover, it explores the diverse range of in-situ and ex-situ modifications, such as coating, genetic modification, and esterification, that can enhance its performance in biomedical applications, notably in tissue engineering, drug delivery and wound healing applications Beginning with an in-depth examination of BC synthesis mechanisms, this review sheds light on the fundamental processes underlying its unique structure and properties and subsequently delves into the vast landscape of modification strategies, encompassing techniques such as chemical functionalization, surface patterning, and composite formation. Of particular significance are the insights provided into commercial products derived from BC, which offers a comprehensive overview of their features and applications, followed by several recent case studies. By consolidating knowledge from the basic principles of BC synthesis to cutting-edge advancements in the field, this review illuminates the transformative impact of BC on the landscape of health and medical breakthroughs, paving the way for future advancements in biomedicine.
Collapse
Affiliation(s)
- Prachi Kulshrestha
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Ashish Arora
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Aakriti Aggarwal
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140417, India
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India
| | - Magapu Solomon Sudhakar
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, P.O.484, P.C.411, Sur, Oman
| | - Mahesh Kumar Sah
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India.
- Sports and Healthcare Research Centre, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India.
| |
Collapse
|
5
|
Wafi A, Khan MM. Green synthesized ZnO and ZnO-based composites for wound healing applications. Bioprocess Biosyst Eng 2025; 48:521-542. [PMID: 39739126 DOI: 10.1007/s00449-024-03123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained much attention in biomedical applications because of their distinctive physicochemical features such as low toxicity and biocompatible properties. Traditional methods to produce ZnO NPs sometimes include harmful substances and considerable energy consumption, causing environmental issues and potential health risks. Nowadays, the concern of ZnO production has moved toward environmentally friendly and sustainable synthesis methods, using natural extracts or plant-based precursors. This review discusses the green synthesis of ZnO NPs utilizing various plant extracts for wound healing applications. Moreover, ZnO NPs have antibacterial characteristics, which can prevent infection, a substantial obstacle in wound healing. Their ability to maintain inflammation, proliferation, oxidative stress, and promote angiogenesis proves their critical role in wound closure. In addition, ZnO NPs can also be easily and ideally incorporated with wound dressings and scaffolds such as hydrogel, chitosan, cellulose, alginate, and other materials, due to their exceptional mechanical properties. The latest publication of green synthesis of ZnO NPs and their applications for wound healing has been discussed. Therefore, this review provides a current update of knowledge on the sustainable and biocompatible ZnO NPs for specific applications, i.e., wound healing applications. In addition, the green synthesis of ZnO NPs using plant extracts also provides a particular approach in terms of material preparation, which is different from previous review articles.
Collapse
Affiliation(s)
- Abdul Wafi
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
- Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
6
|
Carvalho RSFD, Mahnke LC, Palácio SB, Barbosa WT, Hodel KVS, Barbosa JDV, Melo FDAD, Chorilli M, Meneguin AB, Pinto FCM, Morais MAD, Aguiar JLDA. Bacterial cellulose hydrogel produced by Gluconacetobacter hansenii using sugarcane molasses as medium: Physicochemical characterization for wound healing applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2025; 9:100632. [DOI: 10.1016/j.carpta.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
7
|
Alam A, Kalyani P, Khan A, Khandelwal M. Bacterial cellulose in transdermal drug delivery systems: Expanding horizons in multi-scale therapeutics and patient-centric approach. Int J Pharm 2025; 671:125254. [PMID: 39890087 DOI: 10.1016/j.ijpharm.2025.125254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
This review explores the transformative potential of Bacterial cellulose (BC) in an increasingly vital avenue of transdermal drug delivery systems (TDDS) for multi-scale therapeutic applications with patient-centric approach. In this review, we have not only highlighted the role of BC as the main matrix material for TDDS but emphasized the other possible role that BC can play in TDDS. For this purpose, we have delved into the avenues of the physico-chemical interactions that BC can offer in governing the incorporation of different length-scales of therapeutics as well as tuning their extent of loading. Furthermore, this review underscores BC's potential in developing need-specific drug release profiles and stimuli-responsive release platforms, enabling their application in TDDS for wound healing, pain management, and targeted delivery for chronic diseases. Apart from the existing literature, this review focuses on patient comfort, which is an often-overlooked aspect, and highlights how BC's unique physicochemical properties enhance user experience. Additionally, this review justifies the potential of BC in compliance with the other parameters of the TDDS, including shelf-life, design requirements, and evaluation strategies in ensuring their clinical translation and user acceptance. To harness BC's potential in the new era of personalized TDDS, this review also sheds light on the challenges of standardizing BC production processes with appropriate data disclosure, ensuring adhesion and anti-microbial actions, along with the integration of passive and active technologies.
Collapse
Affiliation(s)
- Aszad Alam
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India; Department of Chemistry and Biotechnology, School of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Peddapapannagari Kalyani
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Arif Khan
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Mudrika Khandelwal
- Cellulose & Composites Research Group, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| |
Collapse
|
8
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
D A G, Adhikari J, Debnath P, Ghosh S, Ghosh P, Thomas S, Ghandilyan E, Gorbatov P, Kuchukyan E, Gasparyan S, Saha P. 3D printing of bacterial cellulose for potential wound healing applications: Current trends and prospects. Int J Biol Macromol 2024; 279:135213. [PMID: 39216564 DOI: 10.1016/j.ijbiomac.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Several advances in skin tissue engineering have been made to restore skin damage, facilitating wound healing. Bacterial cellulose (BC), a naturally occurring polymer, has gained attention as a potential material in wound healing due to its unique physical and biological properties. In recent years, with the advent of 3D bio-printing technology, new avenues have opened for fabricating customized wound dressings and scaffolds for tissue engineering purposes. The existing literature in this field mainly focuses on the ways of modifications of bacterial cellulose to make it printable. Still, the applicability of 3D printed scaffolds for wound healing needs to be explored more. This review article focuses on the current research on using 3D-printed BC for skin regeneration, including its production methods and physical and biological properties, making it a better choice than traditional dressings. Furthermore, it also highlights the limitations and future directions for using BC in wound healing and tissue engineering applications. This review provides a comprehensive and up-to-date exploration of the applications of 3D-printed BC in wound healing, drawing insights from pre-existing studies and emphasizing patient compliance, clinical outcomes, and economic viability.
Collapse
Affiliation(s)
- Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Poonam Debnath
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Shrayana Ghosh
- Department of Biotechnology, Amity University, Kolkata, India
| | - Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and IIUCNN, Mahatma Gandhi University, Kottayam 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa; TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd, Sreekariyam, Trivandrum, Kerala 695016, India
| | - Emmanuel Ghandilyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Pavel Gorbatov
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Elza Kuchukyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Seda Gasparyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India.
| |
Collapse
|
10
|
Pasaribu KM, Mahendra IP, Karina M, Masruchin N, Sholeha NA, Gea S, Gupta A, Johnston B, Radecka I. A review: Current trends and future perspectives of bacterial nanocellulose-based wound dressings. Int J Biol Macromol 2024; 279:135602. [PMID: 39276891 DOI: 10.1016/j.ijbiomac.2024.135602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/28/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Bacterial cellulose (BC) has gained significant attention as a base material for wound dressings due to its superior physical properties, biocompatibility, and non-toxicity. However, to produce wound dressings that actively facilitate wound healing, BC modification is essential. To provide a comprehensive analysis of the potential research developments and the trends in bacterial cellulose-based wound dressings (BCWD), this review focuses on the BCWD research conducted in the last decade. The review highlights the optimization of BC usage as a base material for active wound dressing, including the incorporation of miscellaneous materials and the enhancement of BC properties such as ultra-transparency, anti-leakage, stretchability/flexibility, adhesiveness, conductivity, injectability, pattern, and pH-sensor ability.
Collapse
Affiliation(s)
- Khatarina Meldawati Pasaribu
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia; Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia.
| | - I Putu Mahendra
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Jati Agung, Lampung Selatan 35365, Indonesia
| | - Myrtha Karina
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | - Saharman Gea
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Brian Johnston
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Izabela Radecka
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
11
|
Al-Musawi MH, Al-Sudani BT, Fadhil SAN, Al-Bahrani MH, Ghorbani M, Maleki F, Mortazavi Moghadam F. Tannic acid-reinforced soy protein/oxidized tragacanth gum-based multifunctional hemostatic film for regulation of wound healing. Int J Biol Macromol 2024; 280:135750. [PMID: 39299419 DOI: 10.1016/j.ijbiomac.2024.135750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
With recent advances in the field of tissue engineering, composite films with biocompatibility, antimicrobial properties, and wound healing properties have gained potential applications in the field of wound dressings. In this research work, composite films of soy protein (S)/oxidized tragacanth gum (G) were successfully made using the solution casting process. The metal-organic framework containing curcumin (MOF) with concentrations of 5 and 10 wt% and tannic acid (TA) with concentrations of 6 and 12 wt% were entered into the polymer film. Surface morphology with scanning electron microscope (FE-SEM), thermal stability, mechanical properties, chemical structure, antioxidant, water absorption, cell viability, antibacterial activity, and biodegradability of the prepared films were investigated in laboratory conditions. In addition, the toxicity of the films in the cell environment was investigated, and the results showed that cell growth and proliferation improved in the presence of the prepared films, especially films SG/MOF10/TA6 and SG/MOF10/TA12 due to the presence of TA and MOF containing curcumin. Also, the antibacterial activity of the films showed that the presence of tannic acid and curcumin in the structure of the films increases their ability against pathogens. According to the obtained results, the newly produced nanocomposite film (SG/MOF10/TA12) has a high potential to be used for wound dressing due to its favorable characteristics and was considered the optimal film.
Collapse
Affiliation(s)
- Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Safa Abdul Naser Fadhil
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maha Hameed Al-Bahrani
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Iran Polymer and Petrochemical Institute, PO Box: 14965/115, Tehran, Iran.
| | - Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran.
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Mohamadi-Sodkouieh S, Kalantari M, Askari N. A bioactive self-healing hydrogel wound-dressing based on Tragacanth gum: Structural and invitro biomedical investigations. Int J Biol Macromol 2024; 278:134980. [PMID: 39179077 DOI: 10.1016/j.ijbiomac.2024.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
The design and development of wound-dressing hydrogels with desirable therapeutic effects and proper mechanical and self-healing properties are crucial in the healthcare sector. This research aims to prepare a new self-healing hydrogel based on Tragacanth, polyvinyl alcohol, and borax to be used as a wound dressing, the hydrogel was first prepared through a simple and one-pot reaction. The efficiency of the resulting product was then assessed based on the rheological and self-healing tests as well as cellular tests on a mouse fibroblast cell line (L929) including toxicity and scratch tests as well as the investigation of the expression of TGFβ1, TGFβ2, and VEGF-A gens (using Real-time PCR). The synthesized hydrogel exhibited proper mechanical strength, high self-healing features, and no toxicity (cell viability >100 %). Rheological studies indicate that hydrogels with a higher borax content (PVA: B ratio of 5:1) exhibit a higher storage modulus across all frequencies. The presence of hydrogel improved the migration of the L929 cells and scratch healing. The hydrogel also caused a significant improvement in the expression of the growth factors of the genes (P < 0.001). Therefore, it can be concluded that the prepared wound dressing can actively contribute to wound healing, opening promising potentials in medical applications.
Collapse
Affiliation(s)
| | - Maryam Kalantari
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Nayere Askari
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Immunoregulation Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
13
|
Mondal A, Barai S, Bera H, Patel T, Sahoo NG, Begum D, Ghosh B. Ferulic acid-g-tamarind gum/guar gum based in situ gel-forming powders as wound dressings. Int J Biol Macromol 2024; 277:134382. [PMID: 39111475 DOI: 10.1016/j.ijbiomac.2024.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The current research endeavour aimed to synthesize ferulic acid grafted tamarind gum/guar gum (FA-g-TG/GG) based powders as wound dressings, which could form in situ gels upon contact with wound exudates. In this context, variable amounts of FA were initially grafted with TG via the Steglich esterification reaction protocol and the resulting conjugates were subsequently amalgamated with GG and lyophilized to produce dry powders (F-1 - -F-3) with average particle size within 5.10-5.54 μm and average angle of repose ∼30°. These powders were structurally characterized with 1H NMR, FTIR, DSC, TGA, XRD and SEM analyses. Pristine TG, FA-g-TG and FA-g-TG/GG powders (F-2) revealed their distinct morphological structures and variable negative zeta potential values (-11.06 mV-25.50 mV). Among various formulation (F-1-F-3), F-2 demonstrated an acceptable powder-to-gel conversion time (within 20 min), suitable water vapour transmission rates (WVTR, 2564.94 ± 32.47 g/m2/day) and excellent water retention abilities and swelling profiles (4559.00 ± 41.57 %) in wound fluid. The powders were cytocompatible and conferred antioxidant activities. The powders also displayed fibroblast cell proliferation, migration and adhesion properties, implying their wound-healing potentials. Thus, the developed in situ gel-forming powders could be employed as promising dressings for wound management.
Collapse
Affiliation(s)
- Akash Mondal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | - Suman Barai
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | - Hriday Bera
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India.
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nanda Gopal Sahoo
- Department of Chemistry, Kumaun University, Nainital 263001, Uttarakhand, India
| | - Darakhshan Begum
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
14
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
15
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
16
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Tanwar M, Gupta RK, Rani A. Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry. Crit Rev Biotechnol 2024; 44:275-301. [PMID: 36683015 DOI: 10.1080/07388551.2022.2157702] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 01/24/2023]
Abstract
The hydrogels based on natural gums and chemically derivatized natural gums have great interest in pharmaceutical, food, cosmetics, and environmental remediation, due to their: economic viability, sustainability, nontoxicity, biodegradability, and biocompatibility. Since these natural gems are from plants, microorganisms, and seaweeds, they offer a great opportunity to chemically derivatize and modify into novel, innovative biomaterials as scaffolds for tissue engineering and drug delivery. Derivatization improves swelling properties, thereby developing interest in agriculture and separating technologies. This review highlights the work done over the past three and a half decades and the possibility of developing novel materials and technologies in a cost-effective and sustainable manner. This review has compiled various natural gums, their source, chemical composition, and chemically derivatized gums, various methods to synthesize hydrogel, and their applications in biomedical, food and agriculture, textile, cosmetics, water purification, remediation, and separation fields.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Archna Rani
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
18
|
Sellappan LK, Manoharan S. Fabrication of bioinspired keratin/sodium alginate based biopolymeric mat loaded with herbal drug and green synthesized zinc oxide nanoparticles as a dual drug antimicrobial wound dressing. Int J Biol Macromol 2024; 259:129162. [PMID: 38181910 DOI: 10.1016/j.ijbiomac.2023.129162] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Dual drug antibacterial wound dressings with biological materials possess crucial wound healing characteristics including biocompatibility, non-toxicity, degradability, mechanical strength and antibacterial properties. The study focusses on fabricating keratin (K)‑sodium alginate (A) based wound dressings by loading green synthesized zinc oxide nanoparticles (ZnO NPs) using C. roseus (leaf extract) and M. recutita (Chamomile flower part) herbal drug (CH) as a bioactive dual antibacterial wound dressing for the first time. The optimized ZnO NPs and CH exhibits strong physiochemical and electrostatic interactions (FT-IR, XRD and SEM) on the fabricated K-A-CH-ZnO biopolymeric mats. Moreover, the tiny porous network of the biopolymeric mat enhances thermal stability, hydrophilicity, mechanical strength and explores the water vapor transmission (2538.07 g/m2/day) and oxygen permeability (7.38 ± 0.31 g/m2) to maintain moist environment and cell-material interactions. During enzymatic degradation studies, ZnO NPs and CH of biopolymeric mat not only retains structural integrity but also increases the characteristic of swelling with sustained drug release (57 %) in 144 h which accelerates wound healing process. Also, K-A-CH-ZnO mat exhibited excellent antibacterial effects against B. subtilis and E. coli. Furthermore, NIH 3T3 fibroblast cell behavior using MTT assay and in vivo evaluations of biopolymeric mat depicted enhanced biocompatibility with increased collagen deposition at the wound site as a prominent dual drug medicated antimicrobial wound dressing.
Collapse
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| |
Collapse
|
19
|
Ye J, Li J, Wang X, Wang Q, Wang S, Wang H, Zhu H, Xu J. Preparation of bacterial cellulose-based antibacterial membranes with prolonged release of drugs: Emphasis on the chemical structure of drugs. Carbohydr Polym 2024; 323:121379. [PMID: 37940275 DOI: 10.1016/j.carbpol.2023.121379] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 11/10/2023]
Abstract
Bacterial cellulose (BC) based antibacterial membranes were synthesized, including BC-cefoperazone (BC-CEF) and BC-cefoperazone sodium (BC-CEF/Na). To examine the various drug loading processes, the structure, morphology, and physical-chemical characteristics of membranes were evaluated. Results demonstrated that both types of medicines were successfully absorbed into membranes, and membranes displayed identical morphology and FT-IR peaks. BC-CEF showed lower crystalline of XRD, which was likely caused by the combination of carboxyl and hydroxyl. However, there were no drug peaks seen in the membranes, indicating no alteration of ribbon crystallization of BC. Two types of antibacterial membranes have significantly distinct drug-loading traits and drug-releasing profiles. The drug loading rate of CEF (46.4 mg/g) was significantly greater than CEF/Na (30.3 mg/g). The cumulative drug-releasing profiles showed that only BC-CEF continues to release drugs for a lengthy period up to 48 h and exhibited good antimicrobial activity against S. aureus and E. coli until 48 h. The cytotoxicity assay demonstrated the great biocompatibility of all membranes. Findings indicated that BC-CEF has the potential use as a prolonged biocide in the biomedical. The idea that BC membranes can naturally incorporate the carboxyl groups from antibiotics is also innovative and can be useful in developing of drug delivery systems.
Collapse
Affiliation(s)
- Jianbin Ye
- Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China; Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Jianqing Li
- Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China; Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Xiangjiang Wang
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Qiuhui Wang
- Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China; Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Shouan Wang
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Honglin Wang
- Department of Orthopedic Surgery, Dazu Hospital of Chongqing Medical University, Chongqing 402360, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Jia Xu
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China.
| |
Collapse
|
20
|
Mirhaj M, Varshosaz J, Labbaf S, Emadi R, Seifalian AM, Sharifianjazi F, Tavakoli M. Mupirocin loaded core-shell pluronic-pectin-keratin nanofibers improve human keratinocytes behavior, angiogenic activity and wound healing. Int J Biol Macromol 2023; 253:126700. [PMID: 37673152 DOI: 10.1016/j.ijbiomac.2023.126700] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
In the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.16 m2/g, while for core-shell nanofibers they were about 97.32 nm and 25.26 m2/g, respectively. The resultant blended and core-shell nanofibers experienced a degradation of 27.65 % and 32.28 % during 7 days, respectively. The drug release profile of core-shell nanofibers revealed a sustained release of Mup over 7 days (87.66 %), while the blended F127-Pec-Kr-Mup nanofibers had a burst release within the first few hours (89.38 % up to 48 h) and a cumulative release of 91.36 % after 7 days. Due to the controlled release of Mup, the core-shell structure significantly improved the human keratinocytes behavior, angiogenic potential and wound healing in a rat model compared to the blended structure. In conclusion, the F127-Mup/Pec-Kr core-shell nanofibrous wound dressing appears to be a promising candidate for the prevention of infection, and can potentially accelerate the recovery and healing of chronic and ischemic wounds.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
21
|
Liu G, Zou F, He W, Li J, Xie Y, Ma M, Zheng Y. The controlled degradation of bacterial cellulose in simulated physiological environment by immobilization and release of cellulase. Carbohydr Polym 2023; 314:120906. [PMID: 37173043 DOI: 10.1016/j.carbpol.2023.120906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Bacterial cellulose (BC) has good network structure, biocompatibility, and excellent mechanical properties, and is widely used in the field of biomaterials. The controllable degradation of BC can further broaden its application. Oxidative modification and cellulases may endow BC with degradability, but these methods inevitably lead to the obvious reduction of its initial mechanical properties and uncontrolled degradation. In this paper, the controllable degradation of BC was realized for the first time by using a new controlled release structure that combines the immobilization and release of cellulase. The immobilized enzyme has higher stability and is gradually released in the simulated physiological environment, and its load can control the hydrolysis rate of BC well. Furthermore, the BC-based membrane prepared by this method retains the favorable physicochemical performance of the original BC, including flexibility and great biocompatibility, and holds good application prospects in drug control release or tissue repair.
Collapse
Affiliation(s)
- Guodong Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Faxing Zou
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wei He
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengjiao Ma
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
22
|
Da Silva J, Leal EC, Carvalho E, Silva EA. Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers. Int J Mol Sci 2023; 24:9900. [PMID: 37373045 DOI: 10.3390/ijms24129900] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing properties, features that make them ideal candidates for therapeutic applications. Furthermore, biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic, and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review aims to unravel the multiple functional properties of biomaterials as promising wound dressings for chronic wound healing, and to examine how these are currently being evaluated in research and clinical settings as cutting-edge wound dressings for DFU management.
Collapse
Affiliation(s)
- Jessica Da Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- PDBEB-Ph.D. Programme in Experimental Biology and Biomedicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
| | - Ermelindo C Leal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eduardo A Silva
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Kristine Bonnevies vei 22, 4021 Stavanger, Norway
| |
Collapse
|
23
|
Nazemi Z, Sahraro M, Janmohammadi M, Nourbakhsh MS, Savoji H. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. Int J Biol Macromol 2023; 241:124343. [PMID: 37054856 DOI: 10.1016/j.ijbiomac.2023.124343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Tragacanth is an abundant natural gum extracted from wounds created in some plants and is dried for use in various applications from industry to biomedicines. It is a cost-effective and easily accessible polysaccharide with desirable biocompatibility and biodegradability, drawing much attention for use in new biomedical applications such as wound healing and tissue engineering. Moreover, this anionic polysaccharide with a highly branched structure has been used as an emulsifier and thickening agent in pharmaceutical applications. In the following, this gum has been interested as an appealing biomaterial for producing engineering tools in drug delivery. Furthermore, the biological properties of tragacanth gum have made it a favorable biomaterial in cell therapies, especially for bone tissue engineering. This review aims to discuss the recent studies on this natural gum as a potential carrier for different drugs and cells.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Maryam Sahraro
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, P.O. Box 19111-35131, Semnan, Iran.
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
24
|
Hakimi F, Jafari H, Hashemikia S, Shabani S, Ramazani A. Chitosan-polyethylene oxide/clay-alginate nanofiber hydrogel scaffold for bone tissue engineering: Preparation, physical characterization, and biomimetic mineralization. Int J Biol Macromol 2023; 233:123453. [PMID: 36709816 DOI: 10.1016/j.ijbiomac.2023.123453] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
This study aimed to prepare a novel organic-mineral nanofiber/hydrogel of chitosan-polyethylene oxide (CS-PEO)/nanoclay-alginate (NC-ALG). The effects of NC particles on the mineralization and biocompatibility of the scaffold were investigated. A layer-by-layer scaffold composed of CS-PEO and NC-ALG was prepared. The morphological properties, swelling, biodegradation, and mechanical behaviors of the scaffolds were evaluated. Furthermore, scaffolds were characterized by the Fourier Transform Infrared (FTIR), the Field Emission Scanning Electron Microscope (FE-SEM), and X-Ray Diffraction (XRD) techniques. Bone-like apatite formation ability of the scaffolds was determined by the mineralization test in a simulated body fluid (M-SBF). In addition, the crystalline phase of bone-like apatite precipitates was investigated by XRD analysis. The cell compatibility of the scaffolds was also studied with osteoblastic cell line MC3T3-E1 by MTT assay. Notably, the incorporation of NC particles in CS-PEO/ALG scaffolds is suitable for bone tissue regeneration which enhances bone-like apatite formation. Further, the hemolysis and MTT assays demonstrated that CS-PEO/NC-ALG scaffold was compatible and safe for MC3T3 cells.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Jafari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Hashemikia
- Department of Textile Engineering, Urmia University of Technology, Urmia, Iran; Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Siamak Shabani
- Department of Surgery, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
25
|
Arefkhani M, Babaei A, Masoudi M, Kafashan A. A step forward to overcome the cytotoxicity of graphene oxide through decoration with tragacanth gum polysaccharide. Int J Biol Macromol 2023; 226:1411-1425. [PMID: 36442552 DOI: 10.1016/j.ijbiomac.2022.11.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hybridization of nanomaterials (NMs) with natural polymers is one of the best techniques to promote their exciting properties. In this way, the main objective of this work was to investigate the efficiency of decoration of the graphene oxide (GO) nano-sheets with tragacanth gum (TG) polysaccharide. To aim this, different approaches were used (with and without ultrasonic treatment) and various tests (XRD, FTIR, Raman, UV-Vis, DLS, Zeta potential, contact angle, AFM, FE-SEM, TEM, and MTT assay) were conducted. Test results indicated that the nano-hybrids were successfully synthesized. Furthermore, our findings represented that, the TG hybridized GO (TG-GO) appreciably enhanced the biocompatibility of GO. Moreover, it was demonstrated that the ultrasonic treatment of TG solution put a remarkable impact on the microstructure, wettability, and also surface charge characteristic of fabricated nano-hybrids and consequently improved the biocompatibility against L929-fibroblast cells.
Collapse
Affiliation(s)
- Mahdi Arefkhani
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Maha Masoudi
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
26
|
Raut MP, Asare E, Syed Mohamed SMD, Amadi EN, Roy I. Bacterial Cellulose-Based Blends and Composites: Versatile Biomaterials for Tissue Engineering Applications. Int J Mol Sci 2023; 24:986. [PMID: 36674505 PMCID: PMC9865793 DOI: 10.3390/ijms24020986] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cellulose of bacterial origin, known as bacterial cellulose (BC), is one of the most versatile biomaterials that has a huge potential in tissue engineering due to its favourable mechanical properties, high hydrophilicity, crystallinity, and purity. Additional properties such as porous nano-fibrillar 3D structure and a high degree of polymerisation of BC mimic the properties of the native extracellular matrix (ECM), making it an excellent material for the fabrication of composite scaffolds suitable for cell growth and tissue development. Recently, the fabrication of BC-based scaffolds, including composites and blends with nanomaterials, and other biocompatible polymers has received particular attention owing to their desirable properties for tissue engineering. These have proven to be promising advanced materials in hard and soft tissue engineering. This review presents the latest state-of-the-art modified/functionalised BC-based composites and blends as advanced materials in tissue engineering. Their applicability as an ideal biomaterial in targeted tissue repair including bone, cartilage, vascular, skin, nerve, and cardiac tissue has been discussed. Additionally, this review briefly summarises the latest updates on the production strategies and characterisation of BC and its composites and blends. Finally, the challenges in the future development and the direction of future research are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| |
Collapse
|
27
|
Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Kafili G, Tamjid E, Niknejad H, Simchi A. Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Yang J, Liu D, Song X, Zhao Y, Wang Y, Rao L, Fu L, Wang Z, Yang X, Li Y, Liu Y. Recent Progress of Cellulose-Based Hydrogel Photocatalysts and Their Applications. Gels 2022; 8:270. [PMID: 35621568 PMCID: PMC9141161 DOI: 10.3390/gels8050270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
With the development of science and technology, photocatalytic technology is of great interest. Nanosized photocatalysts are easy to agglomerate in an aqueous solution, which is unfavorable for recycling. Therefore, hydrogel-based photocatalytic composites were born. Compared with other photocatalytic carriers, hydrogels have a three-dimensional network structure, high water absorption, and a controllable shape. Meanwhile, the high permeability of these composites is an effective way to promote photocatalysis technology by inhibiting nanoparticle photo corrosion, while significantly ensuring the catalytic activity of the photocatalysts. With the growing energy crisis and limited reserves of traditional energy sources such as oil, the attention of researchers was drawn to natural polymers. Like almost all abundant natural polymer compounds in the world, cellulose has the advantages of non-toxicity, degradability, and biocompatibility. It is used as a class of reproducible crude material for the preparation of hydrogel photocatalytic composites. The network structure and high hydroxyl active sites of cellulose-based hydrogels improve the adsorption performance of catalysts and avoid nanoparticle collisions, indirectly enhancing their photocatalytic performance. In this paper, we sum up the current research progress of cellulose-based hydrogels. After briefly discussing the properties and preparation methods of cellulose and its descendant hydrogels, we explore the effects of hydrogels on photocatalytic properties. Next, the cellulose-based hydrogel photocatalytic composites are classified according to the type of catalyst, and the research progress in different fields is reviewed. Finally, the challenges they will face are summarized, and the development trends are prospected.
Collapse
Affiliation(s)
- Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Xiaofang Song
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yayang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
30
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
31
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
32
|
Mensah A, Chen Y, Christopher N, Wei Q. Membrane Technological Pathways and Inherent Structure of Bacterial Cellulose Composites for Drug Delivery. Bioengineering (Basel) 2021; 9:3. [PMID: 35049712 PMCID: PMC8772700 DOI: 10.3390/bioengineering9010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
This report summarizes efforts undertaken in the area of drug delivery, with a look at further efforts made in the area of bacterial cellulose (BC) biomedical applications in general. There are many current methodologies (past and present) for the creation of BC membrane composites custom-engineered with drug delivery functionality, with brief consideration for very close applications within the broader category of biomedicine. The most emphasis was placed on the crucial aspects that open the door to the possibility of drug delivery or the potential for use as drug carriers. Additionally, consideration has been given to laboratory explorations as well as already established BC-drug delivery systems (DDS) that are either on the market commercially or have been patented in anticipation of future commercialization. The cellulose producing strains, current synthesis and growth pathways, critical aspects and intrinsic morphological features of BC were given maximum consideration, among other crucial aspects of BC DDS.
Collapse
Affiliation(s)
| | | | | | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (A.M.); (Y.C.); (N.C.)
| |
Collapse
|
33
|
Singh B, Singh J, Rajneesh. Application of tragacanth gum and alginate in hydrogel wound dressing's formation using gamma radiation. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177769] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of wound-healing/dressing biomaterials is amongst the most promising approaches for wound repair through protection from pathogen invasion/contamination, maintaining moisture, absorbing exudates, modulating inflammation, and facilitating the healing process. A wide range of materials are used to fabricate wound-healing/dressing biomaterials. Active wound-healing/dressings are next-generation alternatives for passive biomaterials, which provide a physical barrier and induce different biological activities, such as antibacterial, antioxidant, and proliferative effects. Cellulose-based biomaterials are particularly promising due to their tunable physical, chemical, mechanical, and biological properties, accessibility, low cost, and biocompatibility. A thorough description and analysis of wound-healing/dressing structures fabricated from cellulose-based biomaterials is discussed in this review. We emphasize and highlight the fabrication methods, applied bioactive molecules, and discuss the obtained results from in vitro and in vivo models of cellulose-based wound-healing biomaterials. This review paper revealed that cellulose-based biomaterials have promising potential as the wound-dressing/healing materials and can be integrated with various bioactive agents. Overall, cellulose-based biomaterials are shown to be effective and sophisticated structures for delivery applications, safe and multi-customizable dressings, or grafts for wound-healing applications.
Collapse
|
35
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Hamidi M, Valentine Okoro O, Eskandani M, Jaymand M. Polysaccharide-based hydrogels: properties, advantages, challenges, and optimization methods for applications in regenerative medicine. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- BioMatter-Biomass Transformation Lab. (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Oseweuba Valentine Okoro
- BioMatter-Biomass Transformation Lab. (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
36
|
Zhao Z, Chua HM, Goh BHR, Lai HY, Tan SJ, Moay ZK, Setyawati MI, Ng KW. Anisotropic hair keratin-dopamine composite scaffolds exhibit strain-stiffening properties. J Biomed Mater Res A 2021; 110:92-104. [PMID: 34254735 DOI: 10.1002/jbm.a.37268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022]
Abstract
Human hair keratin (HHK) has been successfully explored as raw materials for three-dimensional scaffolds for soft tissue regeneration due to its excellent biocompatibility and bioactivity. However, none of the reported HHK based scaffolds is able to replicate the strain-stiffening capacity of living tissues when responding to large deformations. In the present study, strain-stiffening property was achieved in scaffolds fabricated from HHK via a synergistic effect of well-defined, aligned microstructure and chemical crosslinking. Directed ice-templating method was used to fabricate HHK-based scaffolds with highly aligned (anisotropic) microstructure while oxidized dopamine (ODA) was used to crosslink covalently to HHKs. The resultant HHK-ODA scaffolds exhibited strain-stiffening behavior characterized by the increased gradient of the stress-strain curve after the yield point. Both ultimate tensile strength and the elongation at break were enhanced significantly (~700 kPa, ~170%) in comparison to that of HHK scaffolds lacking of aligned microstructure or ODA crosslinking. In vitro cell culture studies indicated that HHK-ODA scaffolds successfully supported human dermal fibroblasts (HDFs) adhesion, spreading and proliferation. Moreover, anisotropic HHK-ODA scaffolds guided cell growth in alignment with the defined microstructure as shown by the highly organized cytoskeletal networks and nuclei distribution. The findings suggest that HHK-ODA scaffolds, with strain-stiffening properties, biocompatibility and bioactivity, have the potential to be applied as biomimetic matrices for soft tissue regeneration.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Shao Jie Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Singapore
| |
Collapse
|
37
|
Koyyada A, Orsu P. Natural gum polysaccharides as efficient tissue engineering and drug delivery biopolymers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules 2021; 26:molecules26061510. [PMID: 33802011 PMCID: PMC8000171 DOI: 10.3390/molecules26061510] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023] Open
Abstract
The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.
Collapse
|
39
|
Emre Oz Y, Keskin-Erdogan Z, Safa N, Esin Hames Tuna E. A review of functionalised bacterial cellulose for targeted biomedical fields. J Biomater Appl 2021; 36:648-681. [PMID: 33673762 DOI: 10.1177/0885328221998033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial cellulose (BC), which can be produced by microorganisms, is an ideal biomaterial especially for tissue engineering and drug delivery systems thanks to its properties of high purity, biocompatibility, high mechanical strength, high crystallinity, 3 D nanofiber structure, porosity and high-water holding capacity. Therefore, wide ranges of researches have been done on the BC production process and its structural and physical modifications to make it more suitable for certain targeted biomedical applications thoroughly. BC's properties such as mechanical strength, pore diameter and porosity can be tuned in situ or ex situ processes by using various polymer and compounds. Besides, different organic or inorganic compounds that support cell attachment, proliferation and differentiation or provide functions such as antimicrobial effectiveness can be gained to its structure for targeted application. These processes not only increase the usage options of BC but also provide success for mimicking the natural tissue microenvironment, especially in tissue engineering applications. In this review article, the studies on optimisation of BC production in the last decade and the BC modification and functionalisation studies conducted for the three main perspectives as tissue engineering, drug delivery and wound dressing with diverse approaches are summarized.
Collapse
Affiliation(s)
- Yunus Emre Oz
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Neriman Safa
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - E Esin Hames Tuna
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
40
|
Teixeira MO, Antunes JC, Felgueiras HP. Recent Advances in Fiber-Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics (Basel) 2021; 10:248. [PMID: 33801438 PMCID: PMC8001440 DOI: 10.3390/antibiotics10030248] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
In the last decades, much research has been done to fasten wound healing and target-direct drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some reaching already the market, even though their mechanical stability remains a challenge. To overcome this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance of fiber-hydrogel composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques and fiber spinning approaches has been crucial in the development of scaffolding systems with improved mechanical strength and medicinal properties. In this review, a comprehensive overview of the recently developed fiber-hydrogel composite strategies for wound healing and drug delivery is provided. The methodologies employed in fiber and hydrogel formation are also highlighted, together with the most compatible polymer combinations, as well as drug incorporation approaches creating stimuli-sensitive and triggered drug release towards an enhanced host response.
Collapse
Affiliation(s)
| | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.O.T.); (J.C.A.)
| |
Collapse
|
41
|
Akshay Kumar KP, Zare EN, Torres-Mendieta R, Wacławek S, Makvandi P, Černík M, Padil VVT, Varma RS. Electrospun fibers based on botanical, seaweed, microbial, and animal sourced biomacromolecules and their multidimensional applications. Int J Biol Macromol 2021; 171:130-149. [PMID: 33412195 DOI: 10.1016/j.ijbiomac.2020.12.205] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
This review summarizes and broadly classifies all of the major sustainable natural carbohydrate bio-macromolecular manifestations in nature - from botanical (cellulose, starch, and pectin), seaweed (alginate, carrageenan, and agar), microbial (bacterial cellulose, dextran, and pullulan), and animal (hyaluronan, heparin, chitin, and chitosan) sources - that have been contrived into electrospun fibers. Furthermore, a relative study of these biomaterials for the fabrication of nanofibers by electrospinning and their characteristics viz. solution behavior, blending nature, as well as rheological and fiber attributes are discussed. The potential multidimensional applications of nanofibers (filtration, antimicrobial, biosensor, gas sensor, energy storage, catalytic, and tissue engineering) originating from these polysaccharides and their major impacts on the properties, functionalities, and uses of these electrospun fibers are compared and critically examined.
Collapse
Affiliation(s)
- K P Akshay Kumar
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), India
| | | | - Rafael Torres-Mendieta
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic..
| |
Collapse
|
42
|
Ji L, Zhang F, Zhu L, Jiang J. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int J Biol Macromol 2021; 170:459-468. [PMID: 33359254 DOI: 10.1016/j.ijbiomac.2020.12.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Sodium alginate-bacterial cellulose (SA-BC) is a nanocomposite hydrogel with multi-layered porous surfaces fabricated using an in-situ biosynthesis modification method. The enzymatic hydrolysate (EH) of glycerol-pretreated Moso bamboo (MBEH) was the carbon source for glucose substitution to generate SA-bamboo-BC. SA, a natural biological polysaccharide, was combined with BC at dosages of 0.25%, 0.5%, 0.75% and 1% through hydrogen bonding. Compared to the native BC, the addition of 0.75% SA, termed as SA-bamboo-BC-0.75, enhanced the thermal properties. The dynamic swelling/de-swelling were pH-dependent, with an increased swelling ratio (SR) of 613% observed at pH 7.4 but a lower SR of 366% observed at pH 1.2. These differences were attributable to the electrostatic repulsion of -COO-. Two protein-based model drugs were compared to estimate their drug-release properties. Bovine serum albumin (BSA) was adsorbed on lignin from MBEH through hydrophobic interactions, resulting in poor drug release. Lysozyme (LYZ) exhibited a higher drug release rate (92.79%) over 60 h at pH 7.4 due to the static attraction between LYZ and -COO- of SA-bamboo-BC-0.75. As such, SA-bamboo-BC nanocomposite hydrogel was shown to possess sufficient swelling, drug-release and biocompatibility for substrate use.
Collapse
Affiliation(s)
- Li Ji
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Liwei Zhu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
43
|
Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, Akbarzadeh A, Davaran S, Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int J Biol Macromol 2020; 170:728-750. [PMID: 33387543 DOI: 10.1016/j.ijbiomac.2020.12.202] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023]
Abstract
Hydrogels are widely used for wound healing applications due to their similarity to the native extracellular matrix (ECM) and ability to provide a moist environment. However, lack of multifunctionality and low mechanical properties of previously developed hydrogels may limit their ability to support skin tissue regeneration. Incorporating various biomaterials and nanostructures into the hydrogels is an emerging approach to develop multifunctional hydrogels with new functions that are beneficial for wound healing. These multifunctional hydrogels can be fabricated with a wide range of functions and properties, including antibacterial, antioxidant, bioadhesive, and appropriate mechanical properties. Two approaches can be used for development of multifunctional hydrogel-based dressings; taking the advantages of the chemical composition of biomaterials and addition of nanomaterials or nanostructures. A large number of synthetic and natural polymers, bioactive molecules, or nanomaterials have been used to obtain hydrogel-based dressings with multifunctionality for wound healing applications. In the present review paper, advances in the development of multifunctional hydrogel-based dressings for wound healing have been highlighted.
Collapse
Affiliation(s)
- Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Dehghan-Niri M, Vasheghani-Farahani E, Baghaban Eslaminejad M, Tavakol M, Bagheri F. Physicomechanical, rheological and in vitro cytocompatibility properties of the electron beam irradiated blend hydrogels of tyramine conjugated gum tragacanth and poly (vinyl alcohol). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111073. [PMID: 32994011 DOI: 10.1016/j.msec.2020.111073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/28/2023]
Abstract
In the present study, preparation of blend hydrogels of tyramine conjugated gum tragacanth and poly (vinyl alcohol) was carried out by electron beam irradiation, and modification of hydrogel properties with poly (vinyl alcohol) was demonstrated. Gel content, swelling behavior, pore size and mechanical and rheological properties of hydrogels prepared at 14, 28 and 56 kilogray (kGy) with different ratios of polymers were investigated. Gel content increased from 67 ± 2% for pure tyramine conjugated gum tragacanth hydrogel to >92% for blend hydrogels. However, the corresponding equilibrium swelling degree decreased from 35.21 ± 1.51 to 9.14 ± 1.66 due to the higher crosslink density of blend hydrogel. The mechanical strength of the hydrogels with interconnected pores increased significantly in the presence of poly (vinyl alcohol) and increasing irradiation dose up to 28 kGy with a twenty-fold enhancement of stress fracture and excellent elastic recovery in cyclic compression analysis. The equilibrium swelling degree of blend hydrogel containing 3% w/v tyramine conjugated gum tragacanth and 2% w/v poly (vinyl alcohol) prepared at 28 kGy was 16.59 ± 0.81. The biocompatibility of hydrogels was tested in the presence of rabbit bone marrow mesenchymal stem cells. The viability of cells exposed to hydrogel extract was >92% after 7 days of culture and indicated hydrogel biocompatibility with potential biomedical applications.
Collapse
Affiliation(s)
- Maryam Dehghan-Niri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Moslem Tavakol
- Department of Chemical & Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
45
|
Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8050624] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The unique pool of features found in intracellular and extracellular bacterial biopolymers attracts a lot of research, with bacterial cellulose (BC) being one of the most versatile and common. BC is an exopolysaccharide consisting solely of cellulose, and the variation in the production process can vary its shape or even its composition when compounding is applied in situ. Together with ex situ modification pathways, including specialised polymers, particles or exclusively functional groups, BC provides a robust platform that yields complex multifunctional compounds that go far beyond ultra-high purity, intrinsic hydrophilicity, mechanical strength and biocompatibility to introduce bioactive, (pH, thermal, electro) responsive, conductive and ‘smart’ properties. This review summarises the research outcomes in BC-medical applications, focusing mainly on data from the past decade (i.e., 2010–2020), with special emphasis on BC nanocomposites as materials and devices applicable in medicine. The high purity and unique structural/mechanical features, in addition to its capacity to closely adhere to irregular skin surfaces, skin tolerance, and demonstrated efficacy in wound healing, all stand as valuable attributes advantageous in topical drug delivery. Numerous studies prove BC compatibility with various human cells, with modifications even improving cell affinity and viability. Even BC represents a physical barrier that can reduce the penetration of bacteria into the tissue, but in its native form does not exhibit antimicrobial properties, therefore carious modifications have been made or specific compounds added to confer antimicrobial or anti-inflammatory properties. Progress in the use of BC-compounds as wound dressings, vascular grafts, and scaffolds for the treatment of cartilage, bone and osteochondral defects, the role as a basement membrane in blood-brain barrier models and many more are discussed to particular extent, emphasising the need for BC compounding to meet specific requirements.
Collapse
|
46
|
Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol Adv 2020; 41:107549. [PMID: 32302653 DOI: 10.1016/j.biotechadv.2020.107549] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) is cellulose produced by a few limited species of bacteria in given conditions. BC has many remarkable properties such as its attractive mechanical properties, water uptake ability and biocompatibility which makes it a very desirable material to be used for wound healing. Inherently due to these important properties, the material is very resistant to easy processing and thus difficult to produce into useful entities. Additionally, being rate limited by the dependency on bacterial production, high yield is difficult to obtain and thus secondary material processing is sought after. In this review, BC is explained in terms of synthesis, structure and properties. These beneficial properties are directly related to the material's great potential in wound healing where it has also been trialled commercially but ultimately failed due to processing issues. However, more recently there has been increased frequency in scientific work relating to BC processing into hybrid polymeric fibres using common laboratory fibre forming techniques such as electrospinning and pressurised gyration. This paper summarises current progress in BC fibre manufacturing, its downfalls and also gives a future perspective on how the landscape should change to allow BC to be utilised in wound care in the current environment.
Collapse
|
47
|
Teixeira MA, Paiva MC, Amorim MTP, Felgueiras HP. Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E557. [PMID: 32204521 PMCID: PMC7153368 DOI: 10.3390/nano10030557] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023]
Abstract
Wound healing requires careful, directed, and effective therapies to prevent infections and accelerate tissue regeneration. In light of these demands, active biomolecules with antibacterial properties and/or healing capacities have been functionalized onto nanostructured polymeric dressings and their synergistic effect examined. In this work, various antibiotics, nanoparticles, and natural extract-derived products that were used in association with electrospun nanocomposites containing cellulose, cellulose acetate and different types of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) have been reviewed. Renewable, natural-origin compounds are gaining more relevance each day as potential alternatives to synthetic materials, since the former undesirable footprints in biomedicine, the environment, and the ecosystems are reaching concerning levels. Therefore, cellulose and its derivatives have been the object of numerous biomedical studies, in which their biocompatibility, biodegradability, and, most importantly, sustainability and abundance, have been determinant. A complete overview of the recently produced cellulose-containing nanofibrous meshes for wound healing applications was provided. Moreover, the current challenges that are faced by cellulose acetate- and nanocellulose-containing wound dressing formulations, processed by electrospinning, were also enumerated.
Collapse
Affiliation(s)
- Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal;
| | - M. Teresa P. Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| |
Collapse
|
48
|
Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr Polym 2020; 227:115349. [DOI: 10.1016/j.carbpol.2019.115349] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
|
49
|
Pang M, Huang Y, Meng F, Zhuang Y, Liu H, Du M, Ma Q, Wang Q, Chen Z, Chen L, Cai T, Cai Y. Application of bacterial cellulose in skin and bone tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109365] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Zandi N, Lotfi R, Tamjid E, Shokrgozar MA, Simchi A. Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110432. [PMID: 31923974 DOI: 10.1016/j.msec.2019.110432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/27/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated core-sheath fibers for dual delivery of lysozyme, as a model protein, and phenytoin sodium as a small therapeutic molecule. The sheath was processed by a gelatin solution while the core fibers were fabricated from an aqueous gelatin/PVA solution. Microstructural studies by transmission and scanning electron microscopy reveal the formation of homogeneous core-sheath nanofibers with an outer and inner diameter of 180 ± 48 nm and 106 ± 30 nm, respectively. Thermal gravimetric analysis determines that the mass loss of the core-sheath fibers fall between the mass loss values of individual sheath and core fibers. Swelling studies indicate higher water absorption of the core-sheath mat compared to the separate sheath and core membranes. In vitro drug release studies in Phosphate Buffered Saline (PBS) determine sustained release of the therapeutics from the core-sheath structure. The release trails three stages including non-Fickian diffusion at the early stage followed by the Fickian diffusion mechanism. The present study shows a useful approach to design core-sheath nanofibrous membranes with controlled and programmable drug release profiles.
Collapse
Affiliation(s)
- Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran
| | - Roya Lotfi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran; Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| |
Collapse
|