1
|
Prihandana GS, Mahardika M, Arifvianto B, Baskoro AS, Whulanza Y, Sriani T, Yusof F. Performance Investigation of PSF-nAC Composite Ultrafiltration Membrane for Protein Separation. Polymers (Basel) 2024; 16:2654. [PMID: 39339117 PMCID: PMC11435571 DOI: 10.3390/polym16182654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
As a promising wastewater treatment technology, ultrafiltration membranes face challenges related to fouling and flux reduction. To enhance these membranes, various strategies have been explored. Among them, the incorporation of nano-activated carbon (nAC) powder has emerged as an effective method. In this study, composite polysulfone (PSF) ultrafiltration membranes were fabricated using nAC powder at concentrations ranging from 0 to 8 wt.%. These membranes underwent comprehensive investigation, including assessments of membrane morphology, hydrophilicity, pure water flux, equilibrium water content, porosity, average pore size, and protein separation. The addition of activated carbon improved several desirable properties. Specifically, the hydrophilicity of the PSF membranes was enhanced, with the contact angle reduced from 69° to 58° for 8 wt.% of nAC composite membranes compared to the pristine PSF membrane. Furthermore, the water flux test revealed that 6 wt.% activated carbon-based membranes exhibited the highest flux, with a nearly 3 times improvement at 2 bar. Importantly, this enhancement did not compromise the protein rejection. Additionally, the introduction of nAC had a significant effect on the membrane's pore size by improving lysozyme rejection up to 40%. Overall, these findings will guide the selection of the optimal concentration of nAC for PSF ultrafiltration membranes.
Collapse
Affiliation(s)
- Gunawan Setia Prihandana
- Department of Industrial Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
| | - Muslim Mahardika
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia; (M.M.); (B.A.)
| | - Budi Arifvianto
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia; (M.M.); (B.A.)
| | - Ario Sunar Baskoro
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia; (A.S.B.); (Y.W.)
| | - Yudan Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia; (A.S.B.); (Y.W.)
| | - Tutik Sriani
- Department of Research and Development, P.T Global Meditek Utama-IITOYA, Sardonoharjo, Ngaglik, Sleman, Yogyakarta 55581, Indonesia;
| | - Farazila Yusof
- Centre of Advanced Manufacturing & Material Processing (AMMP Centre), Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Foundation Studies in Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Han S, Jun BM, Choi JS, Park CM, Jang M, Nam SN, Yoon Y. Removal of endocrine disruptors and pharmaceuticals by graphene oxide-based membranes in water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121437. [PMID: 38852419 DOI: 10.1016/j.jenvman.2024.121437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Membrane-based water treatment has emerged as a promising solution to address global water challenges. Graphene oxide (GO) has been successfully employed in membrane filtration processes owing to its reversible properties, large-scale production potential, layer-to-layer stacking, great oxygen-based functional groups, and unique physicochemical characteristics, including the creation of nano-channels. This review evaluates the separation performance of various GO-based membranes, manufactured by coating or interfacial polymerization with different support layers such as polymer, metal, and ceramic, for endocrine-disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs). In most studies, the addition of GO significantly improved the removal efficiency, flux, porosity, hydrophilicity, stability, mechanical strength, and antifouling performance compared to pristine membranes. The key mechanisms involved in contaminant removal included size exclusion, electrostatic exclusion, and adsorption. These mechanisms could be ascribed to the physicochemical properties of compounds, such as molecular size and shape, hydrophilicity, and charge state. Therefore, understanding the removal mechanisms based on compound characteristics and appropriately adjusting the operational conditions are crucial keys to membrane separation. Future research directions should explore the characteristics of the combination of GO derivatives with various support layers, by tailoring diverse operating conditions and compounds for effective removal of EDCs and PhACs. This is expected to accelerate the development of surface modification strategies for enhanced contaminant removal.
Collapse
Affiliation(s)
- Seungyeon Han
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon, 34057, Republic of Korea
| | - Jong Soo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Seong-Nam Nam
- Military Environmental Research Center, Korea Army Academy at Yeongcheon, 495 Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, 38900, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
3
|
Goyat R, Singh J, Umar A, Saharan Y, Ibrahim AA, Akbar S, Baskoutas S. Synthesis and characterization of nanocomposite based polymeric membrane (PES/PVP/GO-TiO 2) and performance evaluation for the removal of various antibiotics (amoxicillin, azithromycin & ciprofloxacin) from aqueous solution. CHEMOSPHERE 2024; 353:141542. [PMID: 38428535 DOI: 10.1016/j.chemosphere.2024.141542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The escalating global concern regarding antibiotic pollution necessitates the development of advanced water treatment strategies. This study presents an innovative approach through the fabrication and evaluation of a Polyethersulfone (PES) membrane adorned with GO-TiO2 nanocomposites. The objective is to enhance the removal efficiency of various antibiotics, addressing the challenge of emerging organic compounds (EOCs) in water systems. The nanocomposite membranes, synthesized via the phase inversion method, incorporate hydrophilic agents, specifically GO-TiO2 nanocomposites and Polyvinylpyrrolidone (PVP). The resultant membranes underwent comprehensive characterization employing AFM, EDS, tensile strength testing, water contact angle measurements, and FESEM to elucidate their properties. Analysis revealed a substantial improvement in the hydrophilicity of the modified membranes attributed to the presence of hydroxyl groups within the GO-TiO2 structure. AFM images demonstrated an augmentation in surface roughness with increasing nanocomposite content. FESEM images unveiled structural modifications, leading to enhanced porosity and augmented water flux. The pure water flux elevated from 0.980 L/m2.h-1 for unmodified membranes to approximately 6.85 L/m2.h-1 for membranes modified with 2 wt% nanocomposites. Membrane performance analysis indicated a direct correlation between nanocomposite content and antibiotic removal efficiency, ranging from 66.52% to 89.81% with 4 wt% nanocomposite content. Furthermore, the nanocomposite-modified membrane exhibited heightened resistance to fouling. The efficacy of the membrane extended to displaying potent antibacterial properties against microbial strains, including S. aureus, E. coli, and Candida. This study underscores the immense potential of GO-TiO2 decorated PES membranes as a sustainable and efficient solution for mitigating antibiotic contamination in water systems. The utilization of nanocomposite membranes emerges as a promising technique to combat the presence of EOC pollutants, particularly antibiotics, in water bodies, thus addressing a critical environmental concern.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
4
|
Gao N, Xie W, Xu L, Xin Q, Gao J, Shi J, Zhong J, Shi W, Wang H, Zhao K, Lin L. Characterization of a chlorine resistant and hydrophilic TiO 2/calcium alginate hydrogel filtration membrane used for protein purification maintaining protein structure. Int J Biol Macromol 2023; 253:126367. [PMID: 37591433 DOI: 10.1016/j.ijbiomac.2023.126367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The development of membranes for protein purification has stringent requirement of disinfection resistance, low protein adsorption and anti-fouling, without changing protein structure. In this study, hydrophilic titanium dioxide (TiO2)/calcium alginate (TiO2/CaAlg) hydrogel membranes were prepared by a simple ionic cross-linking method. The effects of the porogenic agent polyethylene glycol (PEG) concentration, the molecular weight of PEG, and the concentration of TiO2 on the filtration properties were systematically investigated. The TiO2/CaAlg membrane exhibited excellent bovine serum albumin (BSA) rejection and anti-fouling properties. The mechanical properties and surface energy of the TiO2/CaAlg membrane were significantly improved. The chemical bonding mechanism of TiO2 and NaAlg was investigated by molecular dynamic simulation. The TiO2/CaAlg membrane had good chlorine resistance and could be disinfected or cleaned with sodium hypochlorite. The TiO2/CaAlg hydrogel membrane loaded with polyhydroxybutyrate (PHB) nanofibers maintained high flux (136.7 L/m2h) and high BSA rejection (98.0 %) at 0.1 MPa. The results of circular dichroism and synchronous fluorescence indicated that the secondary structure of BSA was maintained after membrane separation. This study provides one method for the preparation of green and environmentally friendly membrane for protein purification.
Collapse
Affiliation(s)
- Ningning Gao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., China
| | - Wenbin Xie
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Lijing Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Junkui Gao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., China
| | - Junjun Shi
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., China
| | - Jin Zhong
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, 300387, China
| | - Huiguo Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., China.
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
5
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
6
|
Yadav D, Borpatra Gohain M, Karki S, Ingole PG. A Novel Approach for the Development of Low-Cost Polymeric Thin-Film Nanocomposite Membranes for the Biomacromolecule Separation. ACS OMEGA 2022; 7:47967-47985. [PMID: 36591113 PMCID: PMC9798531 DOI: 10.1021/acsomega.2c05861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The separation of biomacromolecules, mainly proteins, plays a significant role in the pharmaceutical and food industries. Among the membranes' techniques, thin-film nanocomposite nanofiltration membranes are the best choice due to their high energy efficiency, excellent productivity, cost-effective and tuneable properties that have captured the attention of the efficient separation of biomacromolecules, especially from the industrial perspective. The present work directs the efficient separation study of proteins, namely, lysozyme, trypsin, pepsin, bovine serum albumin (BSA), and cephalexin, using a thin-film nanocomposite membrane integrated with Arg-MMT (arginine-montmorillonite) clay nanoparticles. The surface morphology and cross-section images of the TFN membranes were studied using a field emission scanning electron microscope (FE-SEM) and a high-resolution transmission electron microscope (HR-TEM). The thermal stability and hydrophilicity of the membranes were examined using thermogravimetric analysis (TGA) and contact angle, respectively. The surface chemistry of the selective layer has different functional groups that were analyzed using FTIR spectroscopy. The performance of the membranes was studied at different trans-membrane pressures and permeation times. The effect of monomer concentration on the separation performance of the membranes was also studied at different permeation times. The membranes' antibacterial activity was evaluated using the Muller-Hinton disk diffusion method using gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) bacteria. The highest rejection was achieved for BSA up to 98.92 ± 1%, and the highest permeation was obtained against lysozyme feed solution up to 26 L m-2 h-1 at 5 bar pressure. The membrane also illustrated excellent rejection of cephalexin antibiotics with a rejection of 98.17 ± 1.75% and a permeation flux of 26.14 L m-2 h-1. The antifouling study performed for the membranes exhibited a flux recovery ratio of 86.48%. The fabricated thin-film nanocomposite membrane demonstrated a good alternative for the separation of biomacromolecules and has the potential to be used in different sectors of industry, especially the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Diksha Yadav
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Moucham Borpatra Gohain
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Sachin Karki
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Pravin G. Ingole
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
7
|
|
8
|
Spoială A, Ilie CI, Dolete G, Croitoru AM, Surdu VA, Trușcă RD, Motelica L, Oprea OC, Ficai D, Ficai A, Andronescu E, Dițu LM. Preparation and Characterization of Chitosan/TiO 2 Composite Membranes as Adsorbent Materials for Water Purification. MEMBRANES 2022; 12:membranes12080804. [PMID: 36005719 PMCID: PMC9414885 DOI: 10.3390/membranes12080804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO2 composite membranes were successfully prepared through a simple casting method. The TiO2 nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO2 must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, Escherichia coli, Citrobacter spp., Enterococcus faecalis and Staphylococcus aureus. For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO2 1% composite membrane, the retention values being 297 mg/g for Pb2+ and 315 mg/g for Cd2+ ions. These values were higher for the chitosan/TiO2 1% than for chitosan/TiO2 5%, indicating that a high content of TiO2 can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO2 composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Denisa Ficai
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
9
|
Yang HL, Ang MBMY, Tsai HA, Lee KR, Lai JY. Effect of adding carbon quantum dots to a NMP solution of cellulose acetate on the formation mechanism of ensuing membrane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zeng L, Zhu Z, Sun DW. Novel graphene oxide/polymer composite membranes for the food industry: structures, mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 62:3705-3722. [PMID: 35348019 DOI: 10.1080/10408398.2022.2054937] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The membrane can not only be used as food packaging, but also for the separation, fractionation and recovery of food ingredients. Graphene oxide (GO) sheets are a two-dimensional (2 D) material with a unique structure that exhibit excellent mechanical properties, biocompatibility, and flexibility. The corporation of polymer matrix membrane with GO can significantly improve the permeability, selectivity, and antibacterial activity. In this review, the chemical structures of GO, GO membranes and GO/polymer composite membranes are introduced, the permeation mechanisms of molecules through the membranes are discussed and key factors affecting the permeability are presented in detail. In addition, recent applications in the food industry for filtration, bioreactions and active food packaging are analyzed, and limitations and future trends of GO membranes development are also highlighted. GO/polymer composite membranes exhibit excellent permeability, selectivity and strong barrier properties against bacterial and gas permeation. However, current food material filtration and packaging applications of GO/polymer composite membranes are still in the laboratory stage. Future work can focus on the development of large scale uniformly sized GO production, the homogeneous distribution and tight combination of GO in polymer matrixes, the sensing function of GO in packaging, and the verification method of GO toxicology.
Collapse
Affiliation(s)
- Leyin Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
11
|
Ouyang Y, Otitoju TA, Jiang D, Li S, Shoparwe NF, Wang S, Zhang A. Synthesis of
PVDF‐B
4
C
mixed matrix membrane for ultrafiltration of protein and photocatalytic dye removal. J Appl Polym Sci 2022. [DOI: 10.1002/app.51663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanyuan Ouyang
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Tunmise Ayode Otitoju
- School of Materials Science and Engineering Shenyang University of Technology Shenyang China
- Faculty of Bioengineering and Technology, Jeli Campus Universiti Malaysia Kelantan Jeli Malaysia
| | - Dafu Jiang
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Sanxi Li
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Noor Fazliani Shoparwe
- Faculty of Bioengineering and Technology, Jeli Campus Universiti Malaysia Kelantan Jeli Malaysia
| | - Song Wang
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Ailing Zhang
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| |
Collapse
|
12
|
Said N, Lau WJ, Ho YC, Lim SK, Zainol Abidin MN, Ismail AF. A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. MEMBRANES 2021; 11:767. [PMID: 34677533 PMCID: PMC8540739 DOI: 10.3390/membranes11100767] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis application and to discuss the technical aspects of dialyzer development, including hollow fiber membrane materials, dialyzer design, sterilization processes and flow simulation. The technical challenges of dialyzers are also highlighted in this review, which discusses the research areas that need to be prioritized to further improve the properties of dialyzers, such as flux, biocompatibility, flow distribution and urea clearance rate. We hope this review article can provide insights to researchers in developing/designing an ideal dialyzer that can bring the best hemodialysis treatment outcomes to kidney disease patients.
Collapse
Affiliation(s)
- Noresah Said
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| | - Yeek-Chia Ho
- Centre of Urban Resource Sustainability, Department of Civil and Environmental Engineering, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Soo Kun Lim
- University Malaya Primary Care Research Group (UMPCRG), Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| |
Collapse
|
13
|
Vatanpour V, Paziresh S. A melamine‐based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance. J Appl Polym Sci 2021. [DOI: 10.1002/app.51428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
- Research Institute of Green Chemistry Kharazmi University Tehran Iran
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| |
Collapse
|
14
|
Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties. MEMBRANES 2020; 10:membranes10120401. [PMID: 33297433 PMCID: PMC7762233 DOI: 10.3390/membranes10120401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022]
Abstract
In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.
Collapse
|
15
|
In-situ growth of zeolitic imidazolate framework-67 nanoparticles on polysulfone/graphene oxide hollow fiber membranes enhance CO2/CH4 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|
17
|
Modi A, Bellare J. Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Guo H, Peng Y, Liu Y, Wang Z, Hu J, Liu J, Ding Q, Gu J. Development and investigation of novel antifouling cellulose acetate ultrafiltration membrane based on dopamine modification. Int J Biol Macromol 2020; 160:652-659. [PMID: 32479941 DOI: 10.1016/j.ijbiomac.2020.05.223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Abstract
In this contribution, a novel cellulose acetate modified with dopamine (CA-DA) membrane material was designed and prepared by a two-step route consist of chlorination and further substitution reactions. The chemical structure of the prepared CA-DA material was determined by FTIR and 1H NMR, respectively. The CA-DA ultrafiltration membrane was subsequently fabricated by the scalable phase inversion process. Compared with cellulose acetate membrane as the control sample, the introduction of dopamine improved the porosity, pore size and hydrophilicity of the CA-DA membrane, which was helpful to the water permeability (181.2 L/m2h) without obviously affecting the protein rejection (93.5%). According to the static protein adsorption and dynamic cycle ultrafiltration experiments, the CA-DA membrane displayed persistent antifouling performance, which was verified by flux recovery ratio, flux decline ratio and filtration resistance. Moreover, the water flux recovery ratio of the CA-DA membrane was retained at 97.3% after three-cycles of BSA solution filtration, which was much higher than that of the reference CA membrane. This new approach provided a long life and excellent ultrafiltration performance for polymer-based membranes, which has potential application prospects in the field of separation process.
Collapse
Affiliation(s)
- Hanxiang Guo
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yang Peng
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Yang Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Zhaofeng Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jingwan Hu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Jinghao Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Qun Ding
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Jiyou Gu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
19
|
Fu R, Ou M, Yang C, Hu Y, Yin H. Synthesis of Fe 3O 4@Gd 2O 3:Tb 3+@SiOx multifunctional nanoparticles and their luminescent, magnetic and hyperthermia properties. NANOTECHNOLOGY 2020; 31:395705. [PMID: 32380478 DOI: 10.1088/1361-6528/ab912e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multifunctional Fe3O4@Gd2O3:Tb3+@SiOx nanoparticles were successfully synthesized by co-precipitation and polyol methods. The synthesized nanoparticles were composed by cubic phase as core of Fe3O4 and Gd2O3:Tb3+ and the shell of amorphous SiOx. The composites exhibited a spherical shape with a diameter of 10-15 nm and highly uniform dispersion. They showed not only excellent fluorescence under excitation at a wavelength of 278 nm, but also strong magnetic responsiveness (MS = 24.040 emu g-1). The results of magnetic resonance imaging in vitro (r1 = 6.00 mm-1 s-1, r2 = 63.95 mm-1 s-1) showed that the samples could be used as T1-positive and T2-negative contrast agents. In addition, it was found that Fe3O4@Gd2O3:Tb3+@SiOx attains hyperthermia temperature (43 °C) in 90 s under the alternating current magnetic field, and their specific absorption rate (229.9 w g-1) was higher than that of Fe3O4 (183.92 w g-1). Hence, the multifunctional nanoparticle could be used for the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Rong Fu
- College of Materials and Metallurgy, University of Guizhou, Guiyang 550025, People's Republic of China. National Local Co-Construction Engineering Laboratory for High Performance Metal Structure Material and Manufacture Technology, Guiyang 550025, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Li H, Zeng X, Shi W, Zhang H, Huang S, Zhou R, Qin X. Recovery and purification of potato proteins from potato starch wastewater by hollow fiber separation membrane integrated process. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Jafar Mazumder MA, Raja PH, Isloor AM, Usman M, Chowdhury SH, Ali SA, Inamuddin, Al-Ahmed A. Assessment of sulfonated homo and co-polyimides incorporated polysulfone ultrafiltration blend membranes for effective removal of heavy metals and proteins. Sci Rep 2020; 10:7049. [PMID: 32341422 PMCID: PMC7184734 DOI: 10.1038/s41598-020-63736-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/07/2022] Open
Abstract
Sulfonated homo and co- polyimide (sPI) were synthesized with new compositional ratios, and used as additives (0.5 wt%, 0.75 wt%, and 1.0 wt%) to prepare blend membranes with polysulfone (PSf). Flat sheet membranes for ultrafiltration (UF) were casted using the phase inversion technique. Surface morphology of the prepared UF membranes were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Surface charge of the membranes were determined by zeta potential, and hydrophilicity was studied by contact angle measurement. The contact angle of the membrane decreased with increasing sPI additive indicates increasing the hydrophilicity of the blend membranes. Filtration studies were conducted for rejection of heavy metals (Pb2+ and Cd2+) and proteins (pepsin and BSA). Blend membranes showed better rejection than pure PSf membrane. Among the blend membranes it was observed that with increasing amount of sPIs enhance the membrane properties and finally, PSf-sPI5 membrane with 1 wt% of sPI5 showed the improved permeability (72.1 L m-2 h-1 bar-1), and the best rejection properties were found for both metal ions (≈98% of Pb2+; ≈92% of Cd2+) and proteins (>98% of BSA; > 86% of Pepsin). Over all, this membrane was having better hydrophilicity, porosity and higher number of sites to attach the metal ions. Its performance was even better than several-reported sulfonic acid based UF membranes. All these intriguing properties directed this new UF membrane for its potential application in wastewater treatment.
Collapse
Affiliation(s)
| | - Panchami H Raja
- Membrane Technology Laboratory, Chemistry Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Arun M Isloor
- Membrane Technology Laboratory, Chemistry Department, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Muhammad Usman
- Center for Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Shakhawat H Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Amir Al-Ahmed
- Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
22
|
Kumari P, Modi A, Bellare J. Enhanced flux and antifouling property on municipal wastewater of polyethersulfone hollow fiber membranes by embedding carboxylated multi-walled carbon nanotubes and a vitamin E derivative. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Verma SK, Modi A, Bellare J. Polyethersulfone-carbon nanotubes composite hollow fiber membranes with improved biocompatibility for bioartificial liver. Colloids Surf B Biointerfaces 2019; 181:890-895. [DOI: 10.1016/j.colsurfb.2019.06.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 01/21/2023]
|