1
|
Mugnai G, Bernabò L, Daly G, Corneli E, Adessi A. Photofermentative production of poly-β-hydroxybutyrate (PHB) by purple non-sulfur bacteria using olive oil by-products. BIORESOUR BIOPROCESS 2025; 12:25. [PMID: 40128444 PMCID: PMC11933499 DOI: 10.1186/s40643-025-00856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025] Open
Abstract
This study evaluated the ability of six purple non-sulfur bacteria (PNSB) to convert olive oil by-products into poly-β-hydroxybutyrate (PHB). Strains were first independently cultivated in synthetic media with different carbon sources (acetic, lactic and malic acid) to assess their physiology and PHB production. Subsequently, their growth and PHB production using ingested pâté olive cake (IPOC) as a substrate were investigated. Transmission electron microscopy (TEM) observations were conducted on strains cultivated on IPOC to investigate their cell morphologies and inclusion bodies presence and size. Rhodopseudomonas palustris strains accumulated up to 6.8% w PHB/w cells with acetate and 0.86% w PHB/w cells with a daily productivity of 0.54 mg PHB L⁻1 culture d⁻1 on IPOC. In contrast, Cereibacter johrii and Cereibacter sphaeroides reached 58.64% w PHB/w cells and 65.45% w PHB/w cells with acetate, respectively, while C. sphaeroides achieved 21.48% w PHB/w cells and a daily productivity of 10.85 mg PHB L⁻1 culture d⁻1 when cultivated on IPOC. All strains exhibited growth and PHB accumulation in both synthetic media and IPOC substrate. Specifically, R. palustris strains 42OL, AV33 and CGA009 displayed growth capability in all substrates, while C. johrii strains 9Cis and PISA 7, and C. sphaeroides F17 showed promising PHB synthesis capabilities. TEM observations revealed that R. palustris strains, with smaller cell and inclusion body sizes, exhibited lower PHB accumulations, while C. johrii and C. sphaeroides strains, characterized by larger cells and inclusion bodies, demonstrated higher PHB production, recognizing them as promising candidates for PHB production using olive oil by-products. Further investigations under laboratory-scale conditions will be necessary to optimize operating parameters and develop integrated strategies for simultaneous PHB synthesis and the co-production of value-added products, thereby enhancing the economic feasibility of the process within a biorefinery framework.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Luca Bernabò
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Giulia Daly
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Elisa Corneli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- PhotoB. Srl, Via Montecalvi, 3, San Casciano in Val Di Pesa, 50026, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy.
| |
Collapse
|
2
|
Liang J, Zhang P, Zhang R, Chang J, Chen L, Zhang G, Wang A. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review. ENVIRONMENTAL RESEARCH 2024; 242:117796. [PMID: 38040178 DOI: 10.1016/j.envres.2023.117796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-β-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China; Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
3
|
Jirasansawat K, Chiemchaisri W, Chiemchaisri C. Enhancement of sulfide removal and sulfur recovery in piggery wastewater via lighting-anaerobic digestion with bioaugmentation of phototrophic green sulfur bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13414-13425. [PMID: 38244164 DOI: 10.1007/s11356-024-31920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Anaerobic pig wastewater treatment commonly generates high sulfide concentrations in the treated wastewater. This study aims to apply phototrophic green sulfur bacteria (PGB) to promote sulfide removal in lighting-anaerobic digestion (lighting-AD) treating pig wastewater. Initially, batch AD tests of pig wastewater with/without PGB addition were carried out under dark (D) and light (L) conditions. The results showed that the lighting-AD with PGB gave a higher growth rate of PGB (0.056 h-1) and the highest COD/sulfide removals as compared to the dark-AD with PGB and lighting-AD solely. More experiments under various light intensities were performed in order to find an optimal intensity for PGB growth concurrently with metagenomic changes concerning treatment performance. It appeared that sulfide removal rates had increased as increasing light intensity up to 473 lx by giving the highest rate of 12.5 mg L-1 d-1 with the highest sulfur element content in the biomass. Contrastingly, many PGB species disappeared at 1350 lx exposure subsequently sharply decreasing the rate of sulfide removal. In sum, the application of low light intensities of 400-500 lx with bioaugmented PGB could promote PGB growth and activity in sulfide removal in pig wastewater in the lighting of the AD process.
Collapse
Affiliation(s)
- Kridsana Jirasansawat
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand.
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Conners EM, Rengasamy K, Bose A. The phototrophic bacteria Rhodomicrobium spp. are novel chassis for bioplastic production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541187. [PMID: 37292726 PMCID: PMC10245738 DOI: 10.1101/2023.05.17.541187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyhydroxybutyrate (PHB) is a bio-based, biodegradable alternative to petroleum-based plastics. PHB production at industrial scales remains infeasible, in part due to insufficient yields and high costs. Addressing these challenges requires identifying novel biological chassis for PHB production and modifying known biological chassis to enhance production using sustainable, renewable inputs. Here, we take the former approach and present the first description of PHB production by two prosthecate photosynthetic purple non-sulfur bacteria (PNSB), Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species produce PHB across photoheterotrophic, photoautotrophic, photoferrotrophic, and photoelectrotrophic growth conditions. Both species show the greatest PHB titers during photoheterotrophic growth on butyrate with dinitrogen gas as a nitrogen source (up to 44.08 mg/L), while photoelectrotrophic growth demonstrated the lowest titers (up to 0.13 mg/L). These titers are both greater (photoheterotrophy) and less (photoelectrotrophy) than those observed previously in a related PNSB, Rhodopseudomonas palustris TIE-1. On the other hand, we observe the highest electron yields during photoautotrophic growth with hydrogen gas or ferrous iron electron donors, and these electron yields were generally greater than those observed previously in TIE-1. These data suggest that non model organisms like Rhodomicrobium should be explored for sustainable PHB production and highlights utility in exploring novel biological chassis.
Collapse
|
5
|
Montiel-Corona V, Buitrón G. Polyhydroxyalkanoates and 5-aminolevulinic acid production by a mixed phototrophic culture using medium-chain carboxylic acids from winery effluents. BIORESOURCE TECHNOLOGY 2023; 373:128704. [PMID: 36746217 DOI: 10.1016/j.biortech.2023.128704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to obtain polyhydroxyalkanoates (PHA) and 5-aminolevulinic acid (5-ALA) from medium-chain carboxylic acids (MCCA) using a mixed culture enriched in Rhodopseudomnas palustris. MCCA, obtained from residual wine lees, were tested in batch photofermentation experiments. First, the influence of individual MCCA (hexanoic, heptanoic, and octanoic acids) was evaluated; then, the MCCA coming directly from a fermentation reactor (LC-effluent) or after acids extraction (HC-effluent) were studied. Nutrient supplementation, bicarbonate, and acetic acid addition were also tested. Results showed that PHA production was higher in hexanoic (328 mg PHA/L) compared to heptanoic (152 mg PHA/L) and octanoic (164 mg PHA/L) acids. Bicarbonate addition and acetic acid as co-substrate improved the MCCA consumption, the PHA content and production rate. The HC-effluent, without nutrient supplementation, was allowed to increase 2.5 times the PHA content (reaching 40 % w/w and 584 mg/L) and to double 5-ALA production (7.6 µM) compared to the LC-effluent condition.
Collapse
Affiliation(s)
- Virginia Montiel-Corona
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México.
| |
Collapse
|
6
|
Nitrogen influence on suspended vs biofilm growth and resource recovery potential of purple non-sulfur bacteria treating fuel synthesis wastewater. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Polyhydroxybutyrate production in one-stage by purple phototrophic bacteria: influence of alkaline pH, ethanol, and C/N ratios. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Carlozzi P, Touloupakis E, Filippi S, Cinelli P, Mezzetta A, Seggiani M. Purple non-sulfur bacteria as cell factories to produce a copolymer as PHBV under light/dark cycle in a 4-L photobioreactor. J Biotechnol 2022; 356:51-59. [PMID: 35932942 DOI: 10.1016/j.jbiotec.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
The present study reports a strategy to produce polyhydroxyalkanoates (PHAs) by culturing the marine bacterium Rhodovulum sulfidophilum DSM-1374. The study was carried out by growing the bacterium anaerobically for 720 h under 16/8 light/dark cycle. Two analytical techniques such as proton magnetic nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FT-IR) were used to determine that the polyester produced was poly-3-hydroxybutirate-co-3-hydroxyvalerate (PHBV). This study showed that the excess of lactate and the limitation of N-P nutrients under a light-dark cycle enhanced PHBV synthesis and achieved a PHBV concentration of 330 mg/L in the R. sulfidophilum culture. During the 30 days of bacterial cultivation, the percentage of polymer in the six harvested dry biomasses gradually increased from 13.7% to 23.4%. In addition, the study showed that PHBV synthesis stopped during the 8-h dark phase and restarted in the light. The light-dark cycle study also showed that R. sulfidophilum DSM-1374 can be grown outdoors because the cells are exposed to the natural light-dark cycle.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy
| | - Sara Filippi
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|
9
|
Sirohi R, Kumar Pandey A, Ranganathan P, Singh S, Udayan A, Kumar Awasthi M, Hoang AT, Chilakamarry CR, Kim SH, Sim SJ. Design and applications of photobioreactors- a review. BIORESOURCE TECHNOLOGY 2022; 349:126858. [PMID: 35183729 DOI: 10.1016/j.biortech.2022.126858] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
There has been increasing attention in recent years on the use of photobioreactors for various biotechnological applications, especially for the cultivation of microalgae. Photobioreactors-based production of photosynthetic microorganisms furnish several advantages as minimising toxicity and providing improved conditions. However, the designing and scaling-up of photobioreactors (PBRs) remain a challenge. Due to huge capital investment and operating cost, there is a deficiency of suitable PBRs for development of photosynthetic microorganisms on large-scale. It is, therefore, highly desirable to understand the current state-of-the-art PBRs, their advantages and limitations so as to classify different PBRs as per their most suited applications. This review provides a holistic overview of the discreet features of diverse PBR designs and their purpose in microalgae growth and biohydrogen production and also summarizes the recent development in use of hybrid PBRs to increase their working efficiency and overall economics of their operation for the production of value-added products.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Ashutosh Kumar Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India; Department of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | | | - Shikhangi Singh
- Department of Postharvest Processing and Food Engineering, GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100,PR China
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Vietnam
| | | | - Sang Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea.
| |
Collapse
|
10
|
Filippi S, Cinelli P, Mezzetta A, Carlozzi P, Seggiani M. Extraction of Polyhydroxyalkanoates from Purple Non-Sulfur Bacteria by Non-Chlorinated Solvents. Polymers (Basel) 2021; 13:polym13234163. [PMID: 34883666 PMCID: PMC8659763 DOI: 10.3390/polym13234163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, non-chlorinated solvents such as cyclohexanone (CYC) and three ionic liquids, (ILs) (1-ethyl-3-methylimidazolium dimethylphosphate, [EMIM][DMP], 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][DEP] and 1-ethyl-3-methylimidazolium methylphosphite, [EMIM][MP]) were tested to extract polyhydroxyalkanoates (PHAs) from the purple non-sulfur photosynthetic bacterium (PNSB) Rhodovulumsulfidophilum DSM-1374. The photosynthetic bacterium was cultured in a new generation photobioreactor with 4 L of working volume using a lactate-rich medium. The extracted PHAs were characterized using a thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, proton nuclear magnetic resonance and gel permeation chromatography. The most promising results were obtained with CYC at 125 °C with an extraction time of above 10 min, obtaining extraction yields higher than 95% and a highly pure poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) with around 2.7 mol% of hydroxylvalerate (HV). A similar yield and purity were obtained with chloroform (CHL) at 10 °C for 24 h, which was used as the referent solvent Although the three investigated ILs at 60 °C for 4 and 24 h with biomass/IL up to 1/30 (w/w) obtained PHAs strongly contaminated by cellular membrane residues, they were not completely solubilized by the investigated ILs.
Collapse
Affiliation(s)
- Sara Filippi
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy; (P.C.); (M.S.)
- Correspondence:
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy; (P.C.); (M.S.)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy;
| | - Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy; (P.C.); (M.S.)
| |
Collapse
|
11
|
Poly-β-Hydroxybutyrate Production by Rhodopseudomonas sp. Grown in Semi-Continuous Mode in a 4 L Photobioreactor. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of polyhydroxybutyrate (PHB) by photosynthetic non-sulfur bacteria is a potential approach for producing biodegradable plastics. In this work, acetate was used as a single carbon source to study the effect on PHB formation in Rhodopseudomonas sp. cultured in a cylindrical four-liter photobioreactor under semi-continuous mode. The cultivation process is divided into a symmetrical growth phase and a PHB accumulation phase separated temporally. The symmetrical growth phase (nutrient sufficient conditions) was followed by a sulfur-limited phase to promote PHB accumulation. The main novelty is the progressive lowering of the sulfur concentration into Rhodopseudomonas culture, which was obtained by two concomitant conditions: (1) sulfur consumption during the bacterial growth and (2) semi-continuous growth strategy. This caused a progressive lowering of the sulfur concentration into Rhodopseudomonas culturedue to the sulfur-free medium used to replace 2 L of culture (50% of the total) that was withdrawn from the photobioreactor at each dilution. The PHB content ranged from 9.26% to 15.24% of cell dry weight. At the steady state phase, the average cumulative PHB was >210 mg/L. Sulfur deficiency proved to be one of the most suitable conditions to obtain high cumulative PHB in Rhodopseudomonas culture.
Collapse
|
12
|
Faizan Muneer, Nadeem H, Arif A, Zaheer W. Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic Pollution. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Carlozzi P, Touloupakis E. Bioplastic production by feeding the marine Rhodovulum sulfidophilum DSM-1374 with four different carbon sources under batch, fed-batch and semi-continuous growth regimes. N Biotechnol 2020; 62:10-17. [PMID: 33333263 DOI: 10.1016/j.nbt.2020.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
In the present study, the ability of the marine bacterium Rhodovulum sulfidophilum DSM-1374 to convert, via photo-fermentative process, certain organic acids such as single carbon source (acetate, lactate, malate and succinate) into polyhydroxyalkanoate accumulations within bacterial cells is evaluated. The main goal of the investigation was poly-3-hydroxybutyrate (P3HB) synthesis by a photo-fermentative process. Of the four carbon sources, only succinate simultaneously produced P3HB and H2 (268 mg/L and 1085 mL/L respectively). Malate was the least productive source for P3HB; the other carbon sources (acetate and lactate) produced a significant amount of polymer (596 mg P3HB/L for acetate and 716 mg P3HB/L for lactate) when R. sulfidophilum was cultured in batch growth conditions. Cumulative P3HB increased significantly when the bacterium was grown under two steps: nutrient sufficient conditions (step 1) followed by macronutrient deficient conditions (step 2). The highest cumulative P3HB was observed at the end of step 2 (1000 mg/L) when R. sulfidophilum was fed with lactate under phosphorus starvation. When grown over 1200 h, under a semi-continuous regimen, the harvested dry-biomass reached a constant content of P3HB (39.1 ± 1.6 % of cell dry-weight), in the semi-steady state condition. Since lactate is an abundant byproduct of world industries, it can be used to mitigate the environmental impact in a modern circular bio-economy.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
14
|
Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate. Appl Biochem Biotechnol 2020; 193:307-318. [PMID: 32954484 DOI: 10.1007/s12010-020-03428-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
The polyhydroxyalkanoates (PHA) are family of biopolyesters synthesized by numerous bacteria which are attracting a great attention due to their thermoplastic properties. Polyhydroxybutyrate (PHB) is the most common type of PHA which presents thermoplastic and biodegradable properties. It is synthesized under stressful conditions by heterotrophic bacteria and many photosynthetic microorganisms such as purple non-sulfur bacteria and cyanobacteria. Biological hydrogen (H2) production is being evaluated for use as a fuel since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific content. In the present work, the purple non-sulfur photosynthetic bacterium Rhodopseudomonas sp. for the simultaneous H2 photo-evolution and poly-β-hydroxybutyrate (PHB) production has been investigated. Three different types of carbon sources were tested in the presence of glutamate as a nitrogen source in a batch cultivation system, under continuous irradiance. The results indicated the fact that the type of carbon source in the culture broth affects in various ways the metabolic activity of the bacterial biomass, as evidenced by the production of PHB and/or H2 and biomass. The best carbon source for PHB accumulation and H2 production by Rhodopseudomonas sp. turned out to be the acetate, having the highest H2 production (2286 mL/L) and PHB accumulation (68.99 mg/L, 18.28% of cell dry weight).
Collapse
|
15
|
Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: A review. J Biotechnol 2020; 317:39-47. [DOI: 10.1016/j.jbiotec.2020.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
|
16
|
Cheng HH, Narindri B, Chu H, Whang LM. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. BIORESOURCE TECHNOLOGY 2020; 303:122861. [PMID: 32046939 DOI: 10.1016/j.biortech.2020.122861] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Swine wastewater is categorized as one of the agricultural wastewater with high contents of organics and nutrients including nitrogen and phosphorus, which may lead to eutrophication in the environment. Insufficient technologies to remove those nutrients could lead to environmental problems after discharge. Several physical and chemical methods have been applied to treat the swine wastewater, but biological treatments are considered as the promising methods due to the cost effectiveness and performance efficiency along with the production of valuable products and bioenergies. This review summarizes the characteristics of swine wastewaters in the beginning, and briefly describes the current issues on the treatments of swine wastewaters. Several biological techniques, such as anaerobic digestion, A/O process, microbial fuel cells, and microalgae cultivations, and their future aspects will be addressed. Finally, the potentials to reutilize biomass produced during the treatment processes are also presented under the consideration of circular economy.
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Birgitta Narindri
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
17
|
Carlozzi P, Di Lorenzo T, Ghanotakis DF, Touloupakis E. Effects of pH, temperature and salinity on P3HB synthesis culturing the marine Rhodovulum sulfidophilum DSM-1374. Appl Microbiol Biotechnol 2020; 104:2007-2015. [PMID: 31927760 DOI: 10.1007/s00253-020-10352-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Rhodovulum sulfidophilum DSM-1374 is a potential producer of polyester when growing in phototrophic conditions. The present study investigated on a polyester product (P3HB) by culturing Rhodovulum sulfidophilum DSM-1374 in two different photobioreactors (PBR-1 and PBR-2) both with 4-L working volumes. PBR-1 is equipped with an internal rotor having 4 paddles to mix the bacterial culture while PBR-2 has an internal coil-shaped rotor. After selecting PBR-1, which best performed in the preliminary experiment, the effect of different stressing growth conditions as pH (7.0, 8.0, and 9.0), temperature (25, 30, and 35 °C), and medium salinity (1.5, 2.5, 3.5, and 4.5%) were tested. When the pH of the culture was set to 8.0, the capability of the bacterium to synthetize the polyester increased significantly reaching a concentration of 412 mg (P3HB)/L; the increase of the pH at 9.0 caused a reduction of the P3HB concentration in the culture. The medium salinity of 4.5% was the best stress-growth condition to reach the highest concentration of polyester in the culture (820 ± 50 mg (P3HB)/L) with a P3HB mass fraction in the dry biomass of 33 ± 1.5%. Stresses caused by culture temperature are another potential parameter that could increase the synthesis of P3HB.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | | | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
18
|
Carlozzi P, Touloupakis E, Di Lorenzo T, Giovannelli A, Seggiani M, Cinelli P, Lazzeri A. Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: New routes towards a circular bioeconomy. J Biotechnol 2019; 303:37-45. [PMID: 31351109 DOI: 10.1016/j.jbiotec.2019.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022]
Abstract
Consecutive dark-fermentation and photo-fermentation stages were investigated for a profitable circular bio-economy. H2 photo-production versus poly(3-hydroxybutyrate) (P3HB) accumulation is a modern biotechnological approach to use agro-food industrial byproducts as no-cost rich-nutrient medium in eco-sustainable biological processes. Whey and molasses are very important byproducts rich in nutrients that lactic acid bacteria can convert, by dark-fermentation, in dark fermented effluents of whey (DFEW) and molasses (DFEM). These effluents are proper media for culturing purple non-sulfur bacteria, which are profitable producers of P3HB and H2. The results of the present study show that Lactobacillus sp. and Rhodopseudomonas sp. S16-VOGS3 are two representative genera for mitigation of environmental impact. The highest productivity of P3HB (4.445 mg/(L·h)) was achieved culturing Rhodopseudomonas sp. S16-VOGS3, when feeding the bacterium with 20% of DFEM; the highest H2 production rate of 4.46 mL/(L·h) was achieved when feeding the bacterium with 30% of DFEM.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|