1
|
Zhou D, Wang W, Ma W, Xian Y, Zhang Z, Pan Z, Li Y, Huang L, Liu L, Zheng Z, Liu H, Wu D. Cartilage-Adaptive Hydrogels via the Synergy Strategy of Protein Templating and Mechanical Training. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414081. [PMID: 40143783 DOI: 10.1002/adma.202414081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Cartilage, as a load-bearing tissue with high-water content, exhibits excellent elasticity and high strength. However, it is still a grand challenge to develop cartilage-adaptive biomaterials for replacement or regeneration of damaged cartilage tissue. Herein, protein templating and mechanical training is integrated to fabricate crystal-mediated oriented chitosan nanofibrillar hydrogels (O-CN gels) with similar mechanical properties and water content of cartilage. The O-CN gels with an ≈74 wt% water content exhibit high tensile strength (≈15.4 MPa) and Young's modulus (≈24.1 MPa), as well as excellent biocompatibility, antiswelling properties, and antibacterial capabilities. When implanted in the box defect of rat's tails, the O-CN gels seal the cartilage (annulus fibrosus) defect, maintain the intervertebral disc height and finally prevent the nucleus herniation. This synergy strategy of protein templating and mechanical training opens up a new possibility to design highly mechanical hydrogels, especially for the replacement and regeneration of load-bearing tissues.
Collapse
Affiliation(s)
- Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenzheng Ma
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zijie Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zheng Pan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Zhou Y, Yang L, Xu J, Wei Z, Ma X, Yuan B. A bio-based alginate hydrogel with considerable thermoelectric performance, mechanical strength and flame retardancy for ultra-fast and sustained early fire-alarm system. Int J Biol Macromol 2025; 300:140324. [PMID: 39864694 DOI: 10.1016/j.ijbiomac.2025.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-LX), as a novel fire sensor. The synthesis was conducted using a one-pot polymerization method combined with solvent exchange techniques. The CPG-L2 hydrogel exhibits impressive mechanical properties, demonstrating a maximum tensile strength of 1.24 MPa. Moreover, its Seebeck coefficient of 9.31 mV/K indicates a considerable thermoelectric performance. The fire-warning system based on CPG-L2 is capable of triggering an alarm circuit just within 0.07 s under a heating plate condition of 70 °C, maintaining a warning duration of up to 855 s. Furthermore, it also has considerable flame-retardant, self-healing and water-retention properties. This research indicates the exceptional thermoelectric properties and temperature sensitivity of the bio-based ionic hydrogels, marking a significant advancement in the application of bio-based materials for early fire-warning systems.
Collapse
Affiliation(s)
- Yichen Zhou
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Lujia Yang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Jiaojiao Xu
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Zaihong Wei
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xinyi Ma
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Bihe Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
3
|
Ren H, Guo A, Luo C. Sandwich hydrogel to realize cartilage-mimetic structures and performances from polyvinyl alcohol, chitosan and sodium hyaluronate. Carbohydr Polym 2024; 328:121738. [PMID: 38220330 DOI: 10.1016/j.carbpol.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Developing artificial substitutes that mimic the structures and performances of natural cartilage is of great importance. However, it is challenging to integrate the high strength, excellent biocompatibility, low coefficient of friction, long-term wear resistance, outstanding swelling resistance, and osseointegration potential into one material. Herein, a sandwich hydrogel with cartilage-mimetic structures and performances was prepared to achieve this goal. The precursor hydrogel was obtained by freezing-thawing the mixture of poly vinyl alcohol, chitosan and deionized water three cycles, accompanied by soaking in sodium hyaluronate solution. The top of the precursor hydrogel was hydrophobically modified with lauroyl chloride and then loaded with lecithin, while the bottom was mineralized with hydroxyapatite. Due to the multiple linkages (crystalline domains, hydrogen bonds, and ionic interactions), the compressive stress was 71 MPa. Owing to the synergy of the hydrophobic modification and lecithin, the coefficient of friction was 0.01. Additionally, no wear trace was observed after 50,000 wear cycles. Remarkably, hydroxyapatite enabled the hydrogel osseointegration potential. The swelling ratio of the hydrogel was 0.06 g/g after soaking in simulated synovial fluid for 7 days. Since raw materials were non-toxic, the cell viability was 100 %. All of the above merits make it an ideal material for cartilage replacement.
Collapse
Affiliation(s)
- Hanyu Ren
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Andi Guo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Chunhui Luo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
4
|
Wang J, Sawut A, Simayi R, Song H, Jiao X. Preparation of high strength, self-healing conductive hydrogel based on polysaccharide and its application in sensor. J Mech Behav Biomed Mater 2024; 150:106246. [PMID: 38006795 DOI: 10.1016/j.jmbbm.2023.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
The development of cost-effective, eco-friendly conductive hydrogels with excellent mechanical properties, self-healing capabilities, and non-toxicity holds immense significance in the realm of biosensors. The biosensors demonstrate promising applications in the fields of biomedical engineering and human motion detection. A unique double-network hydrogel was prepared through physical-chemical crosslinking using chitosan (CS), polyacrylic acid (AA), and sodium alginate (SA) as raw materials. The prepared double-network hydrogels exhibited exceptional mechanical properties, as well as self-healing and conductive capabilities. Polyacrylic acid as the first layer network, while chitosan and sodium alginate were incorporated to establish the second layer network through electrostatic interactions, thereby imparting self-healing and self-recovery properties. The hydrogel was subsequently immersed in the salt solution to induce network winding. The mechanical robustness of the hydrogel was significantly enhanced through synergistic coordination of covalent and non-covalent interactions. When the concentration of sodium alginate was 20 g/L, the double-network hydrogel exhibits enhanced mechanical properties, with a tensile fracture stress of up to 1.31 MPa and a strength of 4.17 MPa under 80% compressive deformation. Furthermore, the recovery rate of this double-network hydrogel reached an impressive 89.63% within a span of 30 min. After 24 h without any external forces, the self-healing rate reached 26.11%, demonstrating remarkable capabilities in terms of self-recovery and self-healing. Furthermore, this hydrogel exhibited consistent conductivity properties and was capable of detecting human finger movements. Hence, this study presents a novel approach for designing and synthesizing environmentally friendly conductive hydrogels for biosensors.
Collapse
Affiliation(s)
- Junxiao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Amatjan Sawut
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Rena Simayi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Huijun Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Xueying Jiao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| |
Collapse
|
5
|
Xie J, Qin Y, Zeng Y, Yuan R, Lu X, Yang X, Wei E, Cui C. Phytic acid/tannic acid reinforced hydrogels with ultra-high strength for human motion monitoring and arrays. SOFT MATTER 2024; 20:640-650. [PMID: 38164001 DOI: 10.1039/d3sm01295f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Conductive hydrogels have been widely researched for their potential applications in soft electronic devices. Creating environmentally friendly and multifunctional high-strength hydrogels for high-performance devices remains a significant challenge. This study employs the biodegradable material polyvinyl alcohol (PVA) as the primary component, with phytic acid (PA) and tannic acid (TA) as reinforcing phases, to create a multifunctional, high-strength "green" hydrogel. Through the multiple complexations of two bio-enhancing phases with the PVA main chain, this hydrogel attains ultra-high tensile strength (9.341 MPa), substantial toughness (4.262 MJ m-3), and extensive fracture strain (> 1000%), making it a representative with both mechanical performance and antibacterial capabilities. Additionally, it exhibits a low strain sensing limit (0.5%) and excellent durability (500 cycles under 50% strain). This work introduces a novel strategy of combining biodegradable materials with biomass to fabricate multifunctional hydrogels suitable for human motion monitoring and 2D pressure distribution.
Collapse
Affiliation(s)
- Jiegao Xie
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Yafei Qin
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Yu Zeng
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Ruibo Yuan
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Xinyu Lu
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Xiaojing Yang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Erjiong Wei
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| | - Chenkai Cui
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and technology, Jing-ming, 727, Yunnan Province, People's Republic of China.
| |
Collapse
|
6
|
Yu G, Niu C, Liu J, Wu J, Jin Z, Wang Y, Zhao K. Preparation and Properties of Self-Cross-Linking Hydrogels Based on Chitosan Derivatives and Oxidized Sodium Alginate. ACS OMEGA 2023; 8:19752-19766. [PMID: 37305255 PMCID: PMC10249032 DOI: 10.1021/acsomega.3c01401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
A self-cross-linking and biocompatible hydrogel has wide application potential in the field of tissue engineering. In this work, an easily available, biodegradable, and resilient hydrogel was prepared using a self-cross-linking method. This hydrogel was composed of N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and oxidized sodium alginate (OSA). A stable and reversible cross-linking network was formed by the Schiff base self-cross-linked and hydrogen bonding. The addition of a shielding agent (NaCl) may weaken the intense electrostatic effect between HACC and OSA and solve the problem of flocculation caused by the rapid formation of ionic bonds, which provided an extended time for the Schiff base self-cross-linked reaction for forming a homogeneous hydrogel. Interestingly, the shortest time for the formation of the HACC/OSA hydrogel was within 74 s and the hydrogel had a uniform porous structure and enhanced mechanical properties. The HACC/OSA hydrogel withstood large compression deformation due to improved elasticity. What's more, this hydrogel possessed favorable swelling property, biodegradation, and water retention. The HACC/OSA hydrogels have great antibacterial properties against Staphylococcus aureus and Escherichia coli and demonstrated good cytocompatibility as well. The HACC/OSA hydrogels have a good sustained release effect on rhodamine (model drug). Thus, the obtained self-cross-linked HACC/OSA hydrogels in this study have potential applications in the field of biomedical carriers.
Collapse
Affiliation(s)
- Guiting Yu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Chunqing Niu
- Department
of Mechanical Engineering and Robotics, Faculty of Textile Science
and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Jiali Liu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Jue Wu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Zheng Jin
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yiyu Wang
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Kai Zhao
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
7
|
Carpa R, Farkas A, Dobrota C, Butiuc-Keul A. Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels 2023; 9:gels9040278. [PMID: 37102890 PMCID: PMC10137542 DOI: 10.3390/gels9040278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, the antimicrobial activity of chitosan-based hydrogels has been at the forefront of research in wound healing and the prevention of medical device contamination. Anti-infective therapy is a serious challenge given the increasing prevalence of bacterial resistance to antibiotics as well as their ability to form biofilms. Unfortunately, hydrogel resistance and biocompatibility do not always meet the demands of biomedical applications. As a result, the development of double-network hydrogels could be a solution to these issues. This review discusses the most recent techniques for creating double-network chitosan-based hydrogels with improved structural and functional properties. The applications of these hydrogels are also discussed in terms of tissue recovery after injuries, wound infection prevention, and biofouling of medical devices and surfaces for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina Dobrota
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Tracey CT, Kryuchkova AV, Bhatt TK, Krivoshapkin PV, Krivoshapkina EF. Silk for post-harvest horticultural produce safety and quality control. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Hu Z, Li J, Wei X, Wang C, Cao Y, Gao Z, Han J, Li Y. Enhancing Strain-Sensing Properties of the Conductive Hydrogel by Introducing PVDF-TrFE. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45853-45868. [PMID: 36170495 DOI: 10.1021/acsami.2c13074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive hydrogels have attracted attention because of their wide application in wearable devices. However, it is still a challenge to achieve conductive hydrogels with high sensitivity and wide frequency band response for smart wearable strain sensors. Here, we report a composite hydrogel with piezoresistive and piezoelectric sensing for flexible strain sensors. The composite hydrogel consists of cross-linked chitosan quaternary ammonium salt (CHACC) as the hydrogel matrix, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) as the conductive filler, and poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) as the piezoelectric filler. A one-pot thermoforming and solution exchange method was used to synthesize the CHACC/PEDOT: PSS/PVDF-TrFE hydrogel. The hydrogel-based strain sensor exhibits very high sensitivity (GF: 19.3), fast response (response time: 63.2 ms), and wide frequency range (response frequency: 5-25 Hz), while maintaining excellent mechanical properties (elongation at break up to 293%). It can be concluded that enhanced strain-sensing properties of the hydrogel are contributed to both greater change in the relative resistance under stress and wider response to dynamic and static stimulus by adding PVDF-TrFE. This has a broad application in monitoring human motion, detecting subtle movements, and identifying object contours and a hydrogel-based array sensor. This work provides an insight into the design of composite hydrogels based on piezoelectric and piezoresistive sensing with applications for wearable sensors.
Collapse
Affiliation(s)
- Zhirui Hu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xiaotong Wei
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Chen Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Zhiqiang Gao
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Jing Han
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| |
Collapse
|
10
|
Yao Q, Zheng W, Tang X, Chen M, Liao M, Chen G, Huang W, Xia Y, Wei Y, Hu Y, Zhou W. Tannic acid/polyvinyl alcohol/2-hydroxypropyl trimethyl ammonium chloride chitosan double-network hydrogel with adhesive, antibacterial and biocompatible properties. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Luo C, Guo A, Zhao Y, Sun X. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr Polym 2022; 286:119268. [DOI: 10.1016/j.carbpol.2022.119268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022]
|
12
|
Yang Y, Wu D. Energy‐Dissipative
and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou Henan 450001 China
| | - Decheng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
13
|
Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model. Cell Tissue Res 2021; 385:65-85. [PMID: 33760948 DOI: 10.1007/s00441-021-03430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
A thermosensitive quaternary ammonium chloride chitosan/β-glycerophosphate (HACC/β-GP) hydrogel scaffold combined with bone marrow mesenchymal stem cells (BMSCs) transfected with an adenovirus containing the glial cell-derived neurotrophic factor (GDNF) gene (Ad-rGDNF) was applied to spinal cord injury (SCI) repair. The BMSCs from rats were transfected with Ad-rGDNF, resulting in the expression of GDNF mRNA in the BMSCs increasing and their spontaneous differentiation into neural-like cells expressing neural markers such as NF-200 and GFAP. After incubation with HACC/β-GP hydrogel scaffolds for 2 weeks, neuronal differentiation of the BMSCs was confirmed using immunofluorescence (IF), and the expression of GDNF by the BMSCs was detected by Western blot at different time points. MTT assay and scanning electron microscopy confirmed that the HACC scaffold provides a non-cytotoxic microenvironment that supports cell adhesion and growth. Rats with SCI were treated with BMSCs, BMSCs carried by the HACC/β-GP hydrogel (HACC/BMSCs), Ad-rGDNF-BMSCs, or Ad-rGDNF-BMSCs carried by the hydrogel (HACC/GDNF-BMSCs). Animals were sacrificed at 2, 4, and 6 weeks of treatment. IF staining and Western blot were performed to detect the expression of NeuN, NF-200, GFAP, CS56, and Bax in the lesion sites of the injured spinal cord. Upon treatment with HACC/BMSCs, NF200 and GFAP were upregulated but CS56 and Bax were downregulated in the SCI lesion site. Furthermore, transplantation of HACC/GDNF-BMSCs into an SCI rat model significantly improved BBB scores and regeneration of the spinal cord. Thus, HACC/β-GP hydrogel scaffolds show promise for functional recovery in spinal cord injury patients.
Collapse
|
14
|
Synthesis of photodegradable cassava starch-based double network hydrogel with high mechanical stability for effective removal of methylene blue. Int J Biol Macromol 2020; 168:875-886. [PMID: 33249146 DOI: 10.1016/j.ijbiomac.2020.11.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Synthetic hydrogel has been widely used in several applications, but poor mechanical stability and biodegradability limit their applications and raise environmental concerns. Here, a biodegradable hydrogel was developed via simple free-radical polymerization of poly(acrylic acid) (PAA) in the presence of cassava starch (CS) and poly(vinyl alcohol). The hydrogel showed exceptional mechanical and physical properties. The structural morphology changed at higher CS content from a dense fiber-like porous network to larger pores with thicker cell walls. Due to the formation of a double network structure via physical entanglement, the compressive modulus significantly increased from 27 kPa (CS 0 wt%) to 127 kPa (CS 50 wt%). Reducing synthetic content (PAA) to 25 wt% and increasing CS content to 50 wt% did not reduce the removal efficiency of the hydrogel toward methylene blue (MB). The maximum adsorption capacity of the CS50 hydrogel was 417.0 mg/g. Data fitting to theoretical models indicated monolayer adsorption of MB on a homogeneous surface via chemisorption. Removal efficiency was higher than 70% at the 5th cycle of adsorption-desorption. The biodegradability and photodegradability of the hydrogel were improved by grafting with CS. The developed hydrogel represents an alternative biodegradable adsorbent for a sustainable system of wastewater treatment.
Collapse
|
15
|
Gan S, Lin W, Zou Y, Xu B, Zhang X, Zhao J, Rong J. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair. Carbohydr Polym 2020; 229:115523. [DOI: 10.1016/j.carbpol.2019.115523] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
|
16
|
Zhou X, Li C, Zhu L, Zhou X. Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation. Chem Commun (Camb) 2020; 56:13731-13747. [DOI: 10.1039/d0cc05130f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The soaking strategy could not only strengthen hydrogels with superior mechanical properties but also provide the hydrogels with environmentally adapting properties.
Collapse
Affiliation(s)
- Xiaohu Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Chun Li
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Lifei Zhu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|
17
|
Tang L, Zhang D, Gong L, Zhang Y, Xie S, Ren B, Liu Y, Yang F, Zhou G, Chang Y, Tang J, Zheng J. Double-Network Physical Cross-Linking Strategy To Promote Bulk Mechanical and Surface Adhesive Properties of Hydrogels. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01686] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Li Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Shaowen Xie
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fengyu Yang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | - Yung Chang
- Department of Chemical Engineering R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | | | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|