1
|
Mohal MM, Sraboni FS, Islam S, Zaman S, Uddin MS, Saleh MA. Functional characterization and biotechnological applications of exopolysaccharides produced by newly isolated Enterococcus hirae MLG3-25-1. Int Microbiol 2025; 28:851-862. [PMID: 39222179 DOI: 10.1007/s10123-024-00587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the potential applications of Enterococcus hirae MLG3-25-1 exopolysaccharides (EPS), with a focus on their isolation, identification, production, and functional characteristics. After the bacterial strain was cultured in De Man-Rogosa-Sharpe (MRS) medium containing 1% glucose at 37 °C, the EPS was refined, and the highest yield of 0.85 mg/mL was achieved at the 24-h incubation period. Enterococcus hirae MLG3-25-1 was found to be able to produce EPS. The study explored the microstructure of the EPS, which resembles polysaccharide sheets with smooth surfaces, through scanning electron microscope (SEM) analysis. Through Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis, the chemical composition, aligning with glycosidic bond characteristics, has been deciphered. Furthermore, the antimicrobial and antibiofilm activities against pathogenic bacteria, particularly Bacillus sp., demonstrated potential applications in combating antibiotic resistance. The EPS exhibited notable antioxidant activity (89.36% DPPH scavenging), along with high water-holding capacity (575%), emulsifying activity, and flocculation activity, suggesting its potential as a stabilizing agent in the food industry. Overall, this study provides a comprehensive characterization of Enterococcus hirae MLG3-25-1 EPS, emphasizing its diverse applications in antimicrobial, antioxidant, and food-related industries. These findings lay the groundwork for further exploration and utilization of this EPS in various sectors.
Collapse
Affiliation(s)
- Mst Mamotaz Mohal
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farzana Sayed Sraboni
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Lee SY, Cho KS. Enhancement of the phytoremediation performance in heavy metal-contaminated soil using a multifunctional EPS-producing bacterium Kosakonia sp. W18. ENVIRONMENTAL RESEARCH 2025; 274:121355. [PMID: 40064344 DOI: 10.1016/j.envres.2025.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
The use of exopolysaccharide (EPS)-producing bacteria for the phytoremediation of heavy metal-contaminated soil is emerging as a promising approach. This study explores the potential of Kosakonia sp. W18, an EPS-producing bacterium isolated from Suaeda japonica habitat, in the phytoremediation of heavy metal-contaminated soils. Strain W18 exhibited the highest tolerance to Pb (EC50 of 231.1 mg L-1), Cu, and Cr (EC50 of 24.9 and 26.7 mg L-1), and displayed plant growth-promoting traits. The EPS extracted from W18 (107.3 mg L-1) showed 58% emulsification against chloroform, remarkable 2,2-Diphenyl-1-picrylhydrazyl (38%) and hydroxyl radical (83%) scavenging activities. Extracted EPS also exhibited a Pb-removal efficiency exceeding 79%, with an adsorption capacity for Pb of 499.2 ± 7.7 mg·g-EPS-1. In the contaminated soils with Pb (500 mg kg-1) and Cr (100 mg kg-1), W18 inoculation significantly enhanced pakchoi shoot length and biomass by 1.1-1.3 times after 20 days. The presence of pakchoi decreased bioavailable Pb and Cr concentrations in soil by 46%, which elevated to 76% for Pb and 72% for Cr post-inoculation with W18. Furthermore, W18 enhanced Pb uptake in pakchoi roots, increasing the bioconcentration factor by over 1.5 times and large macroaggregates (>2 mm) formation exceeded 75%. Overall, this study highlights Kosakonia sp. W18's multifunctional abilities to promote pakchoi growth and improve its effectiveness in phytoremediation of heavy metals in contaminated soils.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Eleroui M, Feki A, Kraiem M, Hamzaoui A, Boujhoud Z, Ibtissem Ben Amara, Kallel H. Physicochemical, structural, and biological properties of novel water-soluble polysaccharide derived from the Tunisian Hammada scoparia plant and its application on beef meat preservation. Heliyon 2024; 10:e39562. [PMID: 39506945 PMCID: PMC11538757 DOI: 10.1016/j.heliyon.2024.e39562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This work aims to characterize a novel water-soluble polysaccharide from Hammada scoparia leaves named PSP. The Infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra confirmed the presence of different polysaccharide functional bands. The High-Performance Liquid Chromatography (HPLC) analysis identified a heteropolysaccharide composed of two monosaccharides. A semi-crystalline structure of PSP was proved using the X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis. The evaluation of the antioxidant activity revealed an interesting potential to prevent oxidative stress. Additionally, PSP showed interesting functional propreties such as good oil and water retention abilities, higher foaming stability, and higher emulsifying capacity and stability. However, the effect of PSP on the oxidation of lipids in the ground beef meat was established during nine days at 4 °C. Obtained data revealed a significant decrease in malondialdehyde levels, inhibition of metmyoglobin (MetMb) accumulation, and significant inhibition of microbial growth compared with the control sample during storage. Moreover, incorporating PSP in minced meat proved color pH and moisture stability. Overall, the findings in the present study confirmed that PSP could be considered a natural bioactive polymer for food applications.
Collapse
Affiliation(s)
- Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Marwa Kraiem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Asma Hamzaoui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Settat, Morocco
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
- Cayenne General Hospital, Emergency Department, Cayenne, 97300, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de, Guyane, French Guiana
| | - Hatem Kallel
- Cayenne General Hospital, Emergency Department, Cayenne, 97300, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de, Guyane, French Guiana
- Intensive Care Unit, Cayenne General Hospital, French Guiana
| |
Collapse
|
4
|
de Melo Teixeira L, da Silva Santos É, Dos Santos RS, Ramos AVG, Baldoqui DC, Bruschi ML, Gonçalves JE, Gonçalves RAC, de Oliveira AJB. Production of exopolysaccharide from Klebsiella oxytoca: Rheological, emulsifying, biotechnological properties, and bioremediation applications. Int J Biol Macromol 2024; 278:134400. [PMID: 39122076 DOI: 10.1016/j.ijbiomac.2024.134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Bacteria can synthesize a broad spectrum of multifunctional polysaccharides including extracellular polysaccharides (EPS). Bacterial EPS can be utilized in the food, pharmaceutical, and biomedical areas owing to their physical and rheological properties in addition to generally presenting low toxicity. From an ecological viewpoint, EPS are biodegradable and environment compatible, offering several advantages over synthetic compounds. This study investigated the EPS produced by Klebsiella oxytoca (KO-EPS) by chemically characterizing and evaluating its properties. The monosaccharide components of the KO-EPS were determined by HPLC coupled with a refractive index detector and GC-MS. The KO-EPS was then analyzed by methylation analysis, FT-IR and NMR spectroscopy to give a potential primary structure. KO-EPS demonstrated the ability to stabilize hydrophilic emulsions with various hydrophobic compounds, including hydrocarbons and vegetable and mineral oils. In terms of iron chelation capacity, the KO-EPS could sequester 41.9 % and 34.1 % of the most common iron states, Fe2+ and Fe3+, respectively. Moreover, KO-EPS exhibited an improvement in the viscosity of aqueous dispersion, being proportional to the increase in its concentration and presenting a non-Newtonian pseudoplastic flow behavior. KO-EPS also did not present a cytotoxic effect indicating that the KO-EPS could have potential applications as a natural thickener, bioemulsifier, and bioremediation agent.
Collapse
Affiliation(s)
- Letícia de Melo Teixeira
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Éverton da Silva Santos
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Rafaela Said Dos Santos
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | | | - Débora Cristina Baldoqui
- Department of Chemistry, State University of Maringa, Av. Colombo 5790, Maringa 87.020-900, Brazil
| | - Marcos Luciano Bruschi
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - José Eduardo Gonçalves
- Graduate Program in Clean Technologies and Cesumar Institute of Science, Technology and Innovation (ICETI), Cesumar University (Unicesumar), Av. Guedner 1610, Maringá 87050-390, Brazil
| | - Regina Aparecida Correia Gonçalves
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Arildo José Braz de Oliveira
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil.
| |
Collapse
|
5
|
Castor RB, do Nascimento MH, Gorlach-Lira K. Exploring fungal bioemulsifiers: insights into chemical composition, microbial sources, and cross-field applications. World J Microbiol Biotechnol 2024; 40:127. [PMID: 38451356 DOI: 10.1007/s11274-024-03883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/01/2024] [Indexed: 03/08/2024]
Abstract
The demand for emulsion-based products is crucial for economic development and societal well-being, spanning diverse industries such as food, cosmetics, pharmaceuticals, and oil extraction. Formulating these products relies on emulsifiers, a distinct class of surfactants. However, many conventional emulsifiers are derived from petrochemicals or synthetic sources, posing potential environmental and human health risks. In this context, fungal bioemulsifiers emerge as a compelling and sustainable alternative, demonstrating superior performance, enhanced biodegradability, and safety for human consumption. From this perspective, the present work provides the first comprehensive review of fungal bioemulsifiers, categorizing them based on their chemical nature and microbial origin. This includes polysaccharides, proteins, glycoproteins, polymeric glycolipids, and carbohydrate-lipid-protein complexes. Examples of particular interest are scleroglucan, a polysaccharide produced by Sclerotium rolfsii, and mannoproteins present in the cell walls of various yeasts, including Saccharomyces cerevisiae. Furthermore, this study examines the feasibility of incorporating fungal bioemulsifiers in the food and oil industries and their potential role in bioremediation events for oil-polluted marine environments. Finally, this exploration encourages further research on fungal bioemulsifier bioprospecting, with far-reaching implications for advancing sustainable and eco-friendly practices across various industrial sectors.
Collapse
Affiliation(s)
- Rádamis Barbosa Castor
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Maria Helena do Nascimento
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Krystyna Gorlach-Lira
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
6
|
Ran M, Wu T, Jiao Y, Wu J, Li J. Selenium bio-nanocomposite based on extracellular polymeric substances (EPS): Synthesis, characterization and application in alleviating cadmium toxicity in rice (Oryza sativa L.). Int J Biol Macromol 2024; 258:129089. [PMID: 38161017 DOI: 10.1016/j.ijbiomac.2023.129089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Selenium nanoparticles (SeNPs) have gained significant attention owing to their favorable bioavailability and low toxicity, making them widely applications in the fields of medicine, food and agriculture. In this study, bacterial extracellular polymeric substances (EPS) were used as a novel stabilizer and capping agent to prepare dispersed SeNPs. Results show that EPS-SeNPs presented negative potential (-38 mV), spherical morphologies with average particle size about 100-200 nm and kept stable at room temperature for a long time. X-ray diffraction (XRD) analysis demonstrated that the synthesized nanoparticles were pure amorphous nanoparticles, and X-ray photoelectron spectroscopy (XPS) spectrum showed a spike at 55.6 eV, indicating the presence of zero-valent nano‑selenium. Fourier-transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy analysis confirmed proteins and polysaccharides in EPS played a crucial role in the synthesis of EPS-SeNPs. Compared to EPS or sodium selenite (Na2SeO3), EPS-SeNPs showed a relatively moderate result in terms of scavenging free radicals in vitro. In contrast, EPS-SeNPs demonstrated lower toxicity to rice seeds than Na2SeO3. Notably, the exogenous application of EPS-SeNPs effectively alleviated the growth inhibition and oxidative damaged caused by cadmium (Cd), and significantly reduced Cd accumulation in rice plants.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Tingting Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
7
|
Liu X, Yao T, Chai J, Han J. Adsorption of Sodium Ions by Exopolysaccharides from Pseudomonas simiae MHR6 and Its Improvement of Na +/K + Homeostasis in Maize under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19949-19957. [PMID: 38018896 DOI: 10.1021/acs.jafc.3c05002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Exopolysaccharides (EPS) are macromolecular substances with environmentally beneficial properties. At present, some reports have focused on the effects of EPS on plants salt stress; however, few studies have carried out a deeper characterization of the EPS components involved in Na+ binding. We investigated the mechanism of Na+ adsorption by Pseudomonas simiae MHR6 EPS and the regulation of ion homeostasis in maize under salt stress. The results showed that NaCl at 6% significantly inhibited MHR6 growth but enhanced EPS secretion. The chemical composition of the EPS varied in response to an increased NaCl concentration, and the proportion of polysaccharides was consistently higher than that of proteins. The highest Na+ adsorption was observed for 6% NaCl. The FTIR, SEM, and EDX results further indicated that EPS effectively biosorbed Na+. Furthermore, adding EPS improved Na+/K+ homeostasis in maize under salt stress. These results suggest that MHR6 EPS has potential for future development and utilization as a plant growth biostimulant in saline-alkali land.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Tuo Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Jiali Chai
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Jiangru Han
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| |
Collapse
|
8
|
Aragón-León A, Moreno-Vilet L, González-Ávila M, Mondragón-Cortez PM, Sassaki GL, Martínez-Pérez RB, Camacho-Ruíz RM. Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties. Carbohydr Polym 2023; 321:121333. [PMID: 37739546 DOI: 10.1016/j.carbpol.2023.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.
Collapse
Affiliation(s)
- Alejandra Aragón-León
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Lorena Moreno-Vilet
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Marisela González-Ávila
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Pedro Martín Mondragón-Cortez
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidad de Federal do Paraná, CEP 81.531-980, CP 19046 Curitiba, PR, Brazil
| | | | - Rosa María Camacho-Ruíz
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico.
| |
Collapse
|
9
|
Zhi M, Zhao Y, Zeng X, Maddela NR, Xiao Y, Chen Y, Prasad R, Zhou Z. Filamentous cyanobacteria and hydrophobic protein in extracellular polymeric substances facilitate algae-bacteria aggregation during partial nitrification. Int J Biol Macromol 2023; 251:126379. [PMID: 37595699 DOI: 10.1016/j.ijbiomac.2023.126379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In algae-bacteria symbiotic wastewater treatment, the excellent settling performance of algae-bacteria aggregates is critical for biomass separation and recovery. Here, the composition of extracellular polymeric substances (EPS), microbial profiles, and functional genes of algae-bacteria aggregates were investigated at different solid retention times (SRTs) (10, 20, and 40 d) during partial nitrification in photo sequencing bioreactors (PSBRs). Results showed that SRTs greatly influenced the nitrogen transformation and the formation and morphological structure of algae-bacteria aggregates. The highest nitrite accumulation, the largest particle size (~1.54 mm) and the best settling performance were observed for the algae-bacteria aggregates in the PSBR with an SRT of 10 d, where the abundant occurrence of filamentous cyanobacteria with the highest ratio of chlorophyll a/b and the lowest EPS amount with the highest protein-to-polysaccharide ratio were observed. In particular, the EPS at 10 d of SRT contained a higher amount of protein-related hydrophobic groups and a lower ratio of α-helix/(β-sheet + random coil), indicating a looser protein structure, which might facilitate the formation and stabilization of algae-bacteria aggregates. Moreover, algal-bacterial aggregation greatly depended on the composition and evolution of filamentous cyanobacteria (unclassified _o__Oscillatoriales and Phormidium accounted for 56.29 % of the identified algae at SRT 10 d). The metagenomic analysis further revealed that functional genes related to amino acid metabolism (e.g., genes of phenylalanine, tyrosine, and tryptophan biosynthesis) were expressed at high levels within 10 d of SRT. Overall, this study demonstrates the influence of EPS structures and filamentous cyanobacteria on algae-bacteria aggregation and reveals the biological mechanisms driving photogranule structure and function.
Collapse
Affiliation(s)
- Mei Zhi
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Yiying Zhao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinyu Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India.
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| |
Collapse
|
10
|
Prasad S, Purohit SR. Microbial exopolysaccharide: Sources, stress conditions, properties and application in food and environment: A comprehensive review. Int J Biol Macromol 2023:124925. [PMID: 37236568 DOI: 10.1016/j.ijbiomac.2023.124925] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Microbial glucan or exopolysaccharides (EPS) have caught an eye of researchers from decades. The unique characteristics of EPS make it suitable for various food and environmental applications. This review overviews the different types of exopolysaccharides, sources, stress conditions, properties, characterization techniques and applications in food and environment. The yield and production condition of EPS is a major factor affecting the cost and its applications. Stress conditions are very important as it stimulates the microorganism for enhanced EPS production and affects its properties. As far as application is concerned specific properties of EPS such as, hydrophilicity, less oil uptake behavior, film forming ability, adsorption potential have applications in both food and environment sector. Novel and improved method of production, feed stock and right choice of microorganisms with stress conditions are critical for desired functionality and yield of the EPS.
Collapse
Affiliation(s)
- Sanstuti Prasad
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Soumya Ranjan Purohit
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India.
| |
Collapse
|
11
|
Abbaspour A, Jafari A, Tarahomi DS, Mousavi SM, Kharrat R. Production and characterization of a polysaccharide/polyamide blend from Pseudomonas atacamensis M7D1 strain for enhanced oil recovery application. Int J Biol Macromol 2023; 240:124421. [PMID: 37060969 DOI: 10.1016/j.ijbiomac.2023.124421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Bio-based polymers have better salt and temperature tolerance than most synthetic polymers. The biopolymer solutions have high viscosity, which can lead to reducing the fingering effect and soaring the oil recovery rate. This work aims to produce and characterize a biopolymer from Pseudomonas Atacamensis M7D1 strain, modify the biopolymer yield using Printed Circuit Boards (PCBs) powder as an outer tension in the growth medium, and finally, evaluate the produced biopolymer function for Enhanced Oil Recovery (EOR) purposes. Using PCBs powder to trigger bacteria for higher production yield increases the biopolymer production rate eleven times higher than pure growth medium without additives. Different analyses were performed on the biopolymer to characterize its properties; Gel Permeation Chromatography (GPC) indicated that the produced biopolymer has an average molecular weight of 3.6 × 105 g/mol. This macromolecule has high thermal resistivity and can tolerate high temperatures. Thermal analysis (TGA/DSC) shows only 69.27 % mass lost from 25 °C to 500 °C. The viscosity of 0.5 wt% biopolymer solution equals 3cp, 3 times higher than water. The glass micromodel flooding result shows that biopolymer solution with 0.5 wt% concentration has a 38 % recovery rate which is 21 % higher than water flooding.
Collapse
Affiliation(s)
- Armin Abbaspour
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Arezou Jafari
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Sadat Tarahomi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Riyaz Kharrat
- Department Petroleum Engineering, Montanuniversität, Leoben, Austria
| |
Collapse
|
12
|
Yan Q, Lin X, Chen Z, Chen Z. Biosynthesis of bionanomaterials using Bacillus cereus for the recovery of rare earth elements from mine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117098. [PMID: 36563444 DOI: 10.1016/j.jenvman.2022.117098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The growing demand for rare earth elements (REEs) increasingly requires secondary resources such as mine wastewater containing high concentrations of REEs, to be used as a source of REEs. The current challenge is how to efficiently recover REEs from this feed source. In this paper, a functional bionanomaterial (FeNPs-EPS) was biosynthesized using Bacillus cereus as a possible means of recovering REEs. This composite was composed of both synthesized iron nanoparticles (FeNPs) and extracellular polymeric substances (EPS). Synthesis of the FeNPs-EPS composite via a one-step biosynthesis was confirmed by materials characterization. The peak in the material's UV-Vis spectra at 511 nm demonstrates the formation of FeNPs-EPS, where 3D-EEM showed that FeNPs-EPS was wrapped predominantly with tryptophan protein-like and humic acid-like substances. In addition, while FTIR indicated that the functional groups present in EPS where virtually identical to those observed in FeNPs-EPS, XPS demonstrated that Fe and O were the major elemental present as both FeO and Fe2O3. Zeta potential measurements indicated that FeNPs-EPS had good stability under different pH conditions, where BET analysis supported multilayer adsorption. Finally, on exposure to high concentrations of Eu(III) and Tb(III) in mine wastewater, the synthesized FeNPs-EPS demonstrated strong potential to remove two cations from the wastewater and hence a potentially practical way to efficiently recover REEs from such waste streams.
Collapse
Affiliation(s)
- Qiuting Yan
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiaoyu Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Zhibiao Chen
- School of Geography, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
13
|
Pei C, Lu H, Ma J, Eichler J, Guan Z, Gao L, Liu L, Zhou H, Yang J, Jin C. AepG is a glucuronosyltransferase involved in acidic exopolysaccharide synthesis and contributes to environmental adaptation of Haloarcula hispanica. J Biol Chem 2023; 299:102911. [PMID: 36642187 PMCID: PMC9943897 DOI: 10.1016/j.jbc.2023.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
The attachment of a sugar to a hydrophobic lipid carrier is the first step in the biosynthesis of many glycoconjugates. In the halophilic archaeon Haloarcula hispanica, HAH_1206, renamed AepG, is a predicted glycosyltransferase belonging to the CAZy Group 2 family that shares a conserved amino acid sequence with dolichol phosphate mannose synthases. In this study, the function of AepG was investigated by genetic and biochemical approaches. We found that aepG deletion led to the disappearance of dolichol phosphate-glucuronic acid. Our biochemical assays revealed that recombinant cellulose-binding, domain-tagged AepG could catalyze the formation of dolichol phosphate-glucuronic acid in time- and dose-dependent manners. Based on the in vivo and in vitro analyses, AepG was confirmed to be a dolichol phosphate glucuronosyltransferase involved in the synthesis of the acidic exopolysaccharide produced by H. hispanica. Furthermore, lack of aepG resulted in hindered growth and cell aggregation in high salt medium, indicating that AepG is vital for the adaptation of H. hispanica to a high salt environment. In conclusion, AepG is the first dolichol phosphate glucuronosyltransferase identified in any of the three domains of life and, moreover, offers a starting point for further investigation into the diverse pathways used for extracellular polysaccharide biosynthesis in archaea.
Collapse
Affiliation(s)
- Caixia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hua Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiayin Ma
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Hagagy N, Saddiq AA, Tag HM, Selim S, AbdElgawad H, Martínez-Espinosa RM. Characterization of Polyhydroxybutyrate, PHB, Synthesized by Newly Isolated Haloarchaea Halolamina spp. Molecules 2022; 27:7366. [PMID: 36364191 PMCID: PMC9655102 DOI: 10.3390/molecules27217366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2023] Open
Abstract
This work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of Halolamina; Halolamina sediminis sp. strain NRS_35 and unclassified Halolamina sp. strain NRS_38. The growth and PHA-production were investigated in the presence of different carbon sources, (glucose, sucrose, starch, carboxymethyl cellulose (CMC), and glycerol), pH values, (5-9), temperature ranges (4-65 °C), and NaCl concentrations (100-350 g L-1). Fourier-transform infra-red analysis (FT-IR) and Liquid chromatography-mass spectrometry (LC-MS) were used for qualitative identification of the biopolymer. The highest yield of PHB was 33.4% and 27.29% by NRS_35 and NRS_38, respectively, using starch as a carbon source at 37 °C, pH 7, and 25% NaCl (w/v). The FT-IR pattern indicated sharp peaks formed around 1628.98 and 1629.28 cm-1, which confirmed the presence of the carbonyl group (C=O) on amides and related to proteins, which is typical of PHB. LC-MS/MS analysis displayed peaks at retention times of 5.2, 7.3, and 8.1. This peak range indicates the occurrence of PHB and its synthetic products: Acetoacetyl-CoA and PHB synthase (PhaC). In summary, the two newly isolated Halolamina species showed a high capacity to produce PHB using different sources of carbon. Further research using other low-cost feedstocks is needed to improve both the quality and quantity of PHB production. With these results, the use of haloarchaea as cell factories to produce PHAs is reinforced, and light is shed on the global concern about replacing plastics with biodegradable polymers.
Collapse
Affiliation(s)
- Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Amna A. Saddiq
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hend M. Tag
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni–Suef University, Beni–Suef 62521, Egypt
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
15
|
Kuschmierz L, Meyer M, Bräsen C, Wingender J, Schmitz OJ, Siebers B. Exopolysaccharide composition and size in Sulfolobus acidocaldarius biofilms. Front Microbiol 2022; 13:982745. [PMID: 36225367 PMCID: PMC9549778 DOI: 10.3389/fmicb.2022.982745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular polymeric substances (EPS) comprise mainly carbohydrates, proteins and extracellular DNA (eDNA) in biofilms formed by the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. However, detailed information on the carbohydrates in the S. acidocaldarius biofilm EPS, i.e., the exopolysaccharides (PS), in terms of identity, composition and size were missing. In this study, a set of methods was developed and applied to study the PS in S. acidocaldarius biofilms. It was initially shown that addition of sugars, most significantly of glucose, to the basal N-Z-amine-based growth medium enhanced biofilm formation. For the generation of sufficient amounts of biomass suitable for chemical analyses, biofilm growth was established and optimized on the surface of membrane filters. EPS were isolated and the contents of carbohydrates, proteins and eDNA were determined. PS purification was achieved by enzymatic digestion of other EPS components (nucleic acids and proteins). After trifluoroacetic acid-mediated hydrolysis of the PS fraction, the monosaccharide composition was analyzed by reversed-phase liquid chromatography (RP-LC) coupled to mass spectrometry (MS). Main sugar constituents detected were mannose, glucose and ribose, as well as minor proportions of rhamnose, N-acetylglucosamine, glucosamine and galactosamine. Size exclusion chromatography (SEC) revealed the presence of one single PS fraction with a molecular mass of 4-9 × 104 Da. This study provides detailed information on the PS composition and size of S. acidocaldarius MW001 biofilms and methodological tools for future studies on PS biosynthesis and secretion.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin Meyer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
- Oliver J. Schmitz,
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Bettina Siebers,
| |
Collapse
|
16
|
Jiang G, He J, Gan L, Li X, Xu Z, Yang L, Li R, Tian Y. Exopolysaccharide Produced by Pediococcus pentosaceus E8: Structure, Bio-Activities, and Its Potential Application. Front Microbiol 2022; 13:923522. [PMID: 35814643 PMCID: PMC9257109 DOI: 10.3389/fmicb.2022.923522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The novel exopolysaccharide EPS-E8, secreted by Pediococcus pentosaceus E8, was obtained by anion-exchange and gel filtration chromatography. Structural analyses identified EPS-E8 as a heteropolysaccharide containing mannose, glucose, and galactose. Its major backbone consists of →2)-α-D-Manp-(1→2,6)-α-D-Glcp-(1→6)-α-D-Manp-(1→, and its molecular weight is 5.02 × 104 g/mol. Using atomic force microscopy and scanning electron microscopy, many spherical and irregular reticular-like shapes were observed in the microstructure of EPS-E8. EPS-E8 has outstanding thermal stability (305.7°C). Both the zeta potential absolute value and average particle diameter increased gradually with increasing concentration. Moreover, at a concentration of 10 mg/ml, the antioxidant capacities of, 1-Diphenyl-2-picrylhydrazyl (DPPH), ABTS and hydroxyl radical were 50.62 ± 0.5%, 52.17 ± 1.4%, and 58.91 ± 0.7%, respectively. EPS-E8 possesses excellent emulsifying properties against several food-grade oils, and its activity is retained under various conditions (temperature, pH, and ionic strength). Finally, we found that EPS-E8 as a polysaccharide-based coating could reduce the weight loss and malondialdehyde (MDA) content of strawberry, as well as preserving the vitamin C and soluble solid content during storage at 20°C. Together, the results support the potential application of EPS-E8 as an emulsifier, and a polysaccharide-based coating in fruit preservation.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoguang Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ran Li
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Yongqiang Tian,
| |
Collapse
|
17
|
Cao X, Xu L, Chen YP, Decho AW, Cui Z, Lead JR. Contribution, Composition, and Structure of EPS by In Vivo Exposure to Elucidate the Mechanisms of Nanoparticle-Enhanced Bioremediation to Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:896-906. [PMID: 34983180 DOI: 10.1021/acs.est.1c05326] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial extracellular polymeric substances (EPS) have been recently found to contribute most for metal removal in nanoenhanced bioremediation. However, the mechanism by which NPs affect EPS-metal interactions is not fully known. Here, Halomonas sp. was employed to explore the role of EPS after in vivo exposure to Cd/Pb and polyvinylpyrrolidone (PVP) coated iron oxide nanoparticles (IONPs, 20 mg L-1) for 72 h. Cd-IONPs produced the highest concentrations of EPS proteins (136.3 mg L-1), while Cd induced the most production of polysaccharides (241.0 mg L-1). IONPs increased protein/polysaccharides ratio from 0.2 (Cd) to 1.2 (Cd-IONPs). The increased protein favors the formation of protein coronas on IONPs surface, which would promote Cd adsorption during NP-metal-EPS interaction. FTIR analysis indicated that the coexistence of Cd and IONPs interacted with proteins more strongly than with polysaccharides. Glycosyl monomer analyses suggested mannose and glucose as target sugars for EPS complexation with metals, and IONPs reduced metal-induced changes in monosaccharide profiles. Protein secondary structures changed in all treatments, but we could not distinguish stresses induced by metals from those by IONPs. These findings provide greater understanding of the role of EPS in NP-metal-EPS interaction, providing a better underpinning knowledge for the application of NP-enhanced bioremediation.
Collapse
Affiliation(s)
- Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Liang Xu
- Shandong Taixing Advanced Material Co., LTD., Shandong Energy Group, Jinan, 250204, PR China
| | - Yung Pin Chen
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Roychowdhury R, Srivastava N, Kumari S, Pinnaka AK, Roy Choudhury A. Isolation of an exopolysaccharide from a novel marine bacterium Neorhizobium urealyticum sp. nov. and its utilization in nanoemulsion formation for encapsulation and stabilization of astaxanthin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Wei M, Geng L, Wang Q, Yue Y, Wang J, Wu N, Wang X, Sun C, Zhang Q. Purification, characterization and immunostimulatory activity of a novel exopolysaccharide from Bacillus sp. H5. Int J Biol Macromol 2021; 189:649-656. [PMID: 34450152 DOI: 10.1016/j.ijbiomac.2021.08.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Crude exopolysaccharides from extracellular polymeric substances produced by the marine bacterium Bacillus sp. H5 were fractionated using DEAE-Sepharose FF and Sephadex G-75 chromatography. The high molecular weight fraction (89.0 kD) from the neutral fraction was designated EPS5SH; it contained mannose, glucosamine, glucose, and galactose in a molar ratio of 1.00: 0.02: 0.07: 0.02. Infra-red, gas chromatography-mass spectrometry, electrospray ionisation-tandem mass spectrometry analysis and nuclear magnetic resonance revealed EPS5SH was a mannan with α-(1 → 4)-Manp, α-(1 → 2)-Manp, α-(1 → 4, 6)-Manp and β-terminal-Manp. Preliminary in vitro experiments revealed that EPS5SH significantly upregulated nitric oxide synthesis and release of pro-inflammatory factors in murine macrophage RAW264.7 cells. Western blot experiments verified the immunostimulatory effects of EPS5SH through the modulation of the NF-κB and MAPK signalling pathways. In conclusion, EPS5SH was a novel immunostimulatory mannan.
Collapse
Affiliation(s)
- Maosheng Wei
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qingchi Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
20
|
Wang L, Gu Y, Zheng X, Zhang Y, Deng K, Wu T, Cheng H. Analysis of physicochemical properties of exopolysaccharide from Leuconostoc mesenteroides strain XR1 and its application in fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
López-Ortega MA, Chavarría-Hernández N, López-Cuellar MDR, Rodríguez-Hernández AI. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! Int J Biol Macromol 2021; 177:559-577. [PMID: 33609577 DOI: 10.1016/j.ijbiomac.2021.02.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
Every year, new organisms that survive and colonize adverse environments are discovered and isolated. Those organisms, called extremophiles, are distributed throughout the world, both in aquatic and terrestrial environments, such as sulfurous marsh waters, hydrothermal springs, deep waters, volcanos, terrestrial hot springs, marine saltern, salt lakes, among others. According to the ecosystem inhabiting, extremophiles are categorized as thermophiles, psychrophiles, halophiles, acidophiles, alkalophilic, piezophiles, saccharophiles, metallophiles and polyextremophiles. They have developed chemical adaptation strategies that allow them to maintain their cellular integrity, altering physiology or improving repair capabilities; one of them is the biosynthesis of extracellular polysaccharides (EPS), which constitute a slime and hydrated matrix that keep the cells embedded, protecting from environmental stress (desiccation, salinity, temperature, radiation). EPS have gained interest; they are explored by their unique properties such as structural complexity, biodegradability, biological activities, and biocompatibility. Here, we present a review concerning the biosynthesis, characterization, and potential EPS applications produced by extremophile microorganisms, namely, thermophiles, halophiles, and psychrophiles. A bibliometric analysis was conducted, considering research articles published within the last two decades. Besides, an overview of the culture conditions used for extremophiles, the main properties and multiple potential applications of their EPS is also presented.
Collapse
Affiliation(s)
- Mayra Alejandra López-Ortega
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| |
Collapse
|
22
|
Piermaria J, López‐Castejón ML, Bengoechea C, Guerrero A, Abraham AG. Prebiotic emulsions stabilised by whey protein and kefiran. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Judith Piermaria
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET La Plata, UNLP, CIC) 47 and 116 La Plata Argentina
- Área Bioquímica y Control de Alimentos Facultad de Ciencias Exactas UNLP 47 and 115 La Plata Argentina
| | - María Luisa López‐Castejón
- Departamento de Ingeniería Química Facultad de Química Universidad de Sevilla Calle Profesor García González 1 41012 Sevilla España
| | - Carlos Bengoechea
- Departamento de Ingeniería Química Facultad de Química Universidad de Sevilla Calle Profesor García González 1 41012 Sevilla España
| | - Antonio Guerrero
- Departamento de Ingeniería Química Facultad de Química Universidad de Sevilla Calle Profesor García González 1 41012 Sevilla España
| | - Analía Graciela Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET La Plata, UNLP, CIC) 47 and 116 La Plata Argentina
- Área Bioquímica y Control de Alimentos Facultad de Ciencias Exactas UNLP 47 and 115 La Plata Argentina
| |
Collapse
|
23
|
Biosurfactants produced by Pseudomonas syringae pv tabaci: A versatile mixture with interesting emulsifying properties. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|