1
|
Yu Z, Wang Z, Chen Y, Wang Y, Tang L, Xi Y, Lai K, Zhang Q, Li S, Xu D, Tian A, Wu M, Wang Y, Yang G, Gao C, Huang T. Programmed surface platform orchestrates anti-bacterial ability and time-sequential bone healing for implant-associated infection. Biomaterials 2025; 313:122772. [PMID: 39190942 DOI: 10.1016/j.biomaterials.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.
Collapse
Affiliation(s)
- Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Shuangyang Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danyu Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Anrong Tian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Cai M, Han Y, Zheng X, Xue B, Zhang X, Mahmut Z, Wang Y, Dong B, Zhang C, Gao D, Sun J. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:15. [PMID: 38203869 PMCID: PMC10779536 DOI: 10.3390/ma17010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer composed of glutamic acid monomer and it has garnered substantial attention in both the fields of material science and biomedicine. Its remarkable cell compatibility, degradability, and other advantageous characteristics have made it a vital component in the medical field. In this comprehensive review, we delve into the production methods, primary application forms, and medical applications of γ-PGA, drawing from numerous prior studies. Among the four production methods for PGA, microbial fermentation currently stands as the most widely employed. This method has seen various optimization strategies, which we summarize here. From drug delivery systems to tissue engineering and wound healing, γ-PGA's versatility and unique properties have facilitated its successful integration into diverse medical applications, underlining its potential to enhance healthcare outcomes. The objective of this review is to establish a foundational knowledge base for further research in this field.
Collapse
Affiliation(s)
- Minjian Cai
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yumin Han
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Baigong Xue
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Huang J, Yang R, Jiao J, Li Z, Wang P, Liu Y, Li S, Chen C, Li Z, Qu G, Chen K, Wu X, Chi B, Ren J. A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing. Nat Commun 2023; 14:7856. [PMID: 38030636 PMCID: PMC10687272 DOI: 10.1038/s41467-023-43364-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
High glucose-induced vascular endothelial injury is a major pathological factor involved in non-healing diabetic wounds. To interrupt this pathological process, we design an all-peptide printable hydrogel platform based on highly efficient and precise one-step click chemistry of thiolated γ-polyglutamic acid, glycidyl methacrylate-conjugated γ-polyglutamic acid, and thiolated arginine-glycine-aspartate sequences. Vascular endothelial growth factor 165-overexpressed human umbilical vein endothelial cells are printed using this platform, hence fabricating a living material with high cell viability and precise cell spatial distribution control. This cell-laden hydrogel platform accelerates the diabetic wound healing of rats based on the unabated vascular endothelial growth factor 165 release, which promotes angiogenesis and alleviates damages on vascular endothelial mitochondria, thereby reducing tissue hypoxia, downregulating inflammation, and facilitating extracellular matrix remodeling. Together, this study offers a promising strategy for fabricating tissue-friendly, high-efficient, and accurate 3D printed all-peptide hydrogel platform for cell delivery and self-renewable growth factor therapy.
Collapse
Affiliation(s)
- Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiao Jiao
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
5
|
Tian B, Liu J, Guo S, Li A, Wan JB. Macromolecule-based hydrogels nanoarchitectonics with mesenchymal stem cells for regenerative medicine: A review. Int J Biol Macromol 2023:125161. [PMID: 37270118 DOI: 10.1016/j.ijbiomac.2023.125161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The role of regenerative medicine in clinical therapies is becoming increasingly vital. Under specific conditions, mesenchymal stem cells (MSCs) are capable of differentiating into mesoblastema (i.e., adipocytes, chondrocytes, and osteocytes) and other embryonic lineages. Their application in regenerative medicine has attracted a great deal of interest among researchers. To maximize the potential applications of MSCs, materials science could provide natural extracellular matrices and provide an effective means to understand the various mechanisms of differentiation for the growth of MSCs. Pharmaceutical fields are represented among the research on biomaterials by macromolecule-based hydrogel nanoarchitectonics. Various biomaterials have been used to prepare hydrogels with their unique chemical and physical properties to provide a controlled microenvironment for the culture of MSCs, laying the groundwork for future practical applications in regenerative medicine. This article currently describes and summarizes the sources, characteristics, and clinical trials of MSCs. In addition, it describes the differentiation of MSCs in various macromolecule-based hydrogel nanoarchitectonics and highlights the preclinical studies of MSCs-loaded hydrogel materials in regenerative medicine conducted over the past few years. Finally, the challenges and prospects of MSC-loaded hydrogels are discussed, and the future development of macromolecule-based hydrogel nanoarchitectonics is outlined by comparing the current literature.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aiqin Li
- Department of Day-care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
6
|
Nair P, Navale GR, Dharne MS. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:4555-4573. [PMID: 33824848 PMCID: PMC8016157 DOI: 10.1007/s13399-021-01467-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Poly-gamma-glutamic acid (γ-PGA) is a biodegradable, non-toxic, ecofriendly, and non-immunogenic biopolymer. Its phenomenal properties have gained immense attention in the field of regenerative medicine, the food industry, wastewater treatment, and even in 3D printing bio-ink. The γ-PGA has the potential to replace synthetic non-degradable counterparts, but the main obstacle is the high production cost and lower productivity. Extensive research has been carried out to reduce the production cost by using different waste; however, it is unable to match the commercialization needs. This review focuses on the biosynthetic mechanism of γ-PGA, its production using the synthetic medium as well as different wastes by L-glutamic acid-dependent and independent microbial strains. Furthermore, various metabolic engineering strategies and the recovery processes for γ-PGA and their possible applications are discussed. Finally, highlights on the challenges and unique approaches to reduce the production cost and to increase the productivity for commercialization of γ-PGA are also summarized.
Collapse
Affiliation(s)
- Pranav Nair
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
7
|
WANG X, LI K, ZHANG X, GAO T, ZHANG L, SHEN Y, YANG L. Performance of chitosan/γ-polyglutamic acid/curcumin edible coating and application in fresh beef preservation. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Kai LI
- Chengdu University, China
| | | | | | | | | | | |
Collapse
|
8
|
Muñoz-Galán H, Molina BG, Bertran O, Pérez-Madrigal MM, Alemán C. Combining rapid and sustained insulin release from conducting hydrogels for glycemic control. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Microbial biopolymers in articular cartilage tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Xue W, Yang R, Liu S, Pu Y, Wang P, Zhang W, Tan X, Chi B. Ascidian-inspired aciduric hydrogels with high stretchability and adhesiveness promote gastric hemostasis and wound healing. Biomater Sci 2022; 10:2417-2427. [PMID: 35393995 DOI: 10.1039/d2bm00183g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adhesives for gastric hemorrhage are of great clinical significance. However, it remains a major challenge in clinics due to its poor stability under acidic environments and low adhesion to wet tissues. Herein, inspired by the high adhesiveness of the ascidian secretory protein, we designed a series of aciduric bionic hydrogel adhesives (PDTAs) based on poly(γ-glutamic acid) (γ-PGA) and tannic acid (TA). The formation of hydrogel adhesives was attributed to the abundant hydrogen bonds between amide groups of PGA-DA and polyphenol groups of TA. These hydrogel adhesives exhibited enhanced wet tissue adhesion (400%), higher stretchability (800% elongation), and aciduric stability (7 days) compared with commercial fibrin glue. Rodent wound models indicated that the hydrogel adhesives demonstrated significant healing promotion due to ameliorating collagen deposition and angiogenesis. These hydrogel adhesives show great potential in treating gastric hemorrhages and promoting wound healing.
Collapse
Affiliation(s)
- Wenliang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Wei M, Hsu YI, Asoh TA, Sung MH, Uyama H. Design of Injectable Poly(γ-glutamic acid)/Chondroitin Sulfate Hydrogels with Mineralization Ability. ACS APPLIED BIO MATERIALS 2022; 5:1508-1518. [PMID: 35286062 DOI: 10.1021/acsabm.1c01269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biocompatible hydrogels are considered promising agents for application in bone tissue engineering. However, the design of reliable hydrogels with satisfactory injectability, mechanical strength, and a rapid biomineralization rate for bone regeneration remains challenging. Herein, injectable hydrogels are fabricated using hydrazide-modified poly(γ-glutamic acid) and oxidized chondroitin sulfate by combining acylhydrazone bonds and ionic bonding of carboxylic acid groups or sulfate groups with calcium ions (Ca2+). The resulting hydrogels display a fast gelation rate and good self-healing ability due to the acylhydrazone bonds. The introduction of Ca2+ at a moderate concentration enhances the mechanical strength of the hydrogels. The self-healing capacity of hydrogels is improved, with a healing efficiency of 87.5%, because the addition of Ca2+ accelerates the healing process of hydrogels. Moreover, the hydrogels can serve as a robust template for biomineralization. The mineralized hydrogels with increasing Ca2+ concentration exhibit rapid formation and high crystallization of apatite after immersion in simulated body fluid. The hydrogels containing the aldehyde groups possess good bioadhesion to the bone and cartilage tissues. With these superior properties, the developed hydrogels demonstrate potential applicability in bone tissue engineering.
Collapse
Affiliation(s)
- Meng Wei
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moon-Hee Sung
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seongbuk-gu, Seoul 136-702, Korea
| | - Hiroshi Uyama
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Meng X, Liu H, Peng L, He W, Li S. Potential clinical applications of alpha‑ketoglutaric acid in diseases (Review). Mol Med Rep 2022; 25:151. [PMID: 35244187 DOI: 10.3892/mmr.2022.12667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Abstract
As an intermediate of the tricarboxylic acid cycle, also known as 2‑oxoglutarate, α‑ketoglutaric acid (AKG) plays an important role in maintaining physiological functions and cell metabolism. AKG is involved in both energy metabolism, and carbon and nitrogen metabolism; thus, exhibiting a variety of functions. Moreover, AKG plays an important role in various systems of the body. Results of previous research indicated that AKG may act as a regulator in the progression of a variety of diseases; thus, it exhibits potential as a novel drug for the clinical treatment of age‑related diseases. The present review aimed to summarize the latest research progress and potential clinical applications of AKG and provided novel directions and scope for future research.
Collapse
Affiliation(s)
- Xingqi Meng
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Huiqing Liu
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lixuan Peng
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo He
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Sahajpal K, Sharma S, Shekhar S, Kumar A, Meena MK, Bhagi AK, Sharma B. Dynamic Protein and Polypeptide Hydrogels Based on Schiff Base Co-assembly for Biomedicine. J Mater Chem B 2022; 10:3173-3198. [DOI: 10.1039/d2tb00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive hydrogels are promising building blocks for biomedical devices, attributable to their excellent hydrophilicity, biocompatibility, and dynamic responsiveness to temperature, light, pH, and water content. Although hydrogels find interesting applications...
Collapse
|
14
|
Hernández‐Arriaga AM, Campano C, Rivero‐Buceta V, Prieto MA. When microbial biotechnology meets material engineering. Microb Biotechnol 2022; 15:149-163. [PMID: 34818460 PMCID: PMC8719833 DOI: 10.1111/1751-7915.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.
Collapse
Affiliation(s)
- Ana M. Hernández‐Arriaga
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Cristina Campano
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Virginia Rivero‐Buceta
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
15
|
Tao L, Long H, Zhang J, Qi L, Zhang S, Li T, Li S. Preparation and coating application of γ-polyglutamic acid hydrogel to improve storage life and quality of shiitake mushrooms. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Yang R, Huang J, Zhang W, Xue W, Jiang Y, Li S, Wu X, Xu H, Ren J, Chi B. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydr Polym 2021; 273:118607. [PMID: 34561006 DOI: 10.1016/j.carbpol.2021.118607] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Injectable hydrogels have shown therapeutic effects on wound repair, but most of them exhibit poor mechanical strength. The impacts of stiff injectable hydrogels on cell behavior and wound healing remain unclear. Herein, an injectable hydrogel was developed based on thiolated poly(γ-glutamic acid) (γ-PGA-SH) and glycidyl methacrylate-conjuated oxidized hyaluronic acid (OHA-GMA). Thiol-methacrylate Michael chemistry-mediated post-stabilization and increase of polymer concentration were found to improve the mechanical strength of γ-PGA-SH/OHA-GMA hydrogel. Moreover, in vitro studies confirmed its biodegradability, biocompatibility, and self-healing property. Using the mechanically-tunable hydrogel, it further showed that fibroblasts migrated faster on the surface of stiffer hydrogel, but infiltrated slowly inside it compared with softer hydrogel. In animal experiments, the injectable hydrogel could promote wound healing by increasing collagen deposition and vascularization. In summary, γ-PGA-SH/OHA-GMA hydrogel is able to regulate migration and infiltration of fibroblasts by altering stiffness and offers effective in situ forming scaffolds towards skin tissue regeneration.
Collapse
Affiliation(s)
- Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jinjian Huang
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wenliang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yungang Jiang
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Sicheng Li
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jianan Ren
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
17
|
Yao Q, Shi Y, Xia X, Tang Y, Jiang X, Zheng YW, Zhang H, Chen R, Kou L. Bioadhesive hydrogel comprising bilirubin/β-cyclodextrin inclusion complexes promote diabetic wound healing. PHARMACEUTICAL BIOLOGY 2021; 59:1139-1149. [PMID: 34425063 PMCID: PMC8386728 DOI: 10.1080/13880209.2021.1964543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Chronic non-healing diabetic wound therapy is an important clinical challenge. Manipulating the release of bioactive factors from an adhesive hydrogel is an effective approach to repair chronic wounds. As an endogenous antioxidant, bilirubin (BR) has been shown to promote wound healing. Nonetheless, its application is limited by its low water solubility and oxidative degradation. OBJECTIVE This study developed a bilirubin-based formulation for diabetic wound healing. MATERIALS AND METHODS Bilirubin was incorporated into β-CD-based inclusion complex (BR/β-CD) which was then loaded into a bioadhesive hydrogel matrix (BR/β-CD/SGP). Scratch wound assays were performed to examine the in vitro pro-healing activity of BR/β-CD/SGP (25 μg/mL of BR). Wounds of diabetic or non-diabetic rats were covered with BR or BR/β-CD/SGP hydrogels (1 mg/mL of BR) and changed every day for a period of 7 or 21 days. Histological assays were conducted to evaluate the in vivo effect of BR/β-CD/SGP. RESULTS Compared to untreated (18.7%) and BR (55.2%) groups, wound closure was more pronounced (65.0%) in BR/β-CD/SGP group. In diabetic rats, the wound length in BR/β-CD/SGP group was smaller throughout the experimental period than untreated groups. Moreover, BR/β-CD/SGP decreased TNF-α levels to 7.7% on day 3, and elevated collagen deposition and VEGF expression to 11.9- and 8.2-fold on day 14. The therapeutic effects of BR/β-CD/SGP were much better than those of the BR group. Similar observations were made in the non-diabetic model. DISCUSSION AND CONCLUSION BR/β-CD/SGP promotes wound healing and tissue remodelling in both diabetic and non-diabetic rats, indicating an ideal wound-dressing agent.
Collapse
Affiliation(s)
- Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yannan Shi
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xing Xia
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingying Tang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Wen Zheng
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Ruijie Chen 109 Xueyuan West Road, Wenzhou325027, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- CONTACT Longfa Kou
| |
Collapse
|
18
|
Dorati R, Chiesa E, Riva F, Modena T, Marconi S, Auricchio F, Genta I, Conti B. Design and optimization of 3D-bioprinted scaffold framework based on a new natural polymeric bioink. J Pharm Pharmacol 2021; 74:57-66. [PMID: 34402908 DOI: 10.1093/jpp/rgab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This aimed at the design and production of engineered 3D scaffold prototypes using a natural polymeric bioink made of chitosan and poly-γ-glutamic acid with a specific focus on 3D-bioprinting process and on 3D framework geometry. METHODS Prototypes were produced using a 3D bioprinter exploiting layer-by-layer deposition technology. The 3D scaffold prototypes were fully characterized concerning pore size and size distribution, stability in different experimental conditions, swelling capability, and human dermal fibroblasts viability. KEY FINDINGS Hexagonal framework combined with biopaper allowed stabilizing the 3-layers structure during process manufacturing and during incubation in cell culture conditions. The stability of 3-layers structure was well preserved for 48 h. Crosslinking percentages of 2-layers and 3-layers prototype were 88.2 and 68.39, respectively. The swelling study showed a controlled swelling capability for 2-layers and 3-layers prototype, ∼5%. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed good biocompatibility of 3-layers prototype and their suitability for preserving 48 h cell viability in 3D cultures. Moreover, a significant increment of absorbance value was measured after 48 h, demonstrating cell growth. CONCLUSIONS Bioink obtained combining chitosan and poly-γ-glutamic acid represents a good option for 3D bioprinting. A stable 3D structure was realized by layer-by-layer deposition technology; compared with other papers, the present study succeeded in using medical healthcare-grade polymers, no-toxic crosslinker, and solvents according to ICH Topic Q3C (R4).
Collapse
Affiliation(s)
- Rossella Dorati
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, via Forlanini, 10, 27100 Pavia, Italy
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Stefania Marconi
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
19
|
Lee S, Choi J, Youn J, Lee Y, Kim W, Choe S, Song J, Reis RL, Khang G. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Biomolecules 2021; 11:1184. [PMID: 34439850 PMCID: PMC8394129 DOI: 10.3390/biom11081184] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogel is in the spotlight as a useful biomaterial in the field of drug delivery and tissue engineering due to its similar biological properties to a native extracellular matrix (ECM). Herein, we proposed a ternary hydrogel of gellan gum (GG), silk fibroin (SF), and chondroitin sulfate (CS) as a biomaterial for cartilage tissue engineering. The hydrogels were fabricated with a facile combination of the physical and chemical crosslinking method. The purpose of this study was to find the proper content of SF and GG for the ternary matrix and confirm the applicability of the hydrogel in vitro and in vivo. The chemical and mechanical properties were measured to confirm the suitability of the hydrogel for cartilage tissue engineering. The biocompatibility of the hydrogels was investigated by analyzing the cell morphology, adhesion, proliferation, migration, and growth of articular chondrocytes-laden hydrogels. The results showed that the higher proportion of GG enhanced the mechanical properties of the hydrogel but the groups with over 0.75% of GG exhibited gelling temperatures over 40 °C, which was a harsh condition for cell encapsulation. The 0.3% GG/3.7% SF/CS and 0.5% GG/3.5% SF/CS hydrogels were chosen for the in vitro study. The cells that were encapsulated in the hydrogels did not show any abnormalities and exhibited low cytotoxicity. The biochemical properties and gene expression of the encapsulated cells exhibited positive cell growth and expression of cartilage-specific ECM and genes in the 0.5% GG/3.5% SF/CS hydrogel. Overall, the study of the GG/SF/CS ternary hydrogel with an appropriate content showed that the combination of GG, SF, and CS can synergistically promote articular cartilage defect repair and has considerable potential for application as a biomaterial in cartilage tissue engineering.
Collapse
Affiliation(s)
- Seongwon Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Joohee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Younghun Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Seungho Choe
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Jeongeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal;
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea
| |
Collapse
|
20
|
Gupta SS, Mishra V, Mukherjee MD, Saini P, Ranjan KR. Amino acid derived biopolymers: Recent advances and biomedical applications. Int J Biol Macromol 2021; 188:542-567. [PMID: 34384802 DOI: 10.1016/j.ijbiomac.2021.08.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/19/2023]
Abstract
Over the past few years, amino acids (AA) have emerged as promising biomaterials for the synthesis of functional polymers. Owing to the diversity of functional groups in amino acids, various polymerization methods may be used to make a wide range of well-defined functional amino-acid/peptide-based optically active polymers with varying polymer lengths, compositions, and designs. When incorporated with chirality and self-assembly, they offer a wide range of applications and are particularly appealing in the field of drug delivery, tissue engineering, and biosensing. There are several classes of these polymers that include polyamides (PA), polyesters (PE), poly(ester-amide)s (PEA)s, polyurethanes (PU)s, poly(depsipeptide)s (PDP)s, etc. They offer the ability to control functionality, conjugation, crosslinking, stimuli responsiveness, and tuneable mechanical/thermal properties. In this review, we present the recent advancements in the synthesis strategies for obtaining these amino acid-derived bio-macromolecules, their self-assembly properties, and the wealth of prevalent applications.
Collapse
Affiliation(s)
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, NOIDA, India.
| | | | | | - Kumar Rakesh Ranjan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, NOIDA, India.
| |
Collapse
|
21
|
Wei M, Hsu YI, Asoh TA, Sung MH, Uyama H. Injectable poly(γ-glutamic acid)-based biodegradable hydrogels with tunable gelation rate and mechanical strength. J Mater Chem B 2021; 9:3584-3594. [PMID: 33909743 DOI: 10.1039/d1tb00412c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polypeptide-based hydrogels have potential applications in polymer therapeutics and regenerative medicine. However, designing reliable polypeptide-based hydrogels with a rapid injection time and controllable stiffness for clinical applications remains a challenge. Herein, a class of injectable poly(γ-glutamic acid) (PGA)-based hydrogels were constructed using furfurylamine and tyramine-modified PGA (PGA-Fa-Tyr) and the crosslinker dimaleimide poly(ethylene glycol) (MAL-PEG-MAL), through a facile strategy combining enzymatic crosslinking and Diels-Alder (DA) reaction. The injectable hydrogels could be quickly gelatinized and the gelation time, ranging from 10 to 95 s, could be controlled by varying the hydrogen peroxide (H2O2) concentration. Compared with hydrogels formed by single enzymatic crosslinking, the compressive stress and strain of the injectable hydrogels were remarkably enhanced because of the occurrence of the subsequent DA reaction in the hydrogels, suggesting the DA network imparted an outstanding toughening effect on the hydrogels. Furthermore, the mechanical strength, swelling ratio, pore size, and degradation behavior of the injectable hydrogels could be easily controlled by changing the molar ratios of H2O2/Tyr or furan/maleimide. More importantly, injectable hydrogels encapsulating bovine serum albumin exhibited sustained release behavior. Thus, the developed hydrogels hold great potential for applications in biomedical fields, such as tissue engineering and cell/drug delivery.
Collapse
Affiliation(s)
- Meng Wei
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yu-I Hsu
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Moon-Hee Sung
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul, Korea
| | - Hiroshi Uyama
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Wang X, Qi J, Zhang W, Pu Y, Yang R, Wang P, Liu S, Tan X, Chi B. 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair. Int J Biol Macromol 2021; 187:91-104. [PMID: 34298048 DOI: 10.1016/j.ijbiomac.2021.07.115] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Developing a wound dressing for the treatment of large and irregular-shaped wounds remains a great challenge. Herein we developed novel printable bionic hydrogels with antibacterial and antioxidant properties which could effectively overcome the challenge by inhibiting inflammation and accelerating wound healing. The CMC/PL (CP) hydrogels were customized with glycidyl methacrylate (GMA) modified carboxymethyl cellulose (CMC) and ε-polylysine (ε-PL) via ultraviolet (UV) light polymerization using a 3D printer. Except for the high compression modulus (238 kPa), stable rheological properties, and effective degradability, these CP hydrogels also had an excellent inhibitory effect (95%) on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Remarkably, CP hydrogels could remove the excessive reactive oxygen species (ROS) and protect the fibroblasts from damage. Compared with the commercial dressing (Tegaderm ™ film), CP hydrogels showed a better ability to increase the expression of VEGF and CD31, accelerate granulation tissue regeneration, and promote wound healing. This work provides a new strategy to fabricate on-demand multi-functional hydrogels in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jingjie Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
23
|
Lee AKX, Lin YH, Tsai CH, Chang WT, Lin TL, Shie MY. Digital Light Processing Bioprinted Human Chondrocyte-Laden Poly (γ-Glutamic Acid)/Hyaluronic Acid Bio-Ink towards Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9070714. [PMID: 34201600 PMCID: PMC8301387 DOI: 10.3390/biomedicines9070714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cartilage injury is the main cause of disability in the United States, and it has been projected that cartilage injury caused by osteoarthritis will affect 30% of the entire United States population by the year 2030. In this study, we modified hyaluronic acid (HA) with γ-poly(glutamic) acid (γ-PGA), both of which are common biomaterials used in cartilage engineering, in an attempt to evaluate them for their potential in promoting cartilage regeneration. As seen from the results, γ-PGA-GMA and HA, with glycidyl methacrylate (GMA) as the photo-crosslinker, could be successfully fabricated while retaining the structural characteristics of γ-PGA and HA. In addition, the storage moduli and loss moduli of the hydrogels were consistent throughout the curing durations. However, it was noted that the modification enhanced the mechanical properties, the swelling equilibrium rate, and cellular proliferation, and significantly improved secretion of cartilage regeneration-related proteins such as glycosaminoglycan (GAG) and type II collagen (Col II). The cartilage tissue proof with Alcian blue further demonstrated that the modification of γ-PGA with HA exhibited suitability for cartilage tissue regeneration and displayed potential for future cartilage tissue engineering applications. This study built on the previous works involving HA and further showed that there are unlimited ways to modify various biomaterials in order to further bring cartilage tissue engineering to the next level.
Collapse
Affiliation(s)
- Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung 406040, Taiwan; (A.K.-X.L.); (C.-H.T.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung 406040, Taiwan; (A.K.-X.L.); (C.-H.T.)
- Department of Orthopedics, China Medical University Hospital, Taichung 406040, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Wan-Ting Chang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
| | - Tsung-Li Lin
- Department of Orthopedics, China Medical University Hospital, Taichung 406040, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (T.-L.L.); (M.-Y.S.); Tel.: +886-4-22967979 (ext. 3700) (T.-L.L.)
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
- School of Dentistry, China Medical University, Taichung City 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
- Correspondence: (T.-L.L.); (M.-Y.S.); Tel.: +886-4-22967979 (ext. 3700) (T.-L.L.)
| |
Collapse
|
24
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
25
|
Yang R, Liu X, Ren Y, Xue W, Liu S, Wang P, Zhao M, Xu H, Chi B. Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing. Acta Biomater 2021; 127:102-115. [PMID: 33813093 DOI: 10.1016/j.actbio.2021.03.057] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
The most significant challenge in designing wound dressings is to mimic the tissue microenvironment because of the pro-regenerative structural and functional properties of skin. Herein, we developed a type of bionic extracellular matrix (ECM) hydrogels based on thiol-modified poly (γ-glutamic acid) (γ-PGA-SH) and oxidized hyaluronic acid (HA-CHO). The rapid and reversible thiol-aldehyde addition reaction of thiols in γ-PGA-SH and aldehyde groups in HA-CHO provided hydrogels with a dynamic covalent network and endowed them with properties of adaptability and self-healing capability, which are conducive for initial wound coverage and for prolonging the lifespan of the dressing. Interestingly, these hydrogels also showed typical viscoelastic characteristics similar to those of natural ECM, degradation property in vitro and in vivo, and free radical scavenging capability. In addition, the gelation time, rheological behavior, mechanical property, porous structure, and degradation process of the hydrogels could be tuned by adjusting polymer content. Furthermore, the ECM-inspired hydrogels significantly enhanced the wound healing process in vivo in a full-thickness skin defect model compared to those by commercial dressing (Tegaderm™) by facilitating angiogenesis and promoting collagen deposition. The successful application of the multifunctional hydrogel as an antioxidant wound dressing for wound treatment significantly exhibited its great application potential for biomedical areas. STATEMENT OF SIGNIFICANCE: The application of tissue engineering techniques to repair full-thickness skin wounds remains a great challenge in clinical trials. Among the recent approaches used for wound healing, in situ forming injectable hydrogels have gained much attention, and few of them have shown satisfactory overall performance, such as integration into the wound bed, biodegradability, immunocompatibility, vascularization, and recapitulation of the structure and function of skin. In the present study, we designed a simple and convenient in situ forming injectable adaptable self-healing hydrogels with biodegradability and antioxidative properties, which could substantially improve wound healing quality at an affordable cost. The hydrogel-based wound dressing is expected to solve the abovementioned problems and help in promoting cutaneous wound healing.
Collapse
|
26
|
Kim MH, Lin CC. Assessing monocyte phenotype in poly(γ-glutamic acid) hydrogels formed by orthogonal thiol–norbornene chemistry. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/ac01b0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 11/11/2022]
|
27
|
Ma XB, Yang R, Sekhar KPC, Chi B. Injectable Hyaluronic Acid/Poly(γ-glutamic acid) Hydrogel with Step-by-step Tunable Properties for Soft Tissue Engineering. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [PMCID: PMC8093128 DOI: 10.1007/s10118-021-2558-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Injectable hydrogels as an important class of biomaterials have gained much attention in tissue engineering. However, their crosslinking degree is difficult to be controlled after being injected into body. As we all know, the crosslinking degree strongly influences the physicochemical properties of hydrogels. Therefore, developing an injectable hydrogel with tunable crosslinking degree in vivo is important for tissue engineering. Herein, we present a dual crosslinking strategy to prepare injectable hydrogels with step-by-step tunable crosslinking degree using Schiff base reaction and photopolymerization. The developed hyaluronic acid/poly(γ-glutamic acid) (HA/γ-PGA) hydrogels exhibit step-by-step tunable swelling behavior, enzymatic degradation behavior and mechanical properties. Mechanical performance tests show that the storage moduli of HA/γ-PGA hydrogels are all less than 2000 Pa and the compressive moduli are in kilopascal, which have a good match with soft tissue. In addition, NIH 3T3 cells encapsulated in HA/γ-PGA hydrogel exhibit a high cell viability, indicating a good cytocompatibility of HA/γ-PGA hydrogel. Therefore, the developed HA/γ-PGA hydrogel as an injectable biomaterial has a good potential in soft tissue engineering.
Collapse
Affiliation(s)
- Xue-Bin Ma
- School of Chemistry and Chemical Engineering, Shandong University, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Jinan, 250100 China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Kanaparedu P. C. Sekhar
- School of Chemistry and Chemical Engineering, Shandong University, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Jinan, 250100 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
28
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
29
|
Park SB, Sung MH, Uyama H, Han DK. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Wang P, Zhang W, Yang R, Liu S, Ren Y, Liu X, Tan X, Chi B. Biomimetic poly(γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering. Int J Biol Macromol 2020; 167:1508-1516. [PMID: 33212107 DOI: 10.1016/j.ijbiomac.2020.11.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
For the problems in the research on differentiation of mesenchymal stem cells (BMSCs), such as poor differentiation tendency and low differentiation efficiency, a novel photo-crosslinked extracellular matrix (ECM) inspired double network hydrogel that composed of poly(γ-glutamic acid) (γ-PGA) hydrogel and Fe3+ ligand coordination was designed and manufactured. Compared with those traditional γ-PGA based hydrogels, the introduction of Fe3+ significantly enhanced the mechanical properties of the hydrogel and accelerated the chondrogenesis efficiency of BMSCs chondrogenesis. The experimental results confirmed that the mechanical properties of hydrogel enhanced by the introduction of metal ions Fe3+ could promote BMSCs proliferation, induce cartilage-specific gene expression, and increase secretion of hydroxyproline (HYP) and glycosaminoglycan (GAG). As a result, this method could promote chondrogenic differentiation of BMSCs, accelerate the regeneration of cartilage, and was prospective to be conducive to the research work of cartilage defect repair. Thus, the mechanically enhanced γ-PGA hydrogel scaffold by Fe3+ could mediate BMSCs differentiation and provide a scientific and theoretical basis for research and development of biomedical materials on cartilage tissue engineering field.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
31
|
Onofrillo C, Duchi S, Francis S, O'Connell CD, Caballero Aguilar LM, Doyle S, Yue Z, Wallace GG, Choong PF, Di Bella C. FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. Biomaterials 2020; 264:120383. [PMID: 33099133 DOI: 10.1016/j.biomaterials.2020.120383] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Regenerative therapies based on photocrosslinkable hydrogels and stem cells are of growing interest in the field of cartilage repair. Cell-mediated degradation is critical for the successful clinical translation of implanted hydrogels. However, characterising cell-mediated degradation, while simultaneously monitoring the deposition of a distinct new matrix, remains a major challenge. In this study we generated a Fluorescently LAbelled Sensitive Hydrogel (FLASH) to correlate the degradation of a hydrogel bioscaffold with neocartilage formation. Gelatine Methacryloyl (GelMA) was covalently bound to the FITC fluorophore to generate FLASH and bioscaffolds were produced by casting different concentrations of FLASH GelMA, with and without human adipose-derived stem cells (hADSCs) undergoing chondrogenesis. The loss of fluorescence from FLASH bioscaffolds was correlated with changes in mechanical properties, expression of chondrogenic markers and accumulation of a cartilaginous extracellular matrix. The ability of the system to be used as a sensor to monitor bioscaffold degradability during chondrogenesis was evaluated in vitro, in a human ex vivo model of cartilage repair and in a full chondral defect in vivo rabbit model. This study represents a step towards the generation of a high throughput monitoring system to evaluate de novo cartilage formation in tissue engineering therapies.
Collapse
Affiliation(s)
- Carmine Onofrillo
- Department of Surgery, The University of Melbourne, Australia; BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia; ARC-IPRI-University of Wollongong, Australia.
| | - Serena Duchi
- Department of Surgery, The University of Melbourne, Australia; BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia; ARC-IPRI-University of Wollongong, Australia
| | - Sam Francis
- Department of Surgery, The University of Melbourne, Australia; BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia
| | - Cathal D O'Connell
- BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia; Discipline of Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - Lilith M Caballero Aguilar
- Department of Surgery, The University of Melbourne, Australia; BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia; Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
| | - Stephanie Doyle
- BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia; Discipline of Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - Zhilian Yue
- ARC-IPRI-University of Wollongong, Australia
| | | | - Peter F Choong
- Department of Surgery, The University of Melbourne, Australia; BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia; Department of Orthopaedics, St Vincent's Hospital Melbourne, Australia
| | - Claudia Di Bella
- Department of Surgery, The University of Melbourne, Australia; BioFab3D-ACMD-St Vincent's Hospital Melbourne, Australia; Department of Orthopaedics, St Vincent's Hospital Melbourne, Australia
| |
Collapse
|
32
|
Inhibition of nattokinase against the production of poly (γ-glutamic Acid) in Bacillus subtilis natto. Biotechnol Lett 2020; 42:2285-2291. [PMID: 32596743 DOI: 10.1007/s10529-020-02941-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To study the effect of nattokinse (NK) on the synthesis of poly(γ-glutamic acid) (γ-PGA) in Bacillus subtilis natto. RESULTS γ-PGA yield significantly decreased as NK was added in the original medium. With the increment of NK dosage, the yield decreased increasingly, but biomass increased instead of decreasing. The fact that cell density triggers the synthesis of γ-PGA is a controversial issue. γ-PGA yield and biomass closely correlate with addition time of NK. The later the addition of NK, the more γ-PGA yield decreased but the more biomass increased. It is concluded that cell hunger is a key factor to trigger the transmission of the cell density signal, and NK may inhibit γ-PGA synthesis by alleviating cell hunger. Besides, NK may reduce γ-PGA yield by degrading extracellular γ-PGA molecules. The study of adding L-glutamate of 0-20 g/L to the original medium showed that low concentration of L-glutamate (less than 5 g/L) could promote the synthesis of NK and γ-PGA, and thus NK may inhibit γ-PGA synthesis through strengthening substrate competition. CONCLUSIONS NK mainly inhibits γ-PGA synthesis in Bacillus subtilis natto through alleviating cell starvation and strengthening substrate competition, and reduces γ-PGA yield through degrading extracellular γ-PGA molecules.
Collapse
|
33
|
Ma X, Liu X, Wang P, Wang X, Yang R, Liu S, Ye Z, Chi B. Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:4036-4043. [DOI: 10.1021/acsabm.0c00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuebin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwen Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
34
|
Pisani S, Dorati R, Scocozza F, Mariotti C, Chiesa E, Bruni G, Genta I, Auricchio F, Conti M, Conti B. Preliminary investigation on a new natural based poly(gamma-glutamic acid)/Chitosan bioink. J Biomed Mater Res B Appl Biomater 2020; 108:2718-2732. [PMID: 32159925 DOI: 10.1002/jbm.b.34602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022]
Abstract
The study aims to investigate a novel bioink made from Chitosan (Cs)/ poly(gamma-glutamic acid) (Gamma-PGA) hydrogel that takes advantage of the two biodegradable and biocompatible polymers meeting most of the requirements for biomedical applications. The bioink could be an alternative to other materials commonly used in 3D-bioprinting such as gelatin or alginate. Cs/ Gamma-PGA hydrogel was prepared by double extrusion of Gamma-PGA and Cs solutions, where 2 × 105 human adult fibroblasts per ml Cs solution had been loaded, through Cellink 3D-Bioprinter at 37°C. A computer aided design model was used to get 3D-bioprinting of a four layers grid hydrogel construct with 70% infill. Hydrogel characterization involved rheology, FTIR analysis, stability study (mass loss [ML], fluid uptake [FU]), and cell retaining ability into hydrogel. 3D-bioprinted hydrogel gelation time resulted to be <60 s, hydrogel structure was maintained up to 36.79 Pa shear stress, FTIR analysis demonstrated Gamma-PGA/Cs interpolyelectrolyte complex formation. The 3D-bioprinted hydrogel was stable for 35 days (35% ML) in cell culture medium, with increasing FU. Cell loaded 3D-bioprinted Cs 6% hydrogel was able to retain 70% of cells which survived to printing process and cell viability was maintained during 14 days incubation.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering, University of Pavia, Pavia, Italy
| | | | - Enrica Chiesa
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Ida Genta
- Department of Drug Science, University of Pavia, Pavia, Italy
| | | | - Michele Conti
- Department of Civil Engineering, University of Pavia, Pavia, Italy
| | - Bice Conti
- Department of Drug Science, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
Liu S, Pu Y, Yang R, Liu X, Wang P, Wang X, Ren Y, Tan X, Ye Z, Chi B. Boron-assisted dual-crosslinked poly (γ-glutamic acid) hydrogels with high toughness for cartilage regeneration. Int J Biol Macromol 2020; 153:158-168. [PMID: 32114174 DOI: 10.1016/j.ijbiomac.2020.02.314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
Although mesenchymal stem cells (MSCs) encapsulated with bionic scaffolds have been widely used in treating trauma induced cartilage defects, challenges still persist for these hydrogel scaffolds to create suitable shelters for the MSCs and guide their behaviors. In this work, novel biomimetic hydrogel scaffolds were prepared by thiol-ene Michael addition between glycidyl methacrylate (GMA)-modified poly (γ-glutamic acid) (γ-PGA-GMA) and DL-1,4-Dithiothreitol (DTT) for cartilage tissue engineering. Sodium tetraborate decahydrate was added into the system to connect with DTT through hydrogen-bond interaction and served as catalyst for thiol-ene Michael addition to strengthen the intensity of the hydrogel. The hydrogels could be compressed to nearly a 90% strain, with 0.95 MPa compression stresses which was better than that of most hydrogels in mechanical property. Additionally, this hydrogel has other properties: fast and controlled gel-forming speed, adjustable swelling ration, suitable interior structure and so on. Above all, hydrogels have excellent cyto/tissue-compatibility. Cells cultured in hydrogels in vitro exhibited good proliferation and adhesion abilities and the hydrogels scaffolds contained stem cells immensely accelerated the regeneration of auricular cartilage of rabbits in vivo versus control group. The overall results approved that this bionic hydrogel may be a promising biomaterial for cartilage regeneration in the future.
Collapse
Affiliation(s)
- Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhiwen Ye
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
36
|
Kim JW, Park JH, Muthukumar T, Shin EY, Shin ME, Song JE, Khang G. Accelerating bone defects healing in calvarial defect model using 3D cultured bone marrow-derived mesenchymal stem cells on demineralized bone particle scaffold. J Tissue Eng Regen Med 2020; 14:563-574. [PMID: 32061025 DOI: 10.1002/term.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/10/2022]
Abstract
Bone defects are usually difficult to be regenerated due to pathological states or the size of the injury. Researchers are focusing on tissue engineering approaches in order to drive the regenerative events, using stem cells to regenerate bone. The purpose of this study is to evaluate the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) on biologically derived Gallus gallus domesticus-derived demineralized bone particle (GDD) sponge. The sponges were prepared by freeze-drying method using 1, 2, and 3 wt% GDD and cross-linked with glutaraldehyde. The GDD sponge was characterized using scanning electron microscopy, compressive strength, porosity, and Fourier transform infrared. The potential bioactivity of the sponge was evaluated by osteogenic differentiation of BMSCs using 3(4, dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and quantifying alkaline phosphatase (ALP) activity. in vivo experiments were evaluated through a micro-computerized tomography (μ-CT) and histological assays. The analysis confirmed that an increase in the concentration of the GDD in the sponge leads to a higher bone formation and deposition in rat calvarial defects. Histological assay results were in line with μ-CT. The results reported in this study demonstrated the potential application of GDD sponges as osteoinductor in bone tissue engineering in pathological or nonunion bone defects.
Collapse
Affiliation(s)
- Jin Woo Kim
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jong Ho Park
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Thangavelu Muthukumar
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Eun Yeong Shin
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Myeong Eun Shin
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| |
Collapse
|