1
|
Zhang Y, Xing B, Feng Q, Zhu Z, Ni X, Wang D, Li D. Fractionation on debranched waxy maize starch by gradient ethanol combined with annealing to improve in vitro digestion resistance and hydrothermal stability of type 3 resistant starch. Food Chem 2025; 480:143950. [PMID: 40120303 DOI: 10.1016/j.foodchem.2025.143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Retrograded resistant starch (RS3), as a prebiotic, has attracted great attention owing to a good stability and an edible feature. This study aims to demonstrate how molecular weights, structural properties, in vitro digestibility and hydrothermal behaviors of RS3 are influenced by gradient ethanol fractionation assisted with annealing. Waxy maize dextrin (WMD) was sequentially precipitated by different volume ratios of dextrin solution to absolute ethanol in an order of 0.5:1, 1:1, and 1.5:1. RS3 prepared from WMD through tertiary precipitation (RWMD 1.5) exhibited higher resistance to digestibility and hydrothermal stability. This was attributed to the high production of slowly digestible starch (SDS, 63.1 %) and resistant starch (RS, 32.1 %), together with the highest peak temperature (101.3 °C) and gelatinization enthalpy (16.2 J/g). Moreover, RWMD 1.5 was largely formed by uniform and short WMD (weight-average molecular weight, 2.990 kDa), which thus caused the formation of homogeneous A-type crystals with ordered structures.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Postdoctoral Programme of Juxiangyuan Healthy Food (Zhongshan) Co., Ltd., 528437 Zhongshan, China
| | - Baofang Xing
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qian Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Zhiting Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Xinjing Ni
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Dandan Li
- Wuhu Green Food Industry Research Institute Co., Ltd., 238300 Wuhu, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
2
|
Ha C, Sheng T, Wu Y, Zhu H, Shi S, Jin Y, Zhu D, Chu Y, Yu Z, Zhou Y. A novel starch from Trichosanthes kirilowii roots: A comparison of its composition, structure and physicochemical properties with conventional root starch. Int J Biol Macromol 2025; 306:141363. [PMID: 39993678 DOI: 10.1016/j.ijbiomac.2025.141363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
This study investigated the properties of a novel medicinal starch isolated from the roots of Trichosanthes kirilowii (TKRS). The multiscale structural and physicochemical properties of TKRS were characterized and compared with two common starches, sweet potato starch (SPS) and kudzu starch (KS), to elucidate the influence of structural characteristics on the physicochemical properties of these root starches. TKRS granules exhibited elliptical and irregular polygonal shapes, with the largest median particle size (14.48 μm). TKRS had a lower amylose content (15.03 %) and a lower molecular weight (8.40 × 107 g/mol). XRD analysis confirmed a C-type crystallinity pattern, with a higher crystallinity degree (21.51 %) and a high degree of short-range ordered structure. Further analysis of the chain length distribution revealed that TKRS contained a larger proportion of long-chain amylopectin. Compared to SPS and KS, TKRS showed a lower gelatinization temperature (72.65 °C) but a higher peak viscosity (7351 cP). Additionally, despite its relatively lower water retention capacity, TKRS exhibited higher storage modulus and loss modulus than conventional tuber starches. In vitro digestibility analysis indicated that TKRS had a lower rapidly digestible starch content and a higher resistant starch content, highlighting its potential for processing into healthy starch-based food products.
Collapse
Affiliation(s)
- Chuanzhi Ha
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Tao Sheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Sanxu Shi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Deyi Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yaya Chu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
He H, Liu F, Yang L, Fan H, Wan H. Structure changes of starch complexed with green tea catechin or lemon peel caffeic acid under thermomechanical-assist low moisture and their prebiotics during in vitro digestion and fermentation. Int J Biol Macromol 2025; 308:142676. [PMID: 40164251 DOI: 10.1016/j.ijbiomac.2025.142676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/02/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
This paper highlighted the structural changes of rice starch complexed with green tea catechin and lemon peel caffeic acid under thermomechanical-assist low moisture, and their prebiotics during in vitro digestibility and fermentation were further explained. Extruded starch with caffeic acid, characterized by enhanced short-range order, a distinct fractal structure, and a V-amylose helical arrangement, exhibited slower glucose release due to V-type inclusion crystalline structures and strong hydrogen bondings. Additionally, extruded starch with catechin or caffeic acid changed the composition of gut microbiota by increasing the proliferation of good bacteria and reducing pathogenic microorganisms, which led to a greater synthesis of short-chain fatty acids. According to a PICRUSt2 analysis, the extruded starch with caffeic acid may trigger metabolic alterations via altering the gut microbiota and increasing bile acid metabolism. Thus, extruded starch with caffeic acid demonstrates significant potential as a prebiotic for developing nutritionally tailored starch-based foods.
Collapse
Affiliation(s)
- Hai He
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Collaborative Research Center for the Development and Utilization of Tropical Food for Special Medical Purpose, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China; Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, Guangdong Province, China.
| | - Fanrui Liu
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Collaborative Research Center for the Development and Utilization of Tropical Food for Special Medical Purpose, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Lei Yang
- Department of Dermatology, Characteristic Medical Centre of PLA Rocket Force, Beijing 100001, China.
| | - Honghao Fan
- NJUST-YX Artificial Intelligence Biomedical Technology Innovation Center, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Hao Wan
- Department of Medical Laboratory, Qianjiang Central Hospital, Qianjiang 433100, Hubei Province, China
| |
Collapse
|
4
|
Cao M, Liu C, Zhou Z, Li W, Li J. Effect of Canna edulis starch addition on the properties of flour, rheology of dough and quality of semi-dry noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3474-3482. [PMID: 39835454 DOI: 10.1002/jsfa.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula. One control formula containing wheat flour only, and five formulations based on wheat flour containing 8CES, 16CES, 24CES, 32CES and 40CES were prepared. RESULTS The findings revealed that with the increase of CES, the peak viscosity and retrogradation value of the flour increased, and the melting enthalpy decreased. CES caused some bound water to migrate to a semi-bound water state, improving the rheological properties of the dough and enhancing the texture characteristics of the noodles. When the added amount of CES was 24%, the cooking loss rate was 1.687%, and the highest sensory score was 86 points. Simulation of starch in vitro digestion revealed that the hydrolysis rate of starch first increased and then decreased with the increase of CES addition, with the highest proportion of resistant starch content ranging from 44.27% to 79.66%. Compared with the control group, the expected glycemic index decreased after adding CES. CONCLUSION These results assist in realization of comprehensive utilization of Canna edulis resources for the production of noodles with desirable qualities. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng Cao
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| | - Chang Liu
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| | - Zhou Zhou
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| | - Wenqia Li
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
| | - Jianfang Li
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| |
Collapse
|
5
|
Xue H, Gao H, Fang S, Hao Z, Liao X, Tan J. Understanding the role of Radix Paeoniae Alba polysaccharide for corn starch gel amelioration: Physicochemical, structural, and digestive properties. Int J Biol Macromol 2025; 295:139564. [PMID: 39778828 DOI: 10.1016/j.ijbiomac.2025.139564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/15/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
To ameliorate the limitations of corn starch (CS) processing, Radix Paeoniae Alba polysaccharide (RPAP) was used to modulate the physicochemical and digestive properties of CS. The main purpose of this paper is to investigate the effects of RPAP on the pasting, rheological, thermal, structural, and digestive properties of CS. The results show that the addition of RPAP could increase the peak viscosity and final viscosity of CS gel, and RPAP could increase the apparent viscosity, storage modulus, loss modulus, hardness, and strength of CS gel, implying that RPAP can effectively improve the pasting and viscoelasticity properties of CS. Moreover, RPAP could be bound to CS through non-covalent interaction, and RPAP could improve the relative crystallinity and thermal stability, whereas decreased the spin relaxation time (T2) of CS from 312.16 to 203.25 ms. The microstructure of CS-RPAP gels showed a honeycomb-like porous structure, and RPAP could increase the pore size and thickness of CS-RPAP gels. Furthermore, RPAP could inhibit the digestibility of CS, while increased the resistant starch (RS) content. The findings can provide important references for expanding the application of starch-based products in various fields including food industry, pharmaceuticals, textiles, papermaking, and biodegradable materials.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
6
|
Zhang S, Wang Z, Wang L, Tian H, Zhang D, Li M, Mei S, Huang J, Zhang X. Mechanism of multiscale structural reassembly controlled by molecular chains during amylase digestion of wheat starch. Int J Biol Macromol 2024; 285:138172. [PMID: 39626814 DOI: 10.1016/j.ijbiomac.2024.138172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The digestive characteristics of wheat starch (WS) are closely related to its structure. However, the mechanisms underlying the multiscale structural evolution and reassembly controlled by molecular chains during digestion are poorly understood. To address this issue, amylopectin of wheat starch (APWS) and amylose of wheat starch (AMWS) were separated and digested in vitro. After digestion, chains in WS with a degree of polymerization (DP) < 12 or DP > 37 were degraded, the double-helix content decreased from 58.65 % to 48.77 %, and many particles were degraded. For APWS, the DP > 36 chains increased, the B-type crystallinity increased to 9.55 %, and the particles were transformed into new aggregated structures. For AMWS, the number of 18 < DP < 270 chains was increased, the double-helix content increased from 19.78 % to 37.92 %, the B-type crystallinity increased from 6.65 % to 19.40 %, and a dense granular structure was formed. Overall, our study confirmed that WS, APWS, and AMWS had distinct multiscale structural reassembly mechanisms during in vitro digestion. The DP > 36 chains in APWS and 18 < DP < 270 chains in AMWS were the primary contributors to the formation of enzyme-resistant multiscale structures. This study can serve as a theoretical basis for designing the WS multiscale structure using molecular chains to improve its nutritional value.
Collapse
Affiliation(s)
- Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Hailong Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Meijuan Li
- Henan Guode Standard Testing Technology Co., LTD, Zhengzhou 451100, China
| | - Shenlin Mei
- Lotus Holdings Co., LTD, Xiangcheng 466200, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China; Collaborative Innovation Center of Functional Food Green Manufacturing Henan Province, School of Food and Pharmacy, Xuchang University, Xuchang 461000, China.
| | - Xinrui Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
7
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
8
|
Huang Z, Feng W, Zhang T, Miao M. Structure and functional characteristics of starch from different hulled oats cultivated in China. Carbohydr Polym 2024; 330:121791. [PMID: 38368094 DOI: 10.1016/j.carbpol.2024.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/19/2024]
Abstract
This work aimed to evaluate the structure and functional characteristics of starch from ten hulled oat cultivars grown in different locations in China. The protein, phosphorus, amylose, and starch contents were 0.2-0.4 %, 475.7-691.8 ppm, 16.2-23.0 %, and 93.6-96.7 %, respectively. All the starches showed irregular polygonal shapes and A-type crystallization with molecular weights ranging from 7.2 × 107 to 4.5 × 108 g/mol. The amounts of amylopectin A (DP 6-12), B1 (DP 13-24), B2 (DP 25-36), and B3 (DP > 36) chains were in the ranges of 10.3-16.0 %, 54.5-64.8 %, 16.5-21.1 %, and 4.9-13.1 %, respectively. The starches differed significantly in gelatinization temperatures, pasting viscosity, solubility, swelling power, rheological properties, and digestion parameters. The results revealed that the larger particle size could increase the peak viscosity of the starch paste. The presence of phosphorus increased the gelatinization temperature and enhanced the resistant starch content. The starch granules with higher crystallinity contained a higher proportion of phosphate, which increased final viscosity and setback viscosity but decreased rapidly digestible starch. Overall, oat starch with a high phosphorus content could be used to prepare low-glycemic-index food for diabetes patients.
Collapse
Affiliation(s)
- Zhihao Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Wenjuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Wang Z, Qu L, Li J, Niu S, Guo J, Lu D. Effects of exogenous salicylic acid on starch physicochemical properties and in vitro digestion under heat stress during the grain-filling stage in waxy maize. Int J Biol Macromol 2024; 254:127765. [PMID: 38287575 DOI: 10.1016/j.ijbiomac.2023.127765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Waxy maize starch serves as a pivotal component in global food processing and industrial applications, while high temperature (HT) during the grain-filling stage seriously affects its quality. Salicylic acid (SA) has been recognized for its role in enhancing plant heat resistance. Nonetheless, its regulatory effect on the quality of waxy maize starch under HT conditions remains unclear. In this study, two waxy maize varieties, JKN2000 (heat-tolerant) and SYN5 (heat-sensitive) were treated with SA after pollination and then subjected to HT during the grain-filling stage to explore the effect of SA on grain yield and starch quality. The results indicate that exogenous SA under HT treatment led to an increase in kernel weight and starch content in both varieties. Moreover, SA reduced the HT-induced holes on the surfaces of starch granules, enlarged the starch granule size, elevated the amylopectin branching degree, and reduced amylopectin average chain length. Consequently, improvements of pasting viscosity and the decrease of retrogradation percentage of starch were observed with SA under HT. Exogenous SA reduced HT-induced rapidly digestible starch content in SYN5, but had no significant effect on that in JKN2000. In summary, SA pretreatment effectively alleviated the detrimental effects of HT on starch pasting and thermal properties of waxy maize.
Collapse
Affiliation(s)
- Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
10
|
Zhang Y, Xing B, Kong D, Gu Z, Yu Y, Zhang Y, Li D. Improvement of in vitro digestibility and thermostability of debranched waxy maize starch by sequential ethanol fractionation. Int J Biol Macromol 2024; 254:127895. [PMID: 37931861 DOI: 10.1016/j.ijbiomac.2023.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
This study aimed to improve the in vitro digestibility and thermostability of debranched waxy maize starch (DWMS) by sequential fractionation. Waxy maize starch was debranched by pullulanase, followed by sequential precipitation through controlling the ratio of starch supernatants to ethanol at 1:0.5, 1:1, and 1:1.5 (v/v). Subsequently the structural, thermal, in vitro digestive properties of DWMS were investigated. In vitro digestion results showed that the secondary ethanol fractionation of 1:1 on the basis of the initial fractionation (1:0.5) induced a significant higher amount of slowly digestive starch (SDS, 30.0 %) and resistant starch (RS, 58.6 %) amongst all three fractions, along with the highest peak temperature (Tp, 106.4 °C) and the highest decomposition value (Td, 310.0 °C) in calorimetric (DSC) and thermogravimetry (TGA) measurements. Chain length distribution, surface morphology, and laser confocal micro-Raman spectroscopy (LCM-Raman) analyses revealed that medium (degree of polymerization, DP 13- 36) and long chains (DP ≥37) respectively constituting 72.0 % and 10.2 % of DWMS resulted in the formation of spheroidal crystallites with higher homogeneity and more ordered short-range structures. Overall, this work confirmed that ethanol fractionation is an efficient method for improving the in vitro digestibility and heat stability of waxy maize starch.
Collapse
Affiliation(s)
- Yao Zhang
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Baofang Xing
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China
| | - Degui Kong
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Research Workstation, Tsui Heung Yuen Healthy Food Co., Ltd, 528437 Zhongshan, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
11
|
Ma S, Liu Y, Dong W, Ma W, Li Y, Luo H. Comparison of structures and properties of gels formed by corn starch with fresh or dried Mesona chinensis polysaccharide. Curr Res Food Sci 2023; 8:100665. [PMID: 38188651 PMCID: PMC10767276 DOI: 10.1016/j.crfs.2023.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Starch is a major dietary carbohydrate, but its digestion properties need to be improved. Mesona chinensis polysaccharides (MCPs) had a unique function in improving the flocculation performance of starch. This study investigated the effects of adding Mesona chinensis polysaccharide extracted from wet fresh and dry plants with one-year storage, namely WMCP and DMCP, on the physicochemical properties and digestion kinetics of corn starch(CS). The composition analysis showed both WMCP and DMCP were an acidic heteropolysaccharide rich in galacturonic acid and galactose, whereas showed different average main fraction molecular weights (Mw) of 47.36 kDa and 42.98 kDa, respectively. In addition, WMCP showed higher yield, purity and better physicochemical properties to CS than DWCP. Thermal analysis showed WMCP decreased more gelatinization temperatures and enthalpy of CS, and increased more freeze-thaw stability, water holding capacity, and textural parameters of CS gels than DMCP. Structural analysis revealed WMCP induced more changes in crystallinity, short-range order, and microstructure of CS, which inhibited retrogradation than DMCP. In vitro digestion assays demonstrated WMCP addition significantly increased higher resistant starch content by altering starch-starch and starch-MCP interactions than DWCP. Overall, MCPs addition beneficially modulated CS properties and digestion kinetics, providing a novel way to improve starch functionalities. Moreover, WMCP had more advantages to be chosen to form hydrocolloid with CS than DMCP.
Collapse
Affiliation(s)
- Shengjian Ma
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yijun Liu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
| | - Wei Dong
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Wenxin Ma
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yanxia Li
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Hao Luo
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| |
Collapse
|
12
|
Wang C, Fang S, Ren C, Huang C, Zhu H, Zhang X, Zhao J. Cross-linked modifications of starches from colored highland barley and their characterizations, digestibility, and lipolysis inhibitory abilities in vitro. Food Res Int 2023; 174:113493. [PMID: 37986410 DOI: 10.1016/j.foodres.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
To promote the stability and functionality of native starch from colored highland barley (CHBS), the cross-linked modifications with sodium trimetaphosphate (STMP)/sodium tripolyphosphate (STPP) and citric acid were conducted to prepare CHB resistant starches (CHRSs), whose physicochemical characteristics, digestibility, and lipolysis inhibitory potential were also assessed. Results showed that the resistant starch amounts in CHBS were significantly increased after cross-linking and differed slightly among CHRSs. Citric acid modification of CHBS resulted in significantly higher amylose amounts, solubilities, swelling powers, and water-binding capacities than those under STMP/STPP modification within the cultivars (p < 0.05), with their crystalline patterns of A-type (white and blue) and CB-type (black). STMP/STPP modified CHBS exhibited higher degrees of crystalline regions with B-type crystalline patterns. Due to the differences in structural properties and structure-based morphology, STMP/STPP cross-linked CHBS showed lower digestibility and citric acid cross-linked CHBS exhibited higher lipolysis inhibitory activities. Besides, the cross-linked modifications demonstrated more enhancements in functionalities of starches from white and blue cultivars than black cultivar.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Shijie Fang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chengjie Ren
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chuansheng Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Haoze Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoyu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiayu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
13
|
Tao J, Wan C, Leng J, Dai S, Wu Y, Lei X, Wang J, Yang Q, Wang P, Gao J. Effects of biochar coupled with chemical and organic fertilizer application on physicochemical properties and in vitro digestibility of common buckwheat (Fagopyrum esculentum Moench) starch. Int J Biol Macromol 2023; 246:125591. [PMID: 37385316 DOI: 10.1016/j.ijbiomac.2023.125591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Common buckwheat starch, a functional ingredient, has wide food and non-food applications. Excessive chemical fertilizer application during grain cultivation decreases quality. This study examined the effects of different combinations of chemical fertilizer, organic fertilizer, and biochar treatment on the physicochemical properties and in vitro digestibility of starch. The amendment of both organic fertilizer and biochar was observed to have a greater impact on the physicochemical properties and in vitro digestibility of common buckwheat starch in comparison to organic fertilizer amendment solely. The combined application of biochar, chemical, and organic nitrogen in an 80:10:10 ratio significantly increased the amylose content, light transmittance, solubility, resistant starch content, and swelling power of the starch. Simultaneously, the application reduced the proportion of amylopectin short chains. Additionally, this combination decreased the size of starch granules, weight-average molecular weight, polydispersity index, relative crystallinity, pasting temperature, and gelatinization enthalpy of the starch compared to the utilization of chemical fertilizer alone. The correlation between physicochemical properties and in vitro digestibility was analyzed. Four principal components were obtained, which accounted for 81.18 % of the total variance. These findings indicated that the combined application of chemical fertilizer, organic fertilizer, and biochar would improve common buckwheat grain quality.
Collapse
Affiliation(s)
- Jincai Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiajun Leng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Shuangrong Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yixin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xinhui Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiale Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Fabrication of octenyl succinic anhydride starch grafted with folic acid and its loading potential for doxorubicin hydrochloride. Int J Biol Macromol 2023; 236:123907. [PMID: 36870656 DOI: 10.1016/j.ijbiomac.2023.123907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, octenyl succinic anhydride (OSA) starch with different folic acid (FA) grafting time was prepared and the degree of FA substitution at different grafting time was determined. The results of XPS quantitatively reflected the surface elemental composition of OSA starch grafted with FA. FTIR spectra further confirmed the successful introduction of FA on OSA starch granules. SEM images showed that the surface roughness of OSA starch granules was more obvious with higher FA grafting time. The particle size, zeta potential, and swelling properties were determined to study the effect of FA on the structure of OSA starch. TGA indicated that FA effectively enhanced the thermal stability of OSA starch at high temperature. The crystalline form of the OSA starch gradually transformed from A type to a hybrid A and V-type with the progress of FA grafting reaction. In addition, the anti-digestive properties of OSA starch were enhanced after grafting FA. Using doxorubicin hydrochloride (DOX) as the model drug, the loading efficiency of OSA starch grafted with FA for DOX reached 87.71 %. These results provide novel insights into OSA starch grafted with FA as potential strategy for loading DOX.
Collapse
|
15
|
Duan X, Guan Y, Dong H, Yang M, Chen L, Zhang H, Naeem A, Zhu W. Study on structural characteristics and physicochemical properties of starches extracted from three varieties of kudzu root (Pueraria lobata starch). J Food Sci 2023; 88:1048-1059. [PMID: 36704896 DOI: 10.1111/1750-3841.16472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023]
Abstract
Kudzu root (Pueraria lobata) is well known for its traditional use as a medicinal food homologous plant in China. Three varieties of kudzu roots, such as Gange-1, Gange-2, and Gange-6, are commonly used. Nowadays, kudzu starch (KS) is commercially available as satiating foods or product ingredients. Differentiation and selection of the variety are important components of quality control for KS-based products. Thus, the present work was aimed at comparing the physicochemical properties, such as thermodynamic properties, pasting properties, solubility, swelling, as well as the structural characteristics of the starches extracted from the three varieties of kudzu roots. The results show that KS-6 has a higher content of functional ingredients thus can be used as an ideal functional starch. However, KS-6 has a higher amylopectin:amylose ratio of 4.65, resulting in a better solubility, higher transition temperature, and higher gelatinization enthalpy. KS-2 showed lower transition temperature and gelatinization enthalpy, as well as higher peak viscosity, through viscosity, and final viscosity. KS-1 could result in a soft texture after pasting. The appropriate variety of KS should be differentiated and selected according to application scenarios. This study provided valuable insights into the potential use of different KS in the food and nonfood industries. PRACTICAL APPLICATION: 1. KS-1 was found to be suitable for use as a food supplement. 2. KS-6 has the highest nutritional value. 3. They can be used as a substitute for other similar starches.
Collapse
Affiliation(s)
- Xuantong Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huanhuan Dong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.,Research and Development Center, Jiangxi Pharmaceutical Research Institute, Nanchang, China
| | - Mei Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
16
|
Guo T, Zheng B, He H, Chen L. Effects of non-covalent binding of lignans with rice starch driven by high-pressure homogenization on the starch structure and in vitro nutritional characteristics. Food Funct 2022; 13:9243-9253. [PMID: 36000543 DOI: 10.1039/d2fo00798c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a type of phytoestrogen, lignans have attracted attention in recent years for their nutritional functions. To investigate the effects of lignans on the structural and nutritional functions of starch, honokiol (HK) and arctiin (AC) were complexed with rice starch respectively under high-pressure homogenization (UHPH) (UHPHRS/HK and UHPHRS/AC). The results showed that both HK and AC could form inclusive complexes with rice starch via non-covalent bonding (hydrophobic interaction and hydrogen bonds), and these complexes could further form V-type crystals and aggregates, which reduced the starch digestibility as well as endowing them with the ability to retard glucose release and bind sodium cholate. Interestingly, due to its smaller molecular size, HK could induce starch to form a more compact structure than AC, leading to better nutritional functions. When the addition of HK/AC reached 8%, the resistant starch content could reach 26% and 19.8%, respectively. Meanwhile, the glucose dialysis retardation index could increase to 17.2% and 14.8%, respectively, and the sodium cholate-binding capacity could increase to 33.1 mg g-1 and 21.8 mg g-1, respectively. These results demonstrated that UHPH with lignans' molecular interaction could be beneficial for controlling the nutritional functions of starch products with the desired digestibility.
Collapse
Affiliation(s)
- Tianli Guo
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hai He
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
17
|
Zhang Y, Junejo SA, Zhang B, Fu X, Huang Q. Multi-scale structures and physicochemical properties of waxy starches from different botanical origins. Int J Biol Macromol 2022; 220:692-702. [PMID: 35998850 DOI: 10.1016/j.ijbiomac.2022.08.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
The multi-scale structures and physicochemical relationships of three different types of waxy starches (maize, tapioca, and potato) were investigated. The maize and tapioca starches exhibited A-type crystalline polymorph compared to potato starch (B-type). The WMS showed higher amorphous content (5.56 %) than other waxy starches. The WTS exhibited a low tendency of retrogradation with its high fa (DP 6-12) and low fb3 (DP ≥ 37) proportion of chains. Double helix content of WPS was observed highest with a high pasting viscosity (952.3 BU). Low fa (DP 6-12) and high fb3 (DP ≥ 37) chain proportions of the WPS retrograded easily. The compactness of the semi-crystalline aggregation structure influenced the retrogradation properties of waxy starches with a positive correlation. Furthermore, the peak viscosity of pastes was correlated with the proportion of fb3 (DP ≥ 37) chains, mass fractal dimension, and double helix content. The results provide guidance to design the application of waxy starches in the production of clean-labels.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
18
|
Increasing agar content improves the sol-gel and mechanical features of starch/agar binary system. Carbohydr Polym 2022; 278:118906. [PMID: 34973727 DOI: 10.1016/j.carbpol.2021.118906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022]
Abstract
Starch/agar systems are highly potential for versatile applications such as packaging and biomedical materials. Here, how combined factors affect the features of a starch/agar binary system were explored. An increase of starch amylose/amylopectin ratio from 0/100 to 50/50 increased the sol-gel transition temperature and gel hardness of the aqueous starch/agar mixture. An increased agar content (mainly from 30% to 70%) allowed increases in both the tensile strength (reaching 50-60 MPa) and elongation at break of the starch/agar binary films. This phenomenon should be related to the strengthened crystalline structure and the weakened hydrogen bonding between starch chains (reflected by infrared spectroscopy). Furthermore, a higher relative humidity (from 30% to 70%) allowed enhanced chain interactions and probably nanoscale molecular order but weakened the crystalline structure, leading to reduced tensile strength and increased elongation at break. This work could facilitate the design of starch/agar binary systems with improved sol-gel and mechanical performance.
Collapse
|
19
|
Fan L, Ye Q, Lu W, Chen D, Zhang C, Xiao L, Meng X, Lee YC, Wang HMD, Xiao C. The properties and preparation of functional starch: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lvting Fan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qin Ye
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Di Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lihan Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xianghe Meng
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yi-Chieh Lee
- Department of Life Science, National Chung Hsing University, Taichung City, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Process optimization, digestibility and antioxidant activity of extruded rice with Agaricus bisporus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Zheng B, Guo X, Tang Y, Chen L, Xie F. Development changes in multi-scale structure and functional properties of waxy corn starch at different stages of kernel growth. Int J Biol Macromol 2021; 191:335-343. [PMID: 34560147 DOI: 10.1016/j.ijbiomac.2021.09.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022]
Abstract
Waxy corn starch is widely used in food and papermaking industries due to its unique properties. In this work, the structural and functional properties of starch isolated from waxy corn at different stages of kernel growth were investigated and their relationships were clarified. The results showed that with kernel growth, the surface of starch granules became smooth gradually, and the inner growth rings and the porous structure grew and became clear. Meanwhile, the weight-average molecular mass (Mw), root mean square radius (Rg), and average particle size increased while the amylose content decreased, which should account for the decreased pasting temperature (from 71.37 to 67.44 °C) and increased peak viscosity (1574.2 to 1883.1 cp) and breakdown value observed. Besides, the contents of slowly digestible starch (SDS) and resistant starch (RS) in waxy corn starch decreased significantly (from 44.01% to 40.88% and from 16.73% to 9.80%, respectively, p < 0.05) due to decreases in the double helix content, crystallinity, and structural order, and increases in the semi-crystalline lamellae thickness and the amorphous content. This research provides basic data for the rational utilization of waxy corn starch at different stages of kernel growth.
Collapse
Affiliation(s)
- Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinbo Guo
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yukuo Tang
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
22
|
Wang C, Xu Y, Yu B, Xiao A, Su Y, Guo H, Zhang H, Zhang L. Analysis of Sour Porridge Microbiota and Improvement of Cooking Quality via Pure Culture Fermentation Using Lacticaseibacillus paracasei Strain SZ02. Front Microbiol 2021; 12:712189. [PMID: 34512590 PMCID: PMC8428527 DOI: 10.3389/fmicb.2021.712189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The microbial composition of sour porridge at different fermentation times was analyzed through high-throughput sequencing, and a pure culture fermentation process was established to optimize production process and improve the edible quality of the porridge. In natural fermentation, Firmicutes and Proteobacteria were abundant throughout the process. Specifically, Aeromonas, Acinetobacter, and Klebsiella were dominant on fermentation days 1–5 (groups NF-1, NF-3, and NF-5), while Lactobacillus and Acetobacter gradually became the dominant bacteria on fermentation day 7 (group NF-7). Further, we isolated one strain of acid-producing bacteria from sour porridge, identified as Lacticaseibacillus paracasei by 16SrRNA sequencing and annotated as strain SZ02. Pure culture fermentation using this strain significantly increased the relative starch and amylose contents of the porridge, while decreasing the lipid, protein, and ash contents (P < 0.05). These findings suggest that sour porridge produced using strain SZ02 has superior edible qualities and this strategy may be exploited for its industrial production.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yunhe Xu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Bin Yu
- Department of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Aibo Xiao
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Yuhong Su
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Haonan Guo
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Huajiang Zhang
- Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Lili Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
23
|
Wang Y, Qian J, Liu D, Sun M, Chen H, Kong X, Qiu D. Cluster and building block structure of amylopectin from waxy maize starch. Cereal Chem 2021. [DOI: 10.1002/cche.10404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yajuan Wang
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Jin Qian
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Di Liu
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Mengwen Sun
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Hui Chen
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Dan Qiu
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| |
Collapse
|
24
|
In vitro digestibility and structural control of rice starch-unsaturated fatty acid complexes by high-pressure homogenization. Carbohydr Polym 2021; 256:117607. [PMID: 33483084 DOI: 10.1016/j.carbpol.2020.117607] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
This study emphasized on structural alteration of rice starch-unsaturated fatty acid complexes by adding trans-2-dodecaenoic acid (t12), trans-oleic acid (t18), cis-oleic acid (c18) and linoleic acid (loa) with different concentration under high-pressure homogenization treatment, and further illustrated the underlying mechanism of modulating digestibility. Results showed that the complex primarily presented as V6 or type IIa polymorph; complex index, content of ordered structure and thermal stability appeared to be positively correlated to the concentration of unsaturated fatty acids. t12 was too mobile to form single helix, leading to the formation of loose matrix; t18 fitted better within the cavity of starch than c18, and formed structural domain with higher compactness and thermal stability; Rloa had lower complex index but higher degree of short-range order, and tended to form alternating amorphous and crystalline structure. The digestibility was higher in the order of Rloa, Rt18, Rc18 and Rt12.
Collapse
|
25
|
Luo Y, Han X, Shen M, Yang J, Ren Y, Xie J. Mesona chinensis polysaccharide on the thermal, structural and digestibility properties of waxy and normal maize starches. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem 2020; 315:126267. [DOI: 10.1016/j.foodchem.2020.126267] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
|