1
|
Kwokdinata C, Chai K, Lau K, Tan J, Chew SY. Bioprinted Microchannel Scaffolds Modulate Neuronal Differentiation of Encapsulated Human Spinal Cord Progenitor Cells. ACS APPLIED BIO MATERIALS 2025; 8:4337-4350. [PMID: 40312827 DOI: 10.1021/acsabm.5c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A potential approach for treating spinal cord injuries is the implantation of human induced pluripotent stem cells-derived spinal cord progenitor cells (SCPCs) encapsulated in hydrogels. Digital light processing (DLP) enables the fabrication of scaffolds with high microchannel packing density, which are essential for neurofilament infiltration. In this study, SCPCs were encapsulated in gelatin methacrylate (GelMA)-based bioinks for single-layer printing via DLP bioprinting to incorporate human SCPCs within microchannel scaffolds at a reduced printing time. Mechanical properties were evaluated through degradation studies and compression testing, revealing that while the presence of poly(ethylene glycol) diacrylate improved printability and scaffold stability, it adversely affected cell survival. Scaffolds with higher GelMA concentration (10%) induced greater extent of motor neuronal differentiation as compared to those with 7.5% GelMA concentration (9.4 ± 5.1% vs 3.70 ± 2.6%, p < 0.001). In contrast, the scaffolds with lower GelMA concentration increased interneuron differentiation compared to those with higher GelMA concentration (7.3 ± 1.7% vs 1.6 ± 1.8%, p < 0.01), indicating that stiffness and GelMA content may modulate SCPC differentiation to specific neural subtypes. Overall, the encapsulation of SCPCs within the GelMA microchannel scaffold highlights the significance of material composition and stiffness in 3D printability and neuronal differentiation for spinal cord injury treatment.
Collapse
Affiliation(s)
- Christy Kwokdinata
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Kyra Chai
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Kieran Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jerome Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- HealthTech @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 PMCID: PMC11624878 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| |
Collapse
|
3
|
Kwokdinata C, Chew SY. Additive manufacturing in spatial patterning for spinal cord injury treatment. Adv Drug Deliv Rev 2025; 218:115523. [PMID: 39880332 DOI: 10.1016/j.addr.2025.115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Combinatorial treatments integrating cells and biomolecules within scaffolds have been investigated to address the multifactorial nature of spinal cord injury (SCI). Current regenerative treatments have been ineffective as they do not consider the spatial positions of various cell types to effectively form functional neural pathways. Emulating the complex heterogeneity of cells in the native spinal cord requires translating the existing biological understanding of spatial patterning in neural development, as well as the influence of biomolecule and mechanical patterning on regional specification and axonal regeneration, to engineer a scaffold for spinal cord regeneration. This review explores the potential of 3D bioprinting to precisely control material, cell and drug patterns in scaffolds, achieving spatial phenotype specification and providing axonal guidance to form appropriate connections. We also discuss the application of extrusion-based and digital light processing bioprinting in integrating mechanical, chemical and biological cues within a scaffold to advance spatially patterned 3D bioprinted scaffold, as well as current challenges and future perspectives in these bioengineering strategies.
Collapse
Affiliation(s)
- Christy Kwokdinata
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore; Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise 138602 Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University 308232 Singapore; School of Materials Science and Engineering 639798 Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433 Singapore.
| |
Collapse
|
4
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024; 189:57-72. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
5
|
Chang FC, James MM, Zhou Y, Ando Y, Zareie HM, Yang J, Zhang M. Human Neural Stem Cell Expansion in Natural Polymer Scaffolds Under Chemically Defined Condition. Adv Biol (Weinh) 2024; 8:e2400224. [PMID: 38963310 DOI: 10.1002/adbi.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Matthew Michael James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoshiki Ando
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu, Shiga, 520-2362, Japan
| | - Hadi M Zareie
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
Wang Z, Li J, Xu T, Guo B, Xie Z, Li M. The Efficacy of Different Material Scaffold-Guided Cell Transplantation in the Treatment of Spinal Cord Injury in Rats: A Systematic Review and Network Meta-analysis. Cell Mol Neurobiol 2024; 44:43. [PMID: 38703332 PMCID: PMC11069479 DOI: 10.1007/s10571-024-01465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/23/2024] [Indexed: 05/06/2024]
Abstract
Cell transplantation is a promising treatment option for spinal cord injury (SCI). However, there is no consensus on the choice of carrier scaffolds to host the cells. This study aims to evaluate the efficacy of different material scaffold-mediated cell transplantation in treating SCI in rats. According to PRISMA's principle, Embase, PubMed, Web of Science, and Cochrane databases were searched, and relevant literature was referenced. Only original research on cell transplantation plus natural or synthetic scaffolds in SCI rats was included. Direct and indirect evidence for improving hind limb motor function was pooled through meta-analysis. A subgroup analysis of some factors that may affect the therapeutic effect was conducted to understand the results fully. In total, 25 studies met the inclusion criteria, in which 293 rats received sham surgery, 78 rats received synthetic material scaffolds, and 219 rats received natural materials scaffolds. The network meta-analysis demonstrated that although synthetic scaffolds were slightly inferior to natural scaffolds in terms of restoring motor function in cell transplantation of SCI rats, no statistical differences were observed between the two (MD: -0.35; 95% CI -2.6 to 1.9). Moreover, the subgroup analysis revealed that the type and number of cells may be important factors in therapeutic efficacy (P < 0.01). Natural scaffolds and synthetic scaffolds are equally effective in cell transplantation of SCI rats without significant differences. In the future, the findings need to be validated in multicenter, large-scale, randomized controlled trials in clinical practice. Trial registration: Registration ID CRD42024459674 (PROSPERO).
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China
- Department of the Second Clinical Medical College of Nanchang University, No.460, BaYi Street, Nanchang, 330006, Jiangxi Province, China
| | - Tianqi Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China
- Department of the Second Clinical Medical College of Nanchang University, No.460, BaYi Street, Nanchang, 330006, Jiangxi Province, China
| | - Boyu Guo
- Department of the First Clinical Medical College of Nanchang University, No.460, BaYi Street, Nanchang, 330006, Jiangxi Province, China
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang, 330006, Jiangxi Province, China.
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi Province, China.
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Street, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
7
|
Huang A, Huang Y, Yang W, Wang L, You R, Wang J, Yan S, Zhang Q. Fabrication of multifunctional silk nanofibril/hyaluronic acid scaffold for spinal cord repair. Int J Biol Macromol 2024; 263:130287. [PMID: 38373567 DOI: 10.1016/j.ijbiomac.2024.130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Bioactive scaffolds accurately mimicking the structure and composition of the extracellular matrix have garnered significant interest in tissue engineering. In this study, we developed a platform utilizing natural silk nanofibrils, hyaluronic acid, and basic fibroblast growth factor for the purpose of promoting spinal cord regeneration by creating an optimal microenvironment. The bioactive scaffold exhibited notable characteristics such as high porosity and hydrophilicity, attributed to its unique nanostructure, high connectivity, and polysaccharide composition. Furthermore, the pore size of the scaffold can be adjusted within the range of 90 μm to 120 μm by varying the content of hyaluronic acid. In vitro, human umbilical vein endothelial cells were seeded into the scaffold, demonstrating enhanced cell viability. The scaffold facilitated cell proliferation and migration. In vivo experiments on rats indicated that the scaffold had a beneficial impact on spinal cord regeneration, creating a conducive environment for motor function recovery of the rats. This effect may be attributed to the scaffold's ability to stimulate axon growth and neuronal survival, as well as inhibit the formation of glial scars, as evidenced by the decreased expression of growth associated protein-43, microtubule-associated protein 2, and neurofilament-200. This study presents a promising method to develop a feasible bioscaffold for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Ao Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ying Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wenjing Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiannan Wang
- Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China.
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
8
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
9
|
Yang Y, Fan R, Li H, Chen H, Gong H, Guo G. Polysaccharides as a promising platform for the treatment of spinal cord injury: A review. Carbohydr Polym 2024; 327:121672. [PMID: 38171685 DOI: 10.1016/j.carbpol.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Spinal cord injury is incurable and often results in irreversible damage to motor function and autonomic sensory abilities. To enhance the effectiveness of therapeutic substances such as cells, growth factors, drugs, and nucleic acids for treating spinal cord injuries, as well as to reduce the toxic side effects of chemical reagents, polysaccharides have been gained attention due to their immunomodulatory properties and the biocompatibility and biodegradability of polysaccharide scaffolds. Polysaccharides hold potential as drug delivery systems in treating spinal cord injuries. This article aims to present an extensive evaluation of the potential applications of polysaccharide materials in scaffold construction, drug delivery, and immunomodulation over the past five years so that offering new directions and opportunities for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Yuanli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Xie C, Xu J, Wang X, Jiang S, Zheng Y, Liu Z, Jia Z, Jia Z, Lu X. Smart Hydrogels for Tissue Regeneration. Macromol Biosci 2024; 24:e2300339. [PMID: 37848181 DOI: 10.1002/mabi.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Indexed: 10/19/2023]
Abstract
The rapid growth in the portion of the aging population has led to a consequent increase in demand for biomedical hydrogels, together with an assortment of challenges that need to be overcome in this field. Smart hydrogels can autonomously sense and respond to the physiological/pathological changes of the tissue microenvironment and continuously adapt the response according to the dynamic spatiotemporal shifts in conditions. This along with other favorable properties, make smart hydrogels excellent materials for employing toward improving the precision of treatment for age-related diseases. The key factor during the smart hydrogel design is on accurately identifying the characteristics of natural tissues and faithfully replicating the composition, structure, and biological functions of these tissues at the molecular level. Such hydrogels can accurately sense distinct physiological and external factors such as temperature and biologically active molecules, so they may in turn actively and promptly adjust their response, by regulating their own biological effects, thereby promoting damaged tissue repair. This review summarizes the design strategies employed in the creation of smart hydrogels, their response mechanisms, as well as their applications in field of tissue engineering; and concludes by briefly discussing the relevant challenges and future prospects.
Collapse
Affiliation(s)
- Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jie Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xinyi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shengxi Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yujia Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zexin Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhuo Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhanrong Jia
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
11
|
Walsh CM, Wychowaniec JK, Costello L, Brougham DF, Dooley D. An In Vitro and Ex Vivo Analysis of the Potential of GelMA Hydrogels as a Therapeutic Platform for Preclinical Spinal Cord Injury. Adv Healthc Mater 2023; 12:e2300951. [PMID: 37114899 PMCID: PMC11468190 DOI: 10.1002/adhm.202300951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition with no curative therapy currently available. Immunomodulation can be applied as a therapeutic strategy to drive alternative immune cell activation and promote a proregenerative injury microenvironment. Locally injected hydrogels carrying immunotherapeutic cargo directly to injured tissue offer an encouraging treatment approach from an immunopharmacological perspective. Gelatin methacrylate (GelMA) hydrogels are promising in this regard, however, detailed analysis on the immunogenicity of GelMA in the specific context of the SCI microenvironment is lacking. Here, the immunogenicity of GelMA hydrogels formulated with a translationally relevant photoinitiator is analyzed in vitro and ex vivo. 3% (w/v) GelMA, synthesized from gelatin type-A, is first identified as the optimal hydrogel formulation based on mechanical properties and cytocompatibility. Additionally, 3% GelMA-A does not alter the expression profile of key polarization markers in BV2 microglia or RAW264.7 macrophages after 48 h. Finally, it is shown for the first time that 3% GelMA-A can support the ex vivo culture of primary murine organotypic spinal cord slices for 14 days with no direct effect on glial fibrillary acidic protein (GFAP+ ) astrocyte or ionized calcium-binding adaptor molecule 1 (Iba-1+ ) microglia reactivity. This provides evidence that GelMA hydrogels can act as an immunotherapeutic hydrogel-based platform for preclinical SCI.
Collapse
Affiliation(s)
- Ciara M. Walsh
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
- UCD Conway Institute of Biomolecular & Biomedical ResearchUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Jacek K. Wychowaniec
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
- AO Research Institute DavosClavadelerstrasse 8Davos7270Switzerland
| | - Louise Costello
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Dermot F. Brougham
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Dearbhaile Dooley
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
- UCD Conway Institute of Biomolecular & Biomedical ResearchUniversity College DublinBelfieldDublinD04 V1W8Ireland
| |
Collapse
|
12
|
Li Y, Cheng S, Wen H, Xiao L, Deng Z, Huang J, Zhang Z. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Acta Biomater 2023; 168:400-415. [PMID: 37479156 DOI: 10.1016/j.actbio.2023.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/24/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
After spinal cord injury (SCI), endogenous neural stem cells (NSCs) near the damaged site are activated, but few NSCs migrate to the injury epicenter and differentiate into neurons because of the harsh microenvironment. It has demonstrated that implantation of hydrogel scaffold loaded with multiple cues can enhance the function of endogenous NSCs. However, programming different cues on request remains a great challenge. Herein, a time-programmed linear hierarchical structure scaffold is developed for spinal cord injury recovery. The scaffold is obtained through coaxial 3D printing by encapsulating a dual-network hydrogel (composed of hyaluronic acid derivatives and N-cadherin modified sodium alginate, inner layer) into a temperature responsive gelatin/cellulose nanofiber hydrogel (Gel/CNF, outer layer). The reactive species scavenger, metalloporphyrin, loaded in the outer layer is released rapidly by the degradation of Gel/CNF, inhibiting the initial oxidative stress at lesion site to protect endogenous NSCs; while the inner hydrogel with appropriate mechanical support, linear topology structure and bioactive cues facilitates the migration and neuronal differentiation of NSCs at the later stage of SCI treatment, thereby promoting motor functional restorations in SCI rats. This study offers an innovative strategy for fabrication of multifunctional nerve regeneration scaffold, which has potential for clinical treatment of SCI. STATEMENT OF SIGNIFICANCE: Two major challenges facing the recovery from spinal cord injury (SCI) are the low viability of endogenous neural stem cells (NSCs) within the damaged microenvironment, as well as the difficulty of neuronal regeneration at the injured site. To address these issues, a spinal cord-like coaxial scaffold was fabricated with free radical scavenging agent metalloporphyrin Mn (III) tetrakis (4-benzoic acid) porphyrin and chemokine N-cadherin. The scaffold was constructed by 3D bioprinting for time-programmed protection and modulation of NSCs to effectively repair SCI. This 3D coaxially bioprinted biomimetic construct enables multi-factor on-demand repair and may be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Huilong Wen
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Longyi Xiao
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
13
|
Sorouri F, Hosseini P, Sharifzadeh M, Kiani S, Khoobi M. In Situ Cross-Linkable Hyaluronic-Ferulic Acid Conjugate Containing Bucladesine Nanoparticles Promotes Neural Regeneration after Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42251-42270. [PMID: 37647536 DOI: 10.1021/acsami.3c08366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Dysfunctional clinical outcomes following spinal cord injury (SCI) result from glial scar formation, leading to the inhibition of new axon growth and impaired regeneration. Nevertheless, nerve regeneration after SCI is possible, provided that the state of neuron development in the injured environment is improved. Hence, biomaterial-based therapy would be a promising strategy to endow a desirable environment for tissue repair. Herein, we designed a novel multifunctional injectable hydrogel with antioxidant, neuroprotective, and neuroregenerative effects. Bucladesine-encapsulated chitosan nanoparticles (BCS NPs) were first prepared and embedded in a matrix of thiol-functionalized hyaluronic acid modified with ferulic acid (HASH-FA). The target hydrogel (HSP-F/BCS) was then created through Michael-type addition between HASH-FA containing BCS NPs and four-arm polyethylene glycol-maleimide (4-Arm-PEG-Mal). The obtained hydrogel with shear thinning behavior showed viscoelastic and mechanical properties similar to the normal nerve tissue. FA conjugation significantly improved the antioxidant activity of HA, and suppressed intracellular ROS formation. In situ injection of the HSP-F/BCS hydrogel in a rat contusion model of SCI inhibited glial scar progression, reduced microglia/macrophage infiltration, promoted angiogenesis, and induced myelinated axon regeneration. As a result, a significant improvement in motor performance was observed compared to other experimental groups. Taken together, the HSP-F/BCS hydrogel developed in this study could be a promising system for SCI repair.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran 14176-14411, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Parastoo Hosseini
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran 14176-14411, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| |
Collapse
|
14
|
Liu T, Zhang Q, Li H, Cui X, Qi Z, Yang X. An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury. J Biol Eng 2023; 17:48. [PMID: 37488558 PMCID: PMC10367392 DOI: 10.1186/s13036-023-00368-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious injury with high mortality and disability rates, and there is no effective treatment at present. It has been reported that some treatments, such as drug intervention and stem cell transplantation have positive effects in promoting neurological recovery. Although those treatments are effective for nerve regeneration, many drawbacks, such as low stem cell survival rates and side effects caused by systemic medication, have limited their development. In recent years, injectable hydrogel materials have been widely used in tissue engineering due to their good biocompatibility, biodegradability, controllable properties, and low invasiveness. The treatment strategy of injectable hydrogels combined with stem cells or drugs has made some progress in SCI repair, showing the potential to overcome the drawbacks of traditional drugs and stem cell therapy. METHODS In this study, a novel injectable electroactive hydrogel (NGP) based on sodium hyaluronate oxide (SAO) and polyaniline-grafted gelatine (NH2-Gel-PANI) was developed as a material in which to load neural stem cells (NSCs) and donepezil (DPL) to facilitate nerve regeneration after SCI. To evaluate the potential of the prepared NGP hydrogel in SCI repair applications, the surface morphology, self-repairing properties, electrical conductivity and cytocompatibility of the resulting hydrogel were analysed. Meanwhile, we evaluated the neural repair ability of NGP hydrogels loaded with DPL and NSCs using a rat model of spinal cord injury. RESULTS The NGP hydrogel has a suitable pore size, good biocompatibility, excellent conductivity, and injectable and self-repairing properties, and its degradation rate matches the repair cycle of spinal cord injury. In addition, DPL could be released continuously and slowly from the NGP hydrogel; thus, the NGP hydrogel could serve as an excellent carrier for drugs and cells. The results of in vitro cell experiments showed that the NGP hydrogel had good cytocompatibility and could significantly promote the neuronal differentiation and axon growth of NSCs, and loading the hydrogel with DPL could significantly enhance this effect. More importantly, the NGP hydrogel loaded with DPL showed a significant inhibitory effect on astrocytic differentiation of NSCs in vitro. Animal experiments showed that the combination of NGP hydrogel, DPL, and NSCs had the best therapeutic effect on the recovery of motor function and nerve conduction function in rats. NGP hydrogel loaded with NSCs and DPL not only significantly increased the myelin sheath area, number of new neurons and axon area but also minimized the area of the cystic cavity and glial scar and promoted neural circuit reconstruction. CONCLUSIONS The DPL- and NSC-laden electroactive hydrogel developed in this study is an ideal biomaterial for the treatment of traumatic spinal cord injury.
Collapse
Affiliation(s)
- Tiemei Liu
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Qiang Zhang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Hongru Li
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, 130041, Changchun, PR China
| | - Zhiping Qi
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| | - Xiaoyu Yang
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| |
Collapse
|
15
|
Mullis AS, Kaplan DL. Functional bioengineered tissue models of neurodegenerative diseases. Biomaterials 2023; 298:122143. [PMID: 37146365 PMCID: PMC10209845 DOI: 10.1016/j.biomaterials.2023.122143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Aging-associated neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases remain poorly understood and no disease-modifying treatments exist despite decades of investigation. Predominant in vitro (e.g., 2D cell culture, organoids) and in vivo (e.g., mouse) models of these diseases are insufficient mimics of human brain tissue structure and function and of human neurodegenerative pathobiology, and have thus contributed to this collective translational failure. This has been a longstanding challenge in the field, and new strategies are required to address both fundamental and translational needs. Bioengineered tissue culture models constitute a class of promising alternatives, as they can overcome the low cell density, poor nutrient exchange, and long term culturability limitations of existing in vitro models. Further, they can reconstruct the structural, mechanical, and biochemical cues of native brain tissue, providing a better mimic of human brain tissues for in vitro pathobiological investigation and drug development. We discuss bioengineering techniques for the generation of these neurodegenerative tissue models, including biomaterials-, organoid-, and microfluidics-based approaches, and design considerations for their construction. To aid the development of the next generation of functional neurodegenerative disease models, we discuss approaches to incorporate greater cellular diversity and simulate aging processes within bioengineered brain tissues.
Collapse
Affiliation(s)
- Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
16
|
Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomater Sci Eng 2023. [PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
Collapse
Affiliation(s)
- Nur Hidayah Shahemi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Ain Najihah Asri
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Abid Amir
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Arif Kasri
- Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
17
|
Feng T, Zhao C, Rao JS, Guo XJ, Bao SS, He LW, Zhao W, Liu Z, Yang ZY, Li XG. Different macaque brain network remodeling after spinal cord injury and NT3 treatment. iScience 2023; 26:106784. [PMID: 37378337 PMCID: PMC10291247 DOI: 10.1016/j.isci.2023.106784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/29/2023] Open
Abstract
Graph theory-based analysis describes the brain as a complex network. Only a few studies have examined modular composition and functional connectivity (FC) between modules in patients with spinal cord injury (SCI). Little is known about the longitudinal changes in hubs and topological properties at the modular level after SCI and treatment. We analyzed differences in FC and nodal metrics reflecting modular interaction to investigate brain reorganization after SCI-induced compensation and neurotrophin-3 (NT3)-chitosan-induced regeneration. Mean inter-modular FC and participation coefficient of areas related to motor coordination were significantly higher in the treatment animals than in the SCI-only ones at the late stage. The magnocellular part of the red nucleus may reflect the best difference in brain reorganization after SCI and therapy. Treatment can enhance information flows between regions and promote the integration of motor functions to return to normal. These findings may reveal the information processing of disrupted network modules.
Collapse
Affiliation(s)
- Ting Feng
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, PR China
| | - Jia-Sheng Rao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Xiao-Jun Guo
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Shu-Sheng Bao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Le-Wei He
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, PR China
- Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Xiao-Guang Li
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| |
Collapse
|
18
|
Xin W, Baokun Z, Zhiheng C, Qiang S, Erzhu Y, Jianguang X, Xiaofeng L. Biodegradable bilayer hydrogel membranes loaded with bazedoxifene attenuate blood-spinal cord barrier disruption via the NF-κB pathway after acute spinal cord injury. Acta Biomater 2023; 159:140-155. [PMID: 36736849 DOI: 10.1016/j.actbio.2023.01.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Therefore, early restoration of the BSCB represents a key step in the treatment of SCI. Bazedoxifene (BZA), a third-generation estrogen receptor modulator, has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury, attracting great interest in the field of central nervous system injury and repair. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. Here, we developed a new type of biomaterial carrier and constructed a BZA-loaded HSPT (hyaluronic acid (HA), sodium alginate (SA), polyvinyl alcohol (PVA), tetramethylpropane (TPA) material construction) (HSPT@Be) system to effectively deliver BZA to the site of SCI. We found that HSPT@Be could significantly reduce inflammation in the spinal cord in SCI rats and attenuate BSCB disruption by providing covering scaffold, inhibiting oxidative stress, and upregulating tight junction proteins, which was mediated by regulation of the NF-κB/MMP signaling pathway. Importantly, functional assessment showed the evident improvement of behavioral functions in the HSPT@Be-treated SCI rats. These results indicated that HSPT@Be can attenuate BSCB disruption via the NF-κB pathway after SCI, shedding light on its potential therapeutic benefit for SCI. STATEMENT OF SIGNIFICANCE: After spinal cord injury, blood-spinal cord barrier disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Bazedoxifene has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. In this study, we developed a new type of biomaterial carrier and constructed a bazedoxifene-loaded HSPT (HSPT@Be) system to efficiently treat SCI. HSPT@Be could provide protective coverage, inhibit oxidative stress, and upregulate tight junction proteins through NF-κB/MMP pathway both in vivo and in vitro, therefore attenuating BSCB disruption. Our study fills the application gap of biomaterials in BSCB restoration.
Collapse
Affiliation(s)
- Wang Xin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Baokun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chen Zhiheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shi Qiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Erzhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xu Jianguang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Lian Xiaofeng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
19
|
Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res B Appl Biomater 2023; 111:701-716. [PMID: 36214332 DOI: 10.1002/jbm.b.35171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
The healing process for spinal cord injuries is complex and presents many challenges. Current advances in nerve regeneration are based on promising tissue engineering techniques, However, the chances of success depend on better mimicking the extracellular matrix (ECM) of neural tissue and better supporting neurons in a three-dimensional environment. The ECM provides excellent biological conditions, including desirable morphological features, electrical conductivity, and chemical compositions for neuron attachment, proliferation and function. This review outlines the rationale for developing a construct for neuron regrowth in spinal cord injury using appropriate biomaterials and scaffolding techniques.
Collapse
Affiliation(s)
| | - Hessam Hosseinkazemi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Radoszkiewicz K, Hribljan V, Isakovic J, Mitrecic D, Sarnowska A. Critical points for optimizing long-term culture and neural differentiation capacity of rodent and human neural stem cells to facilitate translation into clinical settings. Exp Neurol 2023; 363:114353. [PMID: 36841464 DOI: 10.1016/j.expneurol.2023.114353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Despite several decades of research on the nature and functional properties of neural stem cells, which brought great advances in regenerative medicine, there is still a plethora of ambiguous protocols and interpretations linked to their applications. Here, we present a whole spectrum of protocol elements that should be standardized in order to obtain viable cell cultures and facilitate their translation into clinical settings. Additionally, this review also presents outstanding limitations and possible problems to be encountered when dealing with protocol optimization. Most importantly, we also outline the critical points that should be considered before starting any experiments utilizing neural stem cells or interpreting their results.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Jasmina Isakovic
- Omnion Research International Ltd, Heinzelova 4, 10000 Zagreb, Croatia
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland.
| |
Collapse
|
21
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
22
|
Oligo (Poly (Ethylene Glycol) Fumarate)-Based Multicomponent Cryogels for Neural Tissue Replacement. Gels 2023; 9:gels9020105. [PMID: 36826275 PMCID: PMC9957547 DOI: 10.3390/gels9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Synthetic hydrogels provide a promising platform to produce neural tissue analogs with improved control over structural, physical, and chemical properties. In this study, oligo (poly (ethylene glycol) fumarate) (OPF)-based macroporous cryogels were developed as a potential next-generation alternative to a non-porous OPF hydrogel previously proposed as an advanced biodegradable scaffold for spinal cord repair. A series of OPF cryogel conduits in combination with PEG diacrylate and 2-(methacryloyloxy) ethyl-trimethylammonium chloride (MAETAC) cationic monomers were synthesized and characterized. The contribution of each component to viscoelastic and hydration behaviors and porous structure was identified, and concentration relationships for these properties were revealed. The rheological properties of the materials corresponded to those of neural tissues and scaffolds, according to the reviewed data. A comparative assessment of adhesion, migration, and proliferation of neuronal cells in multicomponent cryogels was carried out to optimize cell-supporting characteristics. The results show that OPF-based cryogels can be used as a tunable synthetic scaffold for neural tissue repair with advantages over their hydrogel counterparts.
Collapse
|
23
|
Liu H, Feng Y, Che S, Guan L, Yang X, Zhao Y, Fang L, Zvyagin AV, Lin Q. An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules 2023; 24:86-97. [PMID: 36512504 DOI: 10.1021/acs.biomac.2c00920] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) generally leads to long-term functional deficits and is difficult to repair spontaneously. Many biological scaffold materials and stem cell treatment strategies have been explored, but very little research focused on the method of combining exogenous neural stem cells (NSCs) with a biodegradable conductive hydrogel scaffold. Here, a NSC loaded conductive hydrogel scaffold (named ICH/NSCs) was assembled by amino-modified gelatin (NH2-Gelatin) and aniline tetramer grafted oxidized hyaluronic acid (AT-OHA). Desirably, the well-conducting ICH/NSCs can be simply injected into the target site of SCI for establishing a good electrical signal pathway of cells, and the proper degradation cycle facilitates new nerve growth. In vitro experiments indicated that the inherent electroactive microenvironment of the hydrogel could better manipulate the differentiation of NSCs into neurons and inhibit the formation of glial cells and scars. Collectively, the ICH/NSC scaffold has successfully stimulated the recovery of SCI and may provide a promising treatment strategy for SCI repair.
Collapse
Affiliation(s)
- Hou Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yubin Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songtian Che
- Department of Ocular Fundus Disease, The Second Hospital of Jilin University, Changchun 130022, P. R. China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinting Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130000, P. R. China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod 603105, Russia
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
25
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
26
|
Yousefifard M, Askarian-Amiri S, Nasseri Maleki S, Rafiei Alavi SN, Madani Neishaboori A, Haghani L, Vaccaro AR, Harrop JS, Lu Y, Rahimi-Movaghar V, Hosseini M. Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:3469-3488. [DOI: 10.1007/s10143-022-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
|
27
|
Oral administration of Lithium Chloride Ameliorate Spinal Cord Injury-Induced Hyperalgesia in Male Rats. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Hong IS. Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Front Cell Dev Biol 2022; 10:901661. [PMID: 35865629 PMCID: PMC9294278 DOI: 10.3389/fcell.2022.901661] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Stem cell-based therapeutics have gained tremendous attention in recent years due to their wide range of applications in various degenerative diseases, injuries, and other health-related conditions. Therapeutically effective bone marrow stem cells, cord blood- or adipose tissue-derived mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and more recently, induced pluripotent stem cells (iPSCs) have been widely reported in many preclinical and clinical studies with some promising results. However, these stem cell-only transplantation strategies are hindered by the harsh microenvironment, limited cell viability, and poor retention of transplanted cells at the sites of injury. In fact, a number of studies have reported that less than 5% of the transplanted cells are retained at the site of injury on the first day after transplantation, suggesting extremely low (<1%) viability of transplanted cells. In this context, 3D porous or fibrous national polymers (collagen, fibrin, hyaluronic acid, and chitosan)-based scaffold with appropriate mechanical features and biocompatibility can be used to overcome various limitations of stem cell-only transplantation by supporting their adhesion, survival, proliferation, and differentiation as well as providing elegant 3-dimensional (3D) tissue microenvironment. Therefore, stem cell-based tissue engineering using natural or synthetic biomimetics provides novel clinical and therapeutic opportunities for a number of degenerative diseases or tissue injury. Here, we summarized recent studies involving various types of stem cell-based tissue-engineering strategies for different degenerative diseases. We also reviewed recent studies for preclinical and clinical use of stem cell-based scaffolds and various optimization strategies.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Seongnam, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Seongnam, South Korea
- *Correspondence: In-Sun Hong,
| |
Collapse
|
29
|
Lu D, Yang Y, Zhang P, Ma Z, Li W, Song Y, Feng H, Yu W, Ren F, Li T, Zeng H, Wang J. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury. Tissue Eng Regen Med 2022; 19:1113-1127. [PMID: 35767151 DOI: 10.1007/s13770-022-00465-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) is a disabling and destructive central nervous system injury that has not yet been successfully treated at this stage. Three-dimensional (3D) bioprinting has become a promising method to produce more biologically complex microstructures, which fabricate living neural constructs with anatomically accurate complex geometries and spatial distributions of neural stem cells, and this is critical in the treatment of SCI. With the development of 3D printing technology and the deepening of research, neural tissue engineering research using different printing methods, bio-inks, and cells to repair SCI has achieved certain results. Although satisfactory results have not yet been achieved, they have provided novel ideas for the clinical treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focuses on 3D bioprinting methods widely used in SCI neural tissue engineering, and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed. In addition to introducing the recent progress, this work also describes the existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- Dezhi Lu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yang Yang
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Shandong, 250000, China
| | - Pingping Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Song
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Haiyang Feng
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Wenqiang Yu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Fuchao Ren
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Tao Li
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Hong Zeng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
30
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
31
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Transplantation of human iPSC-derived muscle stem cells in the diaphragm of Duchenne muscular dystrophy model mice. PLoS One 2022; 17:e0266391. [PMID: 35377913 PMCID: PMC8979463 DOI: 10.1371/journal.pone.0266391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an intractable genetic muscular disorder characterized by the loss of DYSTROPHIN. The restoration of DYSTROPHIN is expected to be a curative therapy for DMD. Because muscle stem cells (MuSCs) can regenerate damaged myofibers with full-length DYSTROPHIN in vivo, their transplantation is being explored as such a therapy. As for the transplanted cells, primary satellite cells have been considered, but donor shortage limits their clinical application. We previously developed a protocol that differentiates induced pluripotent stem cells (iPSCs) to MuSCs (iMuSCs). To ameliorate the respiratory function of DMD patients, cell transplantation to the diaphragm is necessary but difficult, because the diaphragm is thin and rapidly moves. In the present study, we explored the transplantation of iMuSCs into the diaphragm. First, we show direct cell injection into the diaphragm of mouse was feasible. Then, to enhance the engraftment of the transplanted cells in a rapidly moving diaphragm, we mixed polymer solutions of hyaluronic acid, alginate and gelatin to the cell suspension, finding a solution of 20% dissolved hyaluronic acid and 80% dissolved gelatin improved the engraftment. Thus, we established a method for cell transplantation into mouse diaphragm and show that an injectable hyaluronic acid-gelatin solution enables the engraftment of iMuSCs in the diaphragm.
Collapse
|
33
|
Strategies for effective neural circuit reconstruction after spinal cord injury: use of stem cells and biomaterials. World Neurosurg 2022; 161:82-89. [PMID: 35144032 DOI: 10.1016/j.wneu.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI), a serious disease of the central nervous system, often with irreversible loss of motor or sensory functions. Failure of axon connection and inhibition of microenvironment after SCI severely hinder the regeneration of damaged tissue and neuron function. Therefore, the new perspective of treatment of spinal cord injury is the reconstruction of neural circuit. Stem cells are a kind of cells with differentiation potential. They reconstruct local circulation by differentiating into neurons to replace damaged cells. It can also secrete various factors to regulate the host microenvironment and play a therapeutic role. Biomaterials can fill the cavity at the site of spinal cord injury, load therapeutic drugs, provide adsorption sites for transplanted cells and play a bridging role. In this review, the therapeutic role of stem cells and biomaterials is discussed, together with their properties, advantages, limitations, and future perspectives, providing a reference for basic and clinical research on SCI treatment.
Collapse
|
34
|
Zhao X, Wang H, Zou Y, Xue W, Zhuang Y, Gu R, Shen H, Dai J. Optimized, visible light-induced crosslinkable hybrid gelatin/hyaluronic acid scaffold promotes complete spinal cord injury repair. Biomed Mater 2021; 17. [PMID: 34937000 DOI: 10.1088/1748-605x/ac45ec] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Severe microenvironmental changes after spinal cord injury (SCI) present serious challenges in neural regeneration and tissue repair. Gelatin (GL)- and hyaluronic acid (HA)-based hydrogels are attractive scaffolds because they are major components of the extracellular matrix and can provide a favorable adjustable microenvironment for neurogenesis and motor function recovery. In this study, three-dimensional hybrid GL/HA hydrogel scaffolds were prepared and optimized. The hybrid hydrogels could undergo in-situ gelation and fit the defects perfectly via visible light- induced crosslinking in the complete SCI rats. We found that the transplantation of the hybrid hydrogel scaffold significantly reduced the inflammatory responses and suppressed glial scar formation in an HA concentration-dependent manner. Moreover, the hybrid hydrogel with GL/HA ratios less than 8/2 effectively promoted endogenous neural stem cell migration and neurogenesis, as well as improved neuron maturation and axonal regeneration. The results showed locomotor function improved 60 days after transplantation, thus suggesting that GL/HA hydrogels can be considered as a promising scaffold for complete SCI repair.
Collapse
Affiliation(s)
- Xinhao Zhao
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Huiru Wang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - Weiwei Xue
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Yang Zhuang
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Rui Gu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, CHINA
| | - He Shen
- Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| |
Collapse
|
35
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
36
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
37
|
Sakti YM, Malueka RG, Dwianingsih EK, Kusumaatmaja A, Mafaza A, Emiri DM. Diamond Concept as Principle for the Development of Spinal Cord Scaffold: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION: Spinal cord injury (SCI) has been bringing detrimental impacts on the affected individuals. However, not only that, it also brings a tremendous effect on the socioeconomic and health-care system. Treatment regimen and strategy for SCI patient have been under further research.
DISCUSSION: The main obstacles of regeneration on neuronal structure are the neuroinflammatory process and poor debris clearance, causing a longer healing process and an extensive inflammation process due to this particular inflammatory process. To resolve all of the mentioned significant issues in SCIs neuronal regeneration, a comprehensive model is necessary to analyze each step of progressive condition in SCI. In this review, we would like to redefine a comprehensive concept of the “Diamond Concept” from previously used in fracture management to SCI management, which consists of cellular platform, cellular inductivity, cellular conductivity, and material integrity. The scaffolding treatment strategy for SCI has been widely proposed due to its flexibility. It enables the physician to combine another treatment method such as neuroprotective or neuroregenerative or both in one intervention.
CONCLUSION: Diamond concept perspective in the implementation of scaffolding could be advantageous to increase the outcome of SCI treatment.
Collapse
|
38
|
Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021; 234:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a complex medical and psychological challenge for which there is no curative therapy currently available. Despite major progress in pharmacological and surgical approaches, clinical trials for SCI patients have been uniformly disappointing thus far as there are many practical and biological issues yet to be resolved. Neuroinflammation is a critical event of the secondary injury phase after SCI, and recent research strategies have focused on modulating the immune response after injury to provide a more favorable recovery environment. Biomaterials can serve this purpose by providing physical and trophic support to the injured spinal cord after SCI. Of all potential biomaterials, functional hydrogels are emerging as a key component in novel treatment strategies for SCI, including controlled and localized delivery of immunomodulatory therapies to drive polarization of immune cells towards a pro-regenerative phenotype. Here, we extensively review recent developments in the use of functional hydrogels as immunomodulatory therapies for SCI. We briefly describe physicochemical properties of hydrogels and demonstrate how advanced fabrication methods lead to the required heterogeneity and hierarchical arrangements that increasingly mimic complex spinal cord tissue. We then summarize potential SCI therapeutic modalities including: (i) hydrogels alone; (ii) hydrogels as cellular or (iii) bioactive molecule delivery vehicles, and; (iv) combinatorial approaches. By linking the structural properties of hydrogels to their functions in treatment with particular focus on immunopharmacological stimuli, this may accelerate further development of functional hydrogels for SCI, and indeed next-generation central nervous system regenerative therapies.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
39
|
Sudhadevi T, Vijayakumar HS, Hariharan EV, Sandhyamani S, Krishnan LK. Optimizing fibrin hydrogel toward effective neural progenitor cell delivery in spinal cord injury. Biomed Mater 2021; 17. [PMID: 34736245 DOI: 10.1088/1748-605x/ac3680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
Transplantation of neural progenitor cell (NPC) possessing the potential to differentiate into neurons may guard against spinal cord injury (SCI)- associated neuronal trauma. We propose that autologous-like NPC may reduce post-transplant immune response. The study used the rat SCI model to prove this concept. For isolation and expansion of rat NPC for cell-based SCI therapy, thein vitroprotocol standardized with human NPC seemed suitable. The primary aim of this study is to select a cell/neural tissue-compatible biomaterial for improving NPC survivalin vivo. The composition of the fibrin hydrogel is adjusted to obtain degradable, porous, and robust fibrin strands for supporting neural cell attachment, migration, and tissue regeneration. This study employed NPC culture to evaluate the cytocompatibility and suitability of the hydrogel, composed by adding graded concentrations of thrombin to a fixed fibrinogen concentration. The microstructure evaluation by scanning electron microscope guided the selection of a suitable composition for delivering the embedded cells. On adding more thrombin, fibrinogen clotted quickly but reduced porosity, pore size, and fiber strand thickness. The high activity of thrombin also affected NPC morphology and thein vitrocell survival. The selected hydrogel carried viable NPC and retained them at the injury site post-transplantation. The fibrin hydrogel played a protective role throughout the transfer process by providing cell attachment sites and survival signals. The fibrin and NPC together regulated the immune response at the SCI site reducing ED1+ve/ED2+vemacrophages in the early period of 8-16 d after injury. Migration ofβ-III tubulin+veneural-like cells into the fibrin-injected control SCI is evident. The continuous use of a non-neurotoxic fibrin matrix could be a convenient strategy forin vitroNPC preparation, minimally invasive cell delivery, and better transplantation outcome.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Retd. Senior Grade Scientist G, Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Thrombosis Research Unit, SCTIMST, Trivandrum 695 012, India
| | - Harikrishnan S Vijayakumar
- Laboratory for Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum 695012 Kerala, India
| | - Easwer V Hariharan
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum 695012 Kerala, India
| | - Samavedam Sandhyamani
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum 695012 Kerala, India
| | - Lissy K Krishnan
- Retd. Senior Grade Scientist G, Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Thrombosis Research Unit, SCTIMST, Trivandrum 695 012, India
| |
Collapse
|
40
|
Zarepour A, Hooshmand S, Gökmen A, Zarrabi A, Mostafavi E. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms. Cells 2021; 10:cells10113189. [PMID: 34831412 PMCID: PMC8620694 DOI: 10.3390/cells10113189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) has a major impact on affected patients due to its pathological consequences and absence of capacity for self-repair. Currently available therapies are unable to restore lost neural functions. Thus, there is a pressing need to develop novel treatments that will promote functional repair after SCI. Several experimental approaches have been explored to tackle SCI, including the combination of stem cells and 3D bioprinting. Implanted multipotent stem cells with self-renewing capacity and the ability to differentiate to a diversity of cell types are promising candidates for replacing dead cells in injured sites and restoring disrupted neural circuits. However, implanted stem cells need protection from the inflammatory agents in the injured area and support to guide them to appropriate differentiation. Not only are 3D bioprinted scaffolds able to protect stem cells, but they can also promote their differentiation and functional integration at the site of injury. In this review, we showcase some recent advances in the use of stem cells for the treatment of SCI, different types of 3D bioprinting methods, and the combined application of stem cells and 3D bioprinting technique for effective repair of SCI.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34353, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| |
Collapse
|
41
|
Lee SY, Ma J, Khoo TS, Abdullah N, Nik Md Noordin Kahar NNF, Abdul Hamid ZA, Mustapha M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:735090. [PMID: 34733829 PMCID: PMC8558675 DOI: 10.3389/fbioe.2021.735090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Jingyi Ma
- Duke-NUS Medical School, Singapore, Singapore
| | - Tze Sean Khoo
- UKM Medical Molecular Biology Institute, National University of Malaysia, Bangi, Malaysia
| | - Norfadhilatuladha Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
42
|
Nelson DW, Gilbert RJ. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater 2021; 10:e2101329. [PMID: 34494398 PMCID: PMC8599642 DOI: 10.1002/adhm.202101329] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Neurological and functional recovery is limited following central nervous system injury and severe injury to the peripheral nervous system. Extracellular matrix (ECM)-mimetic hydrogels are of particular interest as regenerative scaffolds for the injured nervous system as they provide 3D bioactive interfaces that modulate cellular response to the injury environment and provide naturally degradable scaffolding for effective tissue remodeling. In this review, three unique ECM-mimetic hydrogels used in models of neural injury are reviewed: fibrin hydrogels, which rely on a naturally occurring enzymatic gelation, hyaluronic acid hydrogels, which require chemical modification prior to chemical crosslinking, and elastin-like polypeptide (ELP) hydrogels, which exhibit a temperature-sensitive gelation. The hydrogels are reviewed by summarizing their unique biological properties, their use as drug depots, and their combination with other biomaterials, such as electrospun fibers and nanoparticles. This review is the first to focus on these three ECM-mimetic hydrogels for their use in neural tissue engineering. Additionally, this is the first review to summarize the use of ELP hydrogels for nervous system applications. ECM-mimetic hydrogels have shown great promise in preclinical models of neural injury and future advancements in their design and use can likely lead to viable treatments for patients with neural injury.
Collapse
Affiliation(s)
- Derek W Nelson
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| |
Collapse
|
43
|
Fang Y, Shi L, Duan Z, Rohani S. Hyaluronic acid hydrogels, as a biological macromolecule-based platform for stem cells delivery and their fate control: A review. Int J Biol Macromol 2021; 189:554-566. [PMID: 34437920 DOI: 10.1016/j.ijbiomac.2021.08.140] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
Stem cell-based therapies offer numerous potentials to repair damaged or defective organs. The therapeutic outcomes of human studies, however, fall far short from what is expected. Enhancing stem cells local density and longevity would possibly maximize their healing potential. One promising strategy is to administer stem cells via injectable hydrogels. However, stem cells differentiation process is a delicate matter which is easily affected by various factors such as their interaction with their surrounding materials. Among various biomaterial options for hydrogels' production, hyaluronic acid (HA) has shown great promise. HA is a naturally occurring biological macromolecule, a polysaccharide of large molecular weight which is involved in cell proliferation, cell migration, angiogenesis, fetal development, and tissue function. In the current study we will discuss the applications, prospects, and challenges of HA-based hydrogels in stem cell delivery and fate control.
Collapse
Affiliation(s)
- Yu Fang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Lele Shi
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Zhiwei Duan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Saeed Rohani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
An S, Choi S, Min S, Cho SW. Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0343-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Abstract
Spinal cord injury (SCI) destroys the sensorimotor pathway and blocks the information flow between the peripheral nerve and the brain, resulting in autonomic function loss. Numerous studies have explored the effects of obstructed information flow on brain structure and function and proved the extensive plasticity of the brain after SCI. Great progress has also been achieved in therapeutic strategies for SCI to restore the "re-innervation" of the cerebral cortex to the limbs to some extent. Although no thorough research has been conducted, the changes of brain structure and function caused by "re-domination" have been reported. This article is a review of the recent research progress on local structure, functional changes, and circuit reorganization of the cerebral cortex after SCI. Alterations of structure and electrical activity characteristics of brain neurons, features of brain functional reorganization, and regulation of brain functions by reconfigured information flow were also explored. The integration of brain function is the basis for the human body to exercise complex/fine movements and is intricately and widely regulated by information flow. Hence, its changes after SCI and treatments should be considered.
Collapse
Affiliation(s)
- Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
46
|
Hlavac N, Seroski DT, Agrawal NK, Astrab L, Liu R, Hudalla GA, Schmidt CE. Chondroitinase ABC/galectin-3 fusion proteins with hyaluronan-based hydrogels stabilize enzyme and provide targeted enzyme activity for neural applications. J Neural Eng 2021; 18. [PMID: 34082409 DOI: 10.1088/1741-2552/ac07bf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Objective. Chondroitinase ABC (ChABC) has emerged as a promising therapeutic agent for central nervous system regeneration. Despite multiple beneficial outcomes for regeneration, translation of this enzyme is challenged by poor pharmacokinetics, localization, and stability.Approach. This study explored the function andin vitroapplication of engineered ChABC fused to galectin-3 (Gal3). Two previously developed ChABC-Gal3 oligomers (monomeric and trimeric) were evaluated for functionality and kinetics, then applied to anin vitrocellular outgrowth model using dorsal root ganglia (DRGs). The fusions were combined with two formulations of hyaluronan (HA)-based scaffolds to determine the extent of active enzyme release compared to wild type (WT) ChABC.Main Results. Monomeric and trimeric ChABC-Gal3 maintained digestive capabilities with kinetic properties that were substrate-dependent for chondroitin sulfates A, B, and C. The fusions had longer half-lives at 37 °C on the order of seven fold for monomer and twelve fold for trimer compared to WT. Both fusions were also effective at restoring DRG outgrowthin vitro. To create a combination approach, two triple-component hydrogels containing modified HA were formulated to match the mechanical properties of native spinal cord tissue and to support astrocyte viability (>80%) and adhesion. The hydrogels included collagen-I and laminin mixed with either 5 mg ml-1of glycidyl methacrylate HA or 3 mg ml-1Hystem. When combined with scaffolds, ChABC-Gal3 release time was lengthened compared to WT. Both fusions had measurable enzymatic activity for at least 10 d when incorporated in gels, compared to WT that lost activity after 1 d. These longer term release products from gels maintained adequate function to promote DRG outgrowth.Significance. Results of this study demonstrated cohesive benefits of two stabilized ChABC-Gal3 oligomers in combination with HA-based scaffolds for neural applications. Significant improvements to ChABC stability and release were achieved, meriting future studies of ChABC-Gal3/hydrogel combinations to target neural regeneration.
Collapse
Affiliation(s)
- Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Leilani Astrab
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
47
|
Zamproni LN, Mundim MTVV, Porcionatto MA. Neurorepair and Regeneration of the Brain: A Decade of Bioscaffolds and Engineered Microtissue. Front Cell Dev Biol 2021; 9:649891. [PMID: 33898443 PMCID: PMC8058361 DOI: 10.3389/fcell.2021.649891] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/12/2021] [Indexed: 01/24/2023] Open
Abstract
Repairing the human brain remains a challenge, despite the advances in the knowledge of inflammatory response to injuries and the discovery of adult neurogenesis. After brain injury, the hostile microenvironment and the lack of structural support for neural cell repopulation, anchoring, and synapse formation reduce successful repair chances. In the past decade, we witnessed the rise of studies regarding bioscaffolds’ use as support for neuro repair. A variety of natural and synthetic materials is available and have been used to replace damaged tissue. Bioscaffolds can assume different shapes and may or may not carry a diversity of content, such as stem cells, growth factors, exosomes, and si/miRNA that promote specific therapeutic effects and stimulate brain repair. The use of these external bioscaffolds and the creation of cell platforms provide the basis for tissue engineering. More recently, researchers were able to engineer brain organoids, neural networks, and even 3D printed neural tissue. The challenge in neural tissue engineering remains in the fabrication of scaffolds with precisely controlled topography and biochemical cues capable of directing and controlling neuronal cell fate. The purpose of this review is to highlight the existing research in the growing field of bioscaffolds’ development and neural tissue engineering. Moreover, this review also draws attention to emerging possibilities and prospects in this field.
Collapse
Affiliation(s)
- Laura N Zamproni
- Molecular Neurobiology Laboratory, Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mayara T V V Mundim
- Molecular Neurobiology Laboratory, Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimelia A Porcionatto
- Molecular Neurobiology Laboratory, Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int J Pharm 2021; 601:120559. [PMID: 33831486 DOI: 10.1016/j.ijpharm.2021.120559] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a perplexing traumatic disease that habitually gives ride to permanent disability, motor, and sensory impairment. Despite the existence of several therapeutic approaches for the injured motor or sensory neurons, they can't promote axonal regeneration. Whether prepared by conventional or rapid prototyping techniques, scaffolds can be applied to refurbish the continuity of the injured site, by creating a suitable environment for tissue repair, axonal regeneration, and vascularization. Collagen is a multi-sourced protein, found in animals skin, tendons, cartilage, bones, and human placenta, in addition to marine biomass. Collagen is highly abundant in the extracellular matrix and is known for its biocompatibility, biodegradability, porous structure, good permeability, low immunogenicity and thus is extensively applied in the pharmaceutical, cosmetic, and food industries as well as the tissue engineering field. Collagen in scaffolds is usually functionalized with different ligands and factors such as, stem cells, embryonic or human cells to augment its binding specificity and activity. The review summarizes the significance of collagen-based scaffolds and their influence on regeneration, repair and recovery of spinal cord injuries.
Collapse
|
49
|
Liu X, Hao M, Chen Z, Zhang T, Huang J, Dai J, Zhang Z. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 2021; 272:120771. [PMID: 33798962 DOI: 10.1016/j.biomaterials.2021.120771] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising approach to fabricate living neural constructs with anatomically accurate complex geometries and spatial distributions of neural stem cells (NSCs) for spinal cord injury (SCI) repair. The NSC-laden 3D bioprinting, however, still faces some big challenges, such as cumbersome printing process, poor cell viability, and minimal cell-material interaction. To address these issues, we have fabricated NSC-laden scaffolds by 3D bioprinting and explore for the first time their application for in vivo SCI repair. In our strategy, we have developed a novel biocompatible bioink consisting of functional chitosan, hyaluronic acid derivatives, and matrigel. This bioink shows fast gelation (within 20 s) and spontaneous covalent crosslinking capability, facilitating convenient one-step bioprinting of spinal cord-like constructs. Thus-fabricated scaffolds maintain high NSC viability (about 95%), and offer a benign microenvironment that facilitates cell-material interactions and neuronal differentiation for optimal formation of neural network. The in vivo experiment has further demonstrated that the bioprinted scaffolds promoted the axon regeneration and decreased glial scar deposition, leading to significant locomotor recovery of the SCI model rats, which may represent a general and versatile strategy for precise engineering of central nervous system and other neural organs/tissues for regenerative medicine application.
Collapse
Affiliation(s)
- Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Mingming Hao
- I-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ting Zhang
- I-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| | - Jianwu Dai
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
50
|
Su M, Soomro SH, Jie J, Fu H. Effects of the extracellular matrix on myelin development and regeneration in the central nervous system. Tissue Cell 2021; 69:101444. [PMID: 33450651 DOI: 10.1016/j.tice.2020.101444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a collection of extracellular molecules secreted by cells, providing structural and biochemical support for surrounding tissues. The ECM exerts biological effects by interacting with growth factors, signal receptors or adhesion molecules. In the case of myelin formation and regeneration, the combination of ECM and its receptors (for example, integrins) modulates signaling pathways such as PI3K, MAPK, etc., which in turn induces complex biological effects throughout various stages of myelination and regeneration. Studies have also found that myelin injury would cause changes in ECM composition and thus affecting the myelin regeneration process. Research on the ECM will provide a better understanding of how myelin is formed and regenerated, which will help to develop new therapies for demyelinating diseases. Future progress in this field will provide important information on how to modify the ECM to promote proliferation and differentiation of oligodendrocyte precursor cells (OPC), thereby stimulating myelin formation and regeneration and restoring normal neural function.
Collapse
Affiliation(s)
- Min Su
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| | | | - Jifu Jie
- Health School of Bayinguoleng Mongolian Autonomous Prefecture, Xinjiang, China.
| | - Hui Fu
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| |
Collapse
|