1
|
Barreto JA, Lacôrte E Silva MVM, Marin DC, Brienzo M, Jacobus AP, Contiero J, Gross J. Engineering adaptive alleles for Escherichia coli growth on sucrose using the EasyGuide CRISPR system. J Biotechnol 2025; 403:126-139. [PMID: 40252733 DOI: 10.1016/j.jbiotec.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Adaptive Laboratory Evolution (ALE) is a powerful approach for mining genetic data to engineer industrial microorganisms. This evolution-informed design requires robust genetic tools to incorporate the discovered alleles into target strains. Here, we introduce the EasyGuide CRISPR, a five-plasmid platform that exploits E. coli's natural recombination system to assemble gRNA plasmids from overlapping PCR fragments. The production of gRNAs and donor DNA is further facilitated by using recombination cassettes generated through PCR with 40-60-mer oligos. With the new CRISPR toolkit, we constructed 22 gene edits in E. coli DH5α, most of which corresponded to alleles mapped in E. coli DH5α and E2348/69 ALE populations selected for sucrose propagation. For DH5α ALE, sucrose consumption was supported by the cscBKA operon expression from a high-copy plasmid. During ALE, plasmid integration into the chromosome, or its copy number reduction due to the pcnB deletion, conferred a 30-35 % fitness gain, as demonstrated by CRISPR-engineered strains. A ∼5 % advantage was also associated with a ∼40.4 kb deletion involving fli operons for flagella assembly. In E2348/69 ALE, inactivation of the hfl system suggested selection pressures for maintaining λ-prophage dormancy (lysogeny). We further enhanced our CRISPR toolkit using yeast for in vivo assembly of donors and expression cassettes, enabling the establishment of polyhydroxybutyrate synthesis from sucrose. Overall, our study highlights the importance of combining ALE with streamlined CRISPR-mediated allele editing to advance microbial production using cost-effective carbon sources.
Collapse
Affiliation(s)
- Joneclei Alves Barreto
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Matheus Victor Maso Lacôrte E Silva
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Danieli Canaver Marin
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Michel Brienzo
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Ana Paula Jacobus
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Jonas Contiero
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Jeferson Gross
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil.
| |
Collapse
|
2
|
Song HM, Lim SH, Lee ES, Kim D, Lee SY, Jeong KJ, Park SJ. Biosynthesis of Polyhydroxyalkanoates From Sucrose by Recombinant Pseudomonas putida KT2440. Chembiochem 2025; 26:e202401000. [PMID: 40007437 DOI: 10.1002/cbic.202401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
A sucrose-utilization pathway was developed in Pseudomonas putida using sacC from Mannheimia succiniciproducens, which encodes a β-fructofuranosidase that hydrolyzes sucrose into glucose and fructose. Excretion of β-fructofuranosidase into the culture medium was confirmed via western blot analysis. In nitrogen-limited cultivation, P. putida expressing SacC produced 10.52 wt % medium-chain-length polyhydroxyalkanoate (MCL-PHA), while P. putida expressing SacC along with poly(3-hydroxybutyrate) [P(3HB)] biosynthesis genes produced 9.16 wt % P(3HB) from sucrose. Batch and fed-batch cultures of recombinant P. putida suggested that the glucose and fructose derived from sucrose can be completely utilized for cell growth and P(3HB) production. In fed-batch cultures, sucrose supplied into the fermentor to maintain its concentration around 20 g/L was rapidly hydrolyzed into glucose and fructose supporting the production of 30.2 g/L P(3HB) with 38.1 wt %. The engineered P. putida reported herein can facilitate the production of PHAs from sucrose, an abundant and inexpensive carbon source.
Collapse
Affiliation(s)
- Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in, System Health, Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in, System Health, Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Seo Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in, System Health, Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dojin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in, System Health, Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center, BioInformatics Research Center, KAIST Institute for the BioCentury, KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in, System Health, Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
3
|
Nawab S, Ullah MW, Shah SB, Zhang YF, Keerio HA, Yong YC. Recent advances in engineering non-native microorganisms for poly(3-hydroxybutyrate) production. World J Microbiol Biotechnol 2025; 41:48. [PMID: 39849243 DOI: 10.1007/s11274-025-04261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine. Many microorganisms biosynthesize and accumulate PHB naturally. However, recent advancements in metabolic engineering and synthetic biology have allowed scientists to engineer non-native microorganisms to produce PHB. This review comprehensively summarizes all non-native microbial hosts used for PHB biosynthesis and discusses different metabolic engineering approaches used to enhance PHB production. These strategies include optimizing the biosynthesis pathway through cofactor engineering, metabolic pathway reconstruction, and cell morphology engineering. Moreover, the CRISPR/Cas9 approach is also used for manipulating the genome of non-host microorganisms to enable them produce PHB. Among non-native microbial hosts, Escherichia coli has been successfully used for industrial-scale PHB production. However, further genetic engineering approaches are needed to make non-native microbial hosts more suitable for large-scale PHB production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, 210037, Nanjing, China
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ya-Fei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hareef Ahmed Keerio
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Adams JD, Sander KB, Criddle CS, Arkin AP, Clark DS. Engineering osmolysis susceptibility in Cupriavidus necator and Escherichia coli for recovery of intracellular products. Microb Cell Fact 2023; 22:69. [PMID: 37046248 PMCID: PMC10091555 DOI: 10.1186/s12934-023-02064-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Intracellular biomacromolecules, such as industrial enzymes and biopolymers, represent an important class of bio-derived products obtained from bacterial hosts. A common key step in the downstream separation of these biomolecules is lysis of the bacterial cell wall to effect release of cytoplasmic contents. Cell lysis is typically achieved either through mechanical disruption or reagent-based methods, which introduce issues of energy demand, material needs, high costs, and scaling problems. Osmolysis, a cell lysis method that relies on hypoosmotic downshock upon resuspension of cells in distilled water, has been applied for bioseparation of intracellular products from extreme halophiles and mammalian cells. However, most industrial bacterial strains are non-halotolerant and relatively resistant to hypoosmotic cell lysis. RESULTS To overcome this limitation, we developed two strategies to increase the susceptibility of non-halotolerant hosts to osmolysis using Cupriavidus necator, a strain often used in electromicrobial production, as a prototypical strain. In one strategy, C. necator was evolved to increase its halotolerance from 1.5% to 3.25% (w/v) NaCl through adaptive laboratory evolution, and genes potentially responsible for this phenotypic change were identified by whole genome sequencing. The evolved halotolerant strain experienced an osmolytic efficiency of 47% in distilled water following growth in 3% (w/v) NaCl. In a second strategy, the cells were made susceptible to osmolysis by knocking out the large-conductance mechanosensitive channel (mscL) gene in C. necator. When these strategies were combined by knocking out the mscL gene from the evolved halotolerant strain, greater than 90% osmolytic efficiency was observed upon osmotic downshock. A modified version of this strategy was applied to E. coli BL21 by deleting the mscL and mscS (small-conductance mechanosensitive channel) genes. When grown in medium with 4% NaCl and subsequently resuspended in distilled water, this engineered strain experienced 75% cell lysis, although decreases in cell growth rate due to higher salt concentrations were observed. CONCLUSIONS Our strategy is shown to be a simple and effective way to lyse cells for the purification of intracellular biomacromolecules and may be applicable in many bacteria used for bioproduction.
Collapse
Affiliation(s)
- Jeremy David Adams
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Kyle B Sander
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Wang Z, Li X, Azi F, Dai Y, Xu Z, Yu L, Zhou J, Dong M, Xia X. Biosynthesis of ( S)-Equol from Soy Whey by Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37038970 DOI: 10.1021/acs.jafc.3c00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
(S)-Equol is one of the most bioactive metabolites of the isoflavones with immense nutritional and pharmaceutical value. Soy whey is the major liquid byproduct of the soy product processing industries that is rich in nutrients and (S)-equol biosynthetic precursor daidzin. However, it is usually disposed into the sewage, causing high environmental contamination. Herein, we constructed a recombinant Escherichia coli for the biosynthesis of (S)-equol from soy whey. First, we evaluated daidzin-specific transporters and optimized the anaerobically induced Pnar in the (S)-equol biosynthesis cassette to produce (S)-equol from daidzin. Then, sucrase and α-galactosidase were co-expressed to confer sucrose, stachyose, and raffinose utilization capacity on E. coli. Meanwhile, EIIBCAglc was inactivated to eliminate the daidzin transport inhibition induced by glucose. Finally, combining these strategies and optimizing the fermentation conditions, the optimal strain produced 91.5 mg/L of (S)-equol with a yield of 0.96 mol/mol substrates in concentrated soy whey. Overall, this new strategy is an attractive route to broaden the applications of soy whey and achieve the eco-friendly production of (S)-equol.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaonan Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Yiqiang Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijun Yu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianzhong Zhou
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
8
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
9
|
He J, Shi H, Li X, Nie X, Yang Y, Li J, Wang J, Yao M, Tian B, Zhou J. A review on microbial synthesis of lactate-containing polyesters. World J Microbiol Biotechnol 2022; 38:198. [PMID: 35995888 DOI: 10.1007/s11274-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Degradable polylactic acids (PLA) have been widely used in agriculture, textile, medicine and degradable plastics industry, and can completely replace petroleum-based plastics in the future. At present, polylactic acid was chemically synthesized by ring-opening polymerisation or the direct polycondensation of lactic acid, which inevitably leads to chemical and heavy metal catalyst pollution. The current research focus has gradually shifted to the development of recombinant industrial strains for the efficiently production of lactate-containing polyesters from renewable resources. This review summarizes various explorations of metabolic pathway optimization and production cost control in the industrialization of lactate-containing polyesters bio-production. In particular, the effects of key enzymes, including CoA transferase, polyhydroxyalkanoate synthase, and their mutants, culture conditions, low-cost carbon sources, and recombinant strains on the yield and composition of lactate-containing polyesters are summarized and discussed. Future prospects and challenges for the industrialization of lactate-containing polyesters are also pointed out.
Collapse
Affiliation(s)
- Junyi He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xiangqian Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Yuxiang Yang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jing Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jiahui Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Mengdie Yao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Baoxia Tian
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jia Zhou
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China. .,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
10
|
Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: a short review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Ni D, Chen Z, Tian Y, Xu W, Zhang W, Kim BG, Mu W. Comprehensive utilization of sucrose resources via chemical and biotechnological processes: A review. Biotechnol Adv 2022; 60:107990. [PMID: 35640819 DOI: 10.1016/j.biotechadv.2022.107990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Moungprayoon A, Lunprom S, Reungsang A, Salakkam A. High Cell Density Cultivation of Paracoccus sp. on Sugarcane Juice for Poly(3-hydroxybutyrate) Production. Front Bioeng Biotechnol 2022; 10:878688. [PMID: 35646885 PMCID: PMC9133739 DOI: 10.3389/fbioe.2022.878688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
High cell density cultivation is a promising approach to reduce capital and operating costs of poly (3-hydroxybutyrate) (PHB) production. To achieve high cell concentration, it is necessary that the cultivation conditions are adjusted and controlled to support the best growth of the PHB producer. In the present study, carbon to nitrogen (C/N) ratio of a sugarcane juice (SJ)-based medium, initial sugar concentration, and dissolved oxygen (DO) set point, were optimized for batch cultivation of Paracoccus sp. KKU01. A maximum biomass concentration of 55.5 g/L was attained using the C/N ratio of 10, initial sugar concentration of 100 g/L, and 20% DO set point. Fed-batch cultivation conducted under these optimum conditions, with two feedings of SJ-based medium, gave the final cell concentration of 87.9 g/L, with a PHB content, concentration, and yield of 36.2%, 32.1 g/L, and 0.13 g/g-sugar, respectively. A medium-based economic analysis showed that the economic yield of PHB on nutrients was 0.14. These results reveal the possibility of using SJ for high cell density cultivation of Paracoccus sp. KKU01 for PHB production. However, further optimization of the process is necessary to make it more efficient and cost-effective.
Collapse
Affiliation(s)
- Ayyapruk Moungprayoon
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Lunprom
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Apilak Salakkam,
| |
Collapse
|
13
|
Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010294. [PMID: 35011525 PMCID: PMC8746831 DOI: 10.3390/molecules27010294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/05/2022]
Abstract
Poly-(3-hydroxybutyrate) (PHB) is a polyester with biodegradable and biocompatible characteristics and has many potential applications. To reduce the raw material costs and microbial energy consumption during PHB production, cheaper carbon sources such as sucrose were evaluated for the synthesis of PHB under anaerobic conditions. In this study, metabolic network analysis was conducted to construct an optimized pathway for PHB production using sucrose as the sole carbon source and to guide the gene knockout to reduce the generation of mixed acid byproducts. The plasmid pMCS-sacC was constructed to utilize sucrose as a sole carbon source, and the cascaded promoter P3nirB was used to enhance PHB synthesis under anaerobic conditions. The mixed acid fermentation pathway was knocked out in Escherichia coli S17-1 to reduce the synthesis of byproducts. As a result, PHB yield was improved to 80% in 6.21 g/L cell dry weight by the resulted recombinant Escherichia coli in a 5 L bed fermentation, using sucrose as the sole carbon source under anaerobic conditions. As a result, the production costs of PHB will be significantly reduced.
Collapse
|
14
|
Miao C, Meng D, Liu Y, Wang F, Chen L, Huang Z, Fan X, Gu P, Li Q. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in metabolically recombinant Escherichia coli. Int J Biol Macromol 2021; 193:956-964. [PMID: 34751142 DOI: 10.1016/j.ijbiomac.2021.10.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
In this study, a phaCR gene encoding PHA synthase was identified in Rhodoligotrophos defluvii which was adjacent to β-ketothiolase encoded by phaAR gene and acetoacetyl-CoA reductase encoded by phaBR gene. Amino acid comparison of PhaCR showed the highest homology of 65.98% with PhaC of R. appendicifer, while its homology with typical class I PHA synthase in Cupriavidus necator was only 42.54%. PHA synthesis genes were then transformed into E. coli harboring phaCABR and phaCRABC which were cultured with 15 g/L glucose respectively, and 20.46 wt% and 16.95 wt% of CDW for poly(3-hydroxybutyrate) (PHB) were accumulated respectively. To further explore the effect of substrate specificity for PHA production, the ptsG gene was then deleted and 15 g/L glucose and 1.5 g/L propionate were co-employed as carbon sources, which enabled the synthesis of poly(3HB-co-3HV) copolymer. As a result, poly(3HB-co-3HV) was accumulated up to 24.74 wt% of CDW, and the highest content of 3-hydroxyvalerate (3HV) was 10.86 mol%. The Td5 was 260 °C, which implied that it possessed good thermal stability, and the Mw of GPC in recombinant strains were between 22 and 26 × 104 g/mol, and the highest PDI was 3.771. The structure of poly (3HB-co-3HV) copolymer was determined through 1H NMR analysis.
Collapse
Affiliation(s)
- Changfeng Miao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Dong Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuling Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lu Chen
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
15
|
Guo P, Luo Y, Wu J, Wu H. Recent advances in the microbial synthesis of lactate-based copolymer. BIORESOUR BIOPROCESS 2021; 8:106. [PMID: 38650297 PMCID: PMC10992027 DOI: 10.1186/s40643-021-00458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcomings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the material properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in this article. These studies would facilitate to expand the application fields of the corresponding materials.
Collapse
Affiliation(s)
- Pengye Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
16
|
Kim HT, Hee Ryu M, Jung YJ, Lim S, Song HM, Park J, Hwang SY, Lee H, Yeon YJ, Sung BH, Bornscheuer UT, Park SJ, Joo JC, Oh DX. Chemo-Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials. CHEMSUSCHEM 2021; 14:4251-4259. [PMID: 34339110 PMCID: PMC8519047 DOI: 10.1002/cssc.202100909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Indexed: 05/13/2023]
Abstract
Chemo-biological upcycling of poly(ethylene terephthalate) (PET) developed in this study includes the following key steps: chemo-enzymatic PET depolymerization, biotransformation of terephthalic acid (TPA) into catechol, and its application as a coating agent. Monomeric units were first produced through PET glycolysis into bis(2-hydroxyethyl) terephthalate (BHET), mono(2-hydroxyethyl) terephthalate (MHET), and PET oligomers, and enzymatic hydrolysis of these glycolyzed products using Bacillus subtilis esterase (Bs2Est). Bs2Est efficiently hydrolyzed glycolyzed products into TPA as a key enzyme for chemo-enzymatic depolymerization. Furthermore, catechol solution produced from TPA via a whole-cell biotransformation (Escherichia coli) could be directly used for functional coating on various substrates after simple cell removal from the culture medium without further purification and water-evaporation. This work demonstrates a proof-of-concept of a PET upcycling strategy via a combination of chemo-biological conversion of PET waste into multifunctional coating materials.
Collapse
Affiliation(s)
- Hee Taek Kim
- Department of Food Science and TechnologyChungnam National UniversityDaejeon34134 (Republic ofKorea
| | - Mi Hee Ryu
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Ye Jean Jung
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Sooyoung Lim
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Hye Min Song
- Department of Chemical Engineering and Materials ScienceGraduate Program in System Health Science & EngineeringEwha Womans UniversitySeoul03760 (Republic ofKorea
| | - Jeyoung Park
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| | - Sung Yeon Hwang
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| | - Hoe‐Suk Lee
- Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneung-siGangwon-do25457 (Republic ofKorea
| | - Young Joo Yeon
- Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneung-siGangwon-do25457 (Republic ofKorea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141 (Republic ofKorea
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald17487GreifswaldGermany
| | - Si Jae Park
- Department of Chemical Engineering and Materials ScienceGraduate Program in System Health Science & EngineeringEwha Womans UniversitySeoul03760 (Republic ofKorea
| | - Jeong Chan Joo
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Department of BiotechnologyThe Catholic University of KoreaBucheon-siGyeonggi-do14662 (Republic ofKorea
| | - Dongyeop X. Oh
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| |
Collapse
|
17
|
Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0783-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Fructose-Based Production of Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate Copolymer by Arctic Pseudomonas sp. B14-6. Polymers (Basel) 2021; 13:polym13091398. [PMID: 33925903 PMCID: PMC8123457 DOI: 10.3390/polym13091398] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Arctic bacteria employ various mechanisms to survive harsh conditions, one of which is to accumulate carbon and energy inside the cell in the form of polyhydroxyalkanoate (PHA). Whole-genome sequencing of a new Arctic soil bacterium Pseudomonas sp. B14-6 revealed two PHA-production-related gene clusters containing four PHA synthase genes (phaC). Pseudomonas sp. B14-6 produced poly(6% 3-hydroxybutyrate-co-94% 3-hydroxyalkanoate) from various carbon sources, containing short-chain-length PHA (scl-PHA) and medium-chain-length PHA (mcl-PHA) composed of various monomers analyzed by GC-MS, such as 3-hydroxybutyrate, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, 3-hydroxydodecenoic acid, 3-hydroxydodecanoic acid, and 3-hydroxytetradecanoic acid. By optimizing the PHA production media, we achieved 34.6% PHA content using 5% fructose, and 23.7% PHA content using 5% fructose syrup. Differential scanning calorimetry of the scl-co-mcl PHA determined a glass transition temperature (Tg) of 15.3 °C, melting temperature of 112.8 °C, crystallization temperature of 86.8 °C, and 3.82% crystallinity. In addition, gel permeation chromatography revealed a number average molecular weight of 3.6 × 104, weight average molecular weight of 9.1 × 104, and polydispersity index value of 2.5. Overall, the novel Pseudomonas sp. B14-6 produced a polymer with high medium-chain-length content, low Tg, and low crystallinity, indicating its potential use in medical applications.
Collapse
|
19
|
Khang TU, Kim MJ, Yoo JI, Sohn YJ, Jeon SG, Park SJ, Na JG. Rapid analysis of polyhydroxyalkanoate contents and its monomer compositions by pyrolysis-gas chromatography combined with mass spectrometry (Py-GC/MS). Int J Biol Macromol 2021; 174:449-456. [PMID: 33485890 DOI: 10.1016/j.ijbiomac.2021.01.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Here, we report an analysis method for determining PHA (polyhydroxyalkanoates) contents and their monomer composition in microbial cells based on pyrolysis gas chromatography combined with mass spectrometry (Py-GC/MS). Various kinds of microbial cells accumulating different PHA contents and monomer compositions were prepared through the cultivation of Ralstonia eutropha and recombinant Escherichia coli. Py-GC/MS could analyse these samples in a short time without complicated pretreatment steps. Characteristic peaks such as 2-butenoic acid, 2-pentenoic acid, and hexadecanoic acid regarding PHA compositions and cell components were identified. Considering constituents of cells and ratios of peak areas of dehydrated monomers to hexadecanoic acid, a simple equation for estimation of PHA contents in microbial cells was derived. Also, monomer compositions of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in R. eutropha could be successfully determined based on peak area of 2-butenoic acid and 2-pentenoic acid of Py-GC/MS, which are the corresponding species of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) in PHBV. Correlation of results between GC-FID and Py-GC/MS could be fitted very well. This method shows similar results for the samples obtained from same experimental conditions, allowing rapid and reliable analysis. Py-GC/MS can be a promising tool to rapidly screen PHA-positive strains based on polymer contents along with monomer compositions.
Collapse
Affiliation(s)
- Tae Uk Khang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Min-Jae Kim
- Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Jee In Yoo
- Division of Chemical Engineering and Materials Science, System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Division of Chemical Engineering and Materials Science, System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang Goo Jeon
- Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
20
|
Sohn YJ, Kim HT, Jo SY, Song HM, Baritugo KA, Pyo J, Choi JI, Joo JC, Park SJ. Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0508-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ochoa-Segundo EI, González-Torres M, Cabrera-Wrooman A, Sánchez-Sánchez R, Huerta-Martínez BM, Melgarejo-Ramírez Y, Leyva-Gómez G, Rivera-Muñoz EM, Cortés H, Velasquillo C, Vargas-Muñoz S, Rodríguez-Talavera R. Gamma radiation-induced grafting of n-hydroxyethyl acrylamide onto poly(3-hydroxybutyrate): A companion study on its polyurethane scaffolds meant for potential skin tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111176. [PMID: 32806310 DOI: 10.1016/j.msec.2020.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by 60Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.
Collapse
Affiliation(s)
- Eric Ivan Ochoa-Segundo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Maykel González-Torres
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | | | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Eric M Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | - Hernán Cortés
- Departamento de Genética, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Susana Vargas-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | | |
Collapse
|
22
|
Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. SUSTAINABILITY 2020. [DOI: 10.3390/su12208360] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cumulative plastic production worldwide skyrocketed from about 2 million tonnes in 1950 to 8.3 billion tonnes in 2015, with 6.3 billion tonnes (76%) ending up as waste. Of that waste, 79% is either in landfills or the environment. The purpose of the review is to establish the current global status quo in the plastics industry and assess the sustainability of some bio-based biodegradable plastics. This integrative and consolidated review thus builds on previous studies that have focused either on one or a few of the aspects considered in this paper. Three broad items to strongly consider are: Biodegradable plastics and other alternatives are not always environmentally superior to fossil-based plastics; less investment has been made in plastic waste management than in plastics production; and there is no single solution to plastic waste management. Some strategies to push for include: increasing recycling rates, reclaiming plastic waste from the environment, and bans or using alternatives, which can lessen the negative impacts of fossil-based plastics. However, each one has its own challenges, and country-specific scientific evidence is necessary to justify any suggested solutions. In conclusion, governments from all countries and stakeholders should work to strengthen waste management infrastructure in low- and middle-income countries while extended producer responsibility (EPR) and deposit refund schemes (DPRs) are important add-ons to consider in plastic waste management, as they have been found to be effective in Australia, France, Germany, and Ecuador.
Collapse
|
23
|
Sohn YJ, Kim HT, Baritugo K, Jo SY, Song HM, Park SY, Park SK, Pyo J, Cha HG, Kim H, Na J, Park C, Choi J, Joo JC, Park SJ. Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnol J 2020; 15:e1900489. [DOI: 10.1002/biot.201900489] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Jung Sohn
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hee Taek Kim
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Kei‐Anne Baritugo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Seo Young Jo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hye Min Song
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Se Young Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Su Kyeong Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Jiwon Pyo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hyun Gil Cha
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Hoyong Kim
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Jeong‐Geol Na
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbumro Mapo‐gu Seoul 04107 Republic of Korea
| | - Chulhwan Park
- Department of Chemical EngineeringKwangwoon University 98‐2, Seokgye‐ro Nowon‐gu Seoul Republic of Korea
| | - Jong‐Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and BiomaterialsChonnam National University Gwangju 61186 Republic of Korea
| | - Jeong Chan Joo
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| |
Collapse
|
24
|
Park SH, Sohn YJ, Park SJ, Choi JI. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions. Microb Cell Fact 2020; 19:64. [PMID: 32156293 PMCID: PMC7063819 DOI: 10.1186/s12934-020-01322-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/01/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Gamma aminobutyric acid (GABA) is an important platform chemical, which has been used as a food additive and drug. Additionally, GABA is a precursor of 2-pyrrolidone, which is used in nylon synthesis. GABA is usually synthesized from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD). Currently, there are several reports on GABA production from monosodium glutamate (MSG) or glucose using engineered microbes. However, the optimal pH for GAD activity is 4, which is the limiting factor for the efficient microbial fermentative production of GABA as fermentations are performed at pH 7. Recently, DR1558, a response regulator in the two-component signal transduction system was identified in Deinococcus radiodurans. DR1558 is reported to confer cellular robustness to cells by binding the promoter regions of genes via DNA-binding domains or by binding to the effector molecules, which enable the microorganisms to survive in various environmental stress conditions, such as oxidative stress, high osmotic shock, and low pH. RESULTS In this study, the effect of DR1558 in enhancing GABA production was examined using two different strategies: whole-cell bioconversion of GABA from MSG and direct fermentative production of GABA from glucose under acidic culture conditions. In the whole-cell bioconversion, GABA produced by E. coli expressing GadBC and DR1558 (6.52 g/L GABA from 13 g/L MSG·H2O) in shake flask culture at pH 4.5 was 2.2-fold higher than that by E. coli expressing only GadBC (2.97 g/L of GABA from 13 g/L MSG·H2O). In direct fermentative production of GABA from glucose, E. coli ∆gabT expressing isocitrate dehydrogenase (IcdA), glutamate dehydrogenase (GdhA), GadBC, and DR1558 produced 1.7-fold higher GABA (2.8 g/L of GABA from 30 g/L glucose) than E. coli ∆gabT expressing IcdA, GdhA, and GadBC (1.6 g/L of GABA from 30 g/L glucose) in shake flask culture at an initial pH 7.0. The transcriptional analysis of E. coli revealed that DR1558 conferred acid resistance to E. coli during GABA production. The fed-batch fermentation of E. coli expressing IcdA, GdhA, GadBC, and DR1558 performed at pH 5.0 resulted in the final GABA titer of 6.16 g/L by consuming 116.82 g/L of glucose in 38 h. CONCLUSION This is the first report to demonstrate GABA production by acidic fermentation and to provide an engineering strategy for conferring acid resistance to the recombinant E. coli for GABA production.
Collapse
Affiliation(s)
- Sung-Ho Park
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Yu Jung Sohn
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|