1
|
Rananaware P, Naik S, Mishra L, Keri RS, Mishra M, Brahmkhatri VP. Polymeric Nanodiscs Comprising 5-Fluorouracil for Inhibition of Protein Aggregation and Their Anti-Alzheimer's Activity in the Drosophila Model. ACS Chem Neurosci 2025; 16:342-354. [PMID: 39693601 DOI: 10.1021/acschemneuro.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Nanoconjugates are promising for therapeutic drug delivery and targeted applications due to the numerous opportunities to functionalize their surface. The present study reports the synthesis of 5-fluorouracil (5-FU)-entrapped polyvinylpyrrolidone (PVP) nanoconjugates, precisely 5-FU-PVP and 5-FU-PVP-Au, and the evaluation of protein aggregation inhibition efficiency. The 5-FU-loaded polymer nanoconjugates were functionalized with gold nanoparticles and analyzed using characterization techniques like dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, and zeta potential analysis. These conjugates exhibit consistent morphology with a spherical, flat, disc-like structure. The 5-FU-PVP and 5-FU-PVP-Au nanoconjugates exhibited a high drug loading, up to 81% and 90%, respectively. The nanoconjugates exhibited prolonged drug delivery of 5-FU from 5-FU-PVP and 5-FU-PVP-Au, wherein 5-FU-PVP-Au depicted a higher drug release. They were investigated for inhibiting the protein hen egg white lysozyme (HEWL) aggregation by ThT fibril size measurement, binding assay, and electron microscopy, and the results showed that conjugates repressed the fibrillogenesis in HEWL. The prominent activity of amyloid aggregation inhibition for HEWL using 5-FU-PVP and 5-FU-PVP-Au was found to be 29 μg.mL-1 and 27 μg.mL-1, respectively. The dissociation of amyloid aggregates was achieved against 5-FU-PVP and 5-FU-PVP-Au at 27 μg.mL-1 and 25 μg.mL-1, respectively. Furthermore, the nanoconjugates were investigated for anti-Alzheimer's activity in the Drosophila model. A Drosophila model of Alzheimer's disease (AD) was developed that expressed Aβ42 peptides in the neuronal secretory system to comprehend the pathogenic effects of Aβ42 in vivo. All the results demonstrate that polymer nanoconjugates exhibit more effective inhibition of protein aggregation than bare drugs.
Collapse
Affiliation(s)
- Pranita Rananaware
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka India
| | - Seekha Naik
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Rangappa S Keri
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Varsha P Brahmkhatri
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka India
- Department of Chemistry, Centre of Excellence in Materials& Sensors, CMR Institute of Technology, Bengaluru 560037, India
| |
Collapse
|
2
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
3
|
Abidi SMS, Shukla AK, Randhawa S, Bathla M, Acharya A. Diosgenin loaded cellulose nanoonion impedes different stages of protein aggregation induced cell death via alleviating mitochondrial dysfunction and upregulation of autophagy. Int J Biol Macromol 2024; 266:131108. [PMID: 38531523 DOI: 10.1016/j.ijbiomac.2024.131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Muthu SA, Qureshi A, Sharma R, Bisaria I, Parvez S, Grover S, Ahmad B. Redesigning the kinetics of lysozyme amyloid aggregation by cephalosporin molecules. J Biomol Struct Dyn 2024:1-16. [PMID: 38682862 DOI: 10.1080/07391102.2024.2335304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In lysozyme amyloidosis, fibrillar aggregates of lysozyme are associated with severe renal, hepatic, and gastrointestinal manifestations, with no definite therapy. Current drugs are now being tested in amyloidosis clinical trials as aggregation inhibitors to mitigate disease progression. The tetracycline group among antimicrobials in use is in phase II of clinical trials, whereas some macrolides and cephalosporins have shown neuroprotection. In the present study, two cephalosporins, ceftazidime (CZD) and cefotaxime (CXM), and a glycopeptide, vancomycin (VNC), are evaluated for inhibition of amyloid aggregation of hen egg white lysozyme (HEWL) under two conditions (i) 4 M guanidine hydrochloride (GuHCl) at pH 6.5 and 37° C, (ii) At pH 1.5 and 65 °C. Fluorescence quench titration and molecular docking methods report that CZD, CXM, and VNC interact more strongly with the partially folded intermediates (PFI) in comparison to the protein's natural state (N). However, only CZD and CXM proficiently inhibit the aggregation. Transmission electron microscopy, tinctorial assessments, and aggregation kinetics all support oligomer-level inhibition. Transition structures in CZD-HEWL and CXM-HEWL aggregation are shown by circular dichroism (CD). On the other hand, kinetic variables and soluble fraction assays point to a localized association of monomers. Intrinsic fluorescence (IF),1-Anilino 8-naphthalene sulphonic acid, and CD demonstrate structural and conformational modifications redesigning the PFI. GuHCl-induced unfolding and differential scanning fluorimetry suggested that the PFI monomers bound to CZD and CXM exhibited partial stability. Our results present two mechanisms that function in both solution conditions, creating a novel avenue for the screening of putative inhibitors for drug repurposing. We extend our proposed mechanisms in the designing of physical inhibitors of amyloid aggregation considering shorter time frames and foolproof methods.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Afnaan Qureshi
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ishita Bisaria
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Yan Z, Liu J, Ren J, Li C, Wang Z, Dai L, Cao S, Zhang R, Liu X. Magnesium ions regulated ovalbumin-lysozyme heteroprotein complex: Aggregation kinetics, thermodynamics and morphologic structure. Int J Biol Macromol 2023; 253:126487. [PMID: 37657312 DOI: 10.1016/j.ijbiomac.2023.126487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This study aims to investigate the mechanism of magnesium ions regulated ovalbumin-lysozyme (OVA-LYS) heteroprotein aggregation behavior via aggregation kinetics model, exploring the relationship between differential aggregation behavior and protein molecular structure, intermolecular interactions and thermal stability. Results showed that the aggregation rate (kapp) and maximum absorbance (Amax) of the OVA-LYS heteroprotein complex were located between OVA and LYS. Meanwhile, the thermal denaturation temperature (Td) and denaturation enthalpy (ΔH) were between the values of OVA and LYS as well. Compared with OVA, the thermal stability of the OVA-LYS heteroprotein complex increased owing to the electrostatic interactions between OVA and LYS, resulting in slower aggregation rate and lower aggregation degree. Molecular dynamics simulations revealed the molecular conformational changes during OVA-LYS binary protein binding and the stability of the complex conformation. Moreover, MgCl2 weakened the OVA-LYS interactions through Debye shielding while increasing thermal stability, allowing the two proteins to aggregate into amorphous precipitates rather than spherical coacervates. Overall, this study provides information to further understand the regulation mechanism of proteins differential aggregation behavior by ions.
Collapse
Affiliation(s)
- Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jianqi Ren
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chenman Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Luyao Dai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Dudure R, Joshi R, Pritam P, Panda AK, Jadhao M. Probing the interaction and aggregation of lysozyme in presence of organophosphate pesticides: a comprehensive spectroscopic, calorimetric, and in-silico investigation. J Biomol Struct Dyn 2023; 42:10922-10936. [PMID: 37728535 DOI: 10.1080/07391102.2023.2259484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agriculture and may contaminate food or water, leading to potential health risks. However, there are few reports on the effect of OPs on protein conformation and aggregation. Hence, in this paper, we have characterized the impact of two OPs, chlorpyrifos (CPF) and methyl parathion (Para), on the model protein HEWL using biophysical and computational methods. The steady-state and time-resolved spectroscopy, Circular dichroism (CD), molecular dynamics simulation, and isothermal titration calorimetry were employed to investigate the binding interactions between HEWL and OPs. The steady-state and time-resolved fluorescence spectroscopy confirm the presence of both static and dynamic quenching between OPs and proteins. Based on fluorescence, MD, and CD results, it was found that the OPs not only show strong binding but also destabilize the protein structure and alter the secondary and tertiary structure of the protein. The molecular docking results showed that OPs entered the binding pocket of the HEWL molecule and interacted through hydrophobic and hydrogen bond interactions. The thermodynamic studies indicated that the binding was spontaneous and OPs have shown an effect on the aggregation process of HEWL. Finally, the protein aggregation process was studied using fluorescence and SDS-PAGE studies in the presence of both the OPs and found to enhance the aggregation process in the presence of OPs. These results provide insights into the potential health risks associated with OPs and highlight the importance of understanding their interactions with biological macromolecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rushali Dudure
- Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Jalna, India
| | - Ritika Joshi
- Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Jalna, India
| | - Pulak Pritam
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Patia, Bhubaneswar, India
| | - Alok Kumar Panda
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Patia, Bhubaneswar, India
| | - Manojkumar Jadhao
- Institute of Chemical Technology Mumbai Marathwada Campus Jalna, Jalna, India
| |
Collapse
|
7
|
Kudose S, Cossey LN, Canetta PA, Sekulic M, Vanbeek CA, Huls FB, Gupta I, Bu L, Alexander MP, Cornell LD, Fidler ME, Markowitz GS, Larsen CP, D’Agati VD, Nasr SH, Santoriello D. Clinicopathologic Spectrum of Lysozyme-Associated Nephropathy. Kidney Int Rep 2023; 8:1585-1595. [PMID: 37547521 PMCID: PMC10403676 DOI: 10.1016/j.ekir.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Lysozyme-associated nephropathy (LyN), a rare cause of kidney injury in patients with chronic myelomonocytic leukemia (CMML), has not been well described to date. We report the clinicopathologic spectrum of LyN from a multi-institutional series. Method We identified 37 native kidney biopsies with LyN and retrospectively obtained clinicopathologic data. Results Thirty-seven patients had a median age of 74 years and included 78% males. Their most common presentation was acute kidney injury (AKI) or AKI on chronic kidney disease (CKD) (66%) with median estimated glomerular filtration rate (eGFR) of 21.7 ml/min per 1.73 m2, and proteinuria of 1.7 g. A minority (15%) had partial Fanconi syndrome. Serum lysozyme levels were elevated in all tested. Hematologic disorder (n = 28, 76%) was the most common etiology, including CMML (n = 15), acute myeloid leukemia (n = 5), and myelodysplastic syndrome (MDS) (n = 5). Nonhematologic causes (n = 5, 14%), included metastatic neuroendocrine carcinoma (n = 3), sarcoidosis, and leprosy. Etiology was unknown in 4 (11%). Pathology showed proximal tubulopathy with abundant hypereosinophilic intracytoplasmic inclusions, with characteristic staining pattern by lysozyme immunostain. Mortality was high (8/30). However, among the 22 alive, including 85% treated, 7 had improved kidney function, including 1 who discontinued dialysis and 6 with increase in eGFR >15 ml/min per 1.73 m2 compared with eGFR at the time of biopsy. Conclusion Increased awareness of the full clinicopathologic spectrum of LyN may lead to prompt diagnosis, earlier treatment, and potentially improved outcome of this rare entity.
Collapse
Affiliation(s)
- Satoru Kudose
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Pietro A. Canetta
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Forest B. Huls
- Department of Pathology, Division of Laboratory Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Isha Gupta
- Middletown Medical, Middletown, New York, USA
| | - Lihong Bu
- Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Glen S. Markowitz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Dominick Santoriello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
8
|
Dudure R, Ganorkar K, Beldar V, Ghosh SK, Panda AK, Jadhao M. Effect of artificial sweetener saccharin on lysozyme aggregation: A combined spectroscopic and in silico approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122269. [PMID: 36566534 DOI: 10.1016/j.saa.2022.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The use of saccharin in food products attracts much attention as it involves the risk of lethal allergies and many protein aggregation diseases. However, its role in protein aggregation has not been explored to date. This study embodies the effect of artificial sweeteners on HEWL in the absence and presence of commonly available natural products such as curcumin and EGCG. Various techniques have been used to characterize the protein interaction, such as steady-state emission and time-resolved fluorescence, FTIR, gel electrophoresis, TEM, and molecular docking. Steady-state and time-resolved studies revealed the binding strength and concomitant effect of saccharin on HEWL protein. Kinetic measurements revealed that saccharin causes significant enhancement of HEWL aggregation with a considerable reduction in lag phase time i.e. from 37 hr to 08 hr. Whereas in the presence of natural products, the effect of saccharin on HEWL aggregation was significantly reduced specifically in the case of curcumin. The result obtained in the fluorescence experiment were also supported by the gel electrophoresis technique and morphological images taken by TEM. The rapid change in the secondary structure of the protein in the presence of saccharin was confirmed by the FTIR spectroscopy technique. This study is instrumental in understanding the effect of saccharin on protein aggregation and the role of commonly available natural products in curbing its effect.
Collapse
Affiliation(s)
- Rushali Dudure
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Kapil Ganorkar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Vishal Beldar
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India
| | - Alok Kumar Panda
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Manojkumar Jadhao
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|
9
|
Ali SM, Nabi F, Hisamuddin M, Rizvi I, Ahmad A, Hassan MN, Paul P, Chaari A, Khan RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation. Int J Biol Macromol 2023; 233:123623. [PMID: 36773857 DOI: 10.1016/j.ijbiomac.2023.123623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.
Collapse
Affiliation(s)
- Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
10
|
Muthu SA, Sharma R, Qureshi A, Parvez S, Ahmad B. Mechanistic insights into monomer level prevention of amyloid aggregation of lysozyme by glycyrrhizic acid. Int J Biol Macromol 2023; 227:884-895. [PMID: 36549619 DOI: 10.1016/j.ijbiomac.2022.12.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
As the primary bioactive compound of glycyrrhiza rhizome, the triterpene glycoside conjugate Glycyrrhizic acid (GA) has demonstrated neuroprotective effects in vivo. This study evaluates the effectiveness of GA as an inhibitor of GuHCl-induced amyloid aggregation of hen egg white lysozyme (HEWL). Fibril formation as measured by Thioflavin-T fluorescence, 900 light scattering, and 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence illustrated ∼90 % prevention of fibrils at [GA]/[HEWL] ≥2:1. Images of Transmission electron microscopy evidence for the absence of any fibril or amorphous aggregation products. The spectral characteristics of soluble HEWL were in close resemblance to unfolded monomer. Computational and fluorescence investigations performed to analyse GA-HEWL interactions demonstrated slightly higher affinity of GA to unfolded HEWL and aggregation-prone regions. The likely mechanism of monomer level aggregation prevention by GA as dermined by computational, stability, and ANS experiments illustrated that GA modulated the compactness, solvent-accessible surface, and solvent-exposed hydrophobic surfaces of aggregation-prone state of HEWL. Our findings corroborate GA as an effective inhibitor of HEWL amyloid formation. To our knowledge, GA interaction-induced inhibition of aggregation-prone states has not been previously discussed. GA's modulation of aggregation-prone states of disease-related proteins will successfully develop GA as an amyloid inhibitor for clinical trials of amyloidosis and neurodegenerative illnesses.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi 110062, India
| | - Afnaan Qureshi
- Protein Assembly Laboratory, Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Entomology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Rananaware P, Pandit P, Naik S, Mishra M, Keri RS, Brahmkhatri VP. Anti-amyloidogenic property of gold nanoparticle decorated quercetin polymer nanorods in pH and temperature induced aggregation of lysozyme. RSC Adv 2022; 12:23661-23674. [PMID: 36090438 PMCID: PMC9389553 DOI: 10.1039/d2ra03121c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Quercetin is an abundant plant polyphenol effective against several diseases due to its antioxidant and anti-inflammatory activity. Herein, we report novel polymeric quercetin nanorods and the former decorated with gold nanoparticles for the first time. The prepared conjugates quercetin-polyvinylpyrrolidone (Q-PVP) and quercetin-polyvinylpyrrolidone-gold nanoparticles (Q-PVP-Au) were characterized by UV-visible spectroscopy, Fourier transform infrared, dynamic light scattering, and zeta potential measurements. The surface morphology of conjugates was analyzed by field emission scanning electron microscopy. These conjugates exhibit harmonized rod-like morphology with a narrow size distribution. Furthermore, the quercetin conjugates with nanorod morphology exhibited enhanced and prolonged drug release over a long period. The synthesized conjugates were investigated for lysozyme aggregation kinetics. ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates could suppress fibrillogenesis in lysozyme. The highest amyloid aggregation inhibition activity (IC50) was obtained against Q-PVP and Q-PVP-Au at 32 μg mL-1 and 30 μg mL-1 respectively. The amyloid aggregate disintegration activity (DC50) obtained against Q-PVP and Q-PVP-Au was 27 μg mL-1 and 29 μg mL-1 respectively. The present quercetin conjugates exhibit enhanced bioavailability and stability. They were potent inhibitors of lysozyme aggregation that may find applications as a therapeutic agent in neurological diseases like Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Pranita Rananaware
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Parimal Pandit
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Seekha Naik
- Neural Developmental Biology Lab, Department of Life Science NIT Rourkela Rourkela Odisha 769008 India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science NIT Rourkela Rourkela Odisha 769008 India
| | - Rangappa S Keri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Varsha P Brahmkhatri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| |
Collapse
|
12
|
Li H, Pan Y, Li C, Yang Z, Rao J, Chen B. Design, synthesis and characterization of lysozyme-gentisic acid dual-functional conjugates with antibacterial/antioxidant activities. Food Chem 2022; 370:131032. [PMID: 34500294 DOI: 10.1016/j.foodchem.2021.131032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
Both microbiological and chemical food spoilages remain to be the major challenges in the food industry's efforts to combat food waste and loss because of the lack of high efficacy food preservatives. In this study, dual-functional conjugates that simultaneously suppress both lipid oxidation and microorganism growth are fabricated by covalently conjugating natural antioxidant gentisic acid (GA) on native antibacterial lysozyme (Lys). The mixing ratio of Lys and GA determines the particle size, morphology, antioxidant activity, and antimicrobial performance of the ensuing conjugates. With more of GA being grafted, a drastic decrease in the net surface charge with the concomitant occurrence of aggregations are observed in the conjugates. The maximum antioxidant activity and antibacterial performance of the conjugates is achieved when Lys:GA molar ratio is 1:112. The findings could guide the rational design of future functional food ingredients that combine multiple natural bioactive compounds to effectively intervene food waste and loss.
Collapse
Affiliation(s)
- Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Chun Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA.
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
13
|
Alam I, Lertanantawong B, Prongmanee W, Lertvanithphol T, Horprathum M, Sutthibutpong T, Asanithi P. Investigating lysozyme amyloid fibrillization by electrochemical impedance spectroscopy for application in lysozyme sensor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Liu H, Zou S, Dai S, Zhang J, Li W. Dopamine sheathing facilitates the anisotropic growth of lysozyme crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Wang W, Luo R, Duan Q, Feng Y, Chen J, Huang Y, Bi S, Liu F, Lee J. Direct Quantification of Mixed Organic Acids Based on Spectral Image with Deep Learning. ChemistrySelect 2021. [DOI: 10.1002/slct.202100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenjing Wang
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| | - Run Luo
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity College of Urban and Environmental Sciences Northwest University Xi'an 710127 China
| | - Yunjin Feng
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| | - Jiayuan Chen
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| | - Yicai Huang
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| | - Sifan Bi
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| | - Fenli Liu
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| | - Jianchao Lee
- Department of Environment Science Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
16
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
17
|
Liu H, Zhang J, Li W. The distinct binding modes of pesticides affect the phase transitions of lysozyme. CrystEngComm 2021. [DOI: 10.1039/d1ce00108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the aggregation and nucleation of proteins in the presence of organic molecules is helpful for disclosing the mechanisms of protein crystallization.
Collapse
Affiliation(s)
- Han Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|