1
|
Song YB, Park BR, Chewaka LS, Park JY, Lee S, Baek SM, Lee BH. Postprandial glycemic attenuation of size-dependent α-glucan fractions via Gluconobacter oxydans biosynthesis. Int J Biol Macromol 2025; 308:142779. [PMID: 40180076 DOI: 10.1016/j.ijbiomac.2025.142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/10/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Slowly digestible carbohydrates have gained significant attention as functional ingredients for regulating blood glucose homeostasis, modulating appetite, and reducing the risk of obesity and type 2 diabetes. In this study, we explored a bioconversion strategy using Gluconobacter oxydans ATCC 11894 to synthesize polysaccharides with a high proportion of α-1,6 glycosidic linkages from maltodextrins. The bioconversion process effectively generates distinct polysaccharide fractions, including high-molecular-weight dextran, isomaltomegalosaccharides (IMSs), and low-molecular-weight byproducts, each with unique structural properties. IMSs, characterized by a complex network of α-1,4 and α-1,6 linkages, demonstrated significantly reduced susceptibility to mammalian α-glucosidase and slower enzymatic hydrolysis rates compared to dextran. Both in vitro and in vivo evaluations revealed that the polysaccharides modified through bioconversion, particularly the IMS-enriched fractions, effectively attenuated postprandial glucose spikes, prolonged glucose release, and sustained glucose availability. The unfractionated polysaccharides modified through bioconversion also showed promising potential for modulating glycemic responses, providing sustained energy release, and reducing the metabolic risks associated with hyperglycemia. Notably, this bioconversion process utilizes crude maltodextrins without requiring enzyme extraction or purified substrates, ensuring industrial scalability. These findings highlight the potential of G. oxydans-mediated bioconversion as a viable strategy for developing functional carbohydrate-based materials aimed at glycemic control and metabolic health.
Collapse
Affiliation(s)
- Young-Bo Song
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Legesse Shiferaw Chewaka
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji Yeong Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Seul Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Seung-Min Baek
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
2
|
Sangokunle OO, Corwin SG, Hamaker BR. Characterization and In Vitro Digestion Kinetics of Purified Pulse Starches: Implications on Bread Formulation. Foods 2025; 14:328. [PMID: 39856993 PMCID: PMC11765446 DOI: 10.3390/foods14020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread. Our findings reveal that some PSs exhibited low digestibility when gelatinized (100 °C, 30 min) and retrograded (7 days, 4 °C). Rapid retrogradation was observed in starch from chickpeas, lentils, field peas, adzuki beans, navy beans, large lima beans, and great northern beans. The incorporation of chickpea starch into fortified bread significantly improved its slow digestibility properties. This study reveals the potential of pulse starch as a promising functional ingredient for baked products, related to the faster retrogradation of many pulse-sourced starches. These findings contribute valuable insights into the slow digestibility attributes of pulse starches for developing food products with enhanced nutritional profiles.
Collapse
Affiliation(s)
- Oluwatoyin O. Sangokunle
- Department of Food Science, College of Agriculture and Food Sciences, Florida A and M University, Tallahassee, FL 32307, USA
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (S.G.C.); (B.R.H.)
| | - Sarah G. Corwin
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (S.G.C.); (B.R.H.)
| | - Bruce R. Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (S.G.C.); (B.R.H.)
| |
Collapse
|
3
|
Baek SM, Park BR, Chewaka LS, So YS, Jung JH, Lee S, Park JY. Synthesis and Physico-Chemical Analysis of Dextran from Maltodextrin via pH Controlled Fermentation by Gluconobacter oxydans. Foods 2025; 14:85. [PMID: 39796375 PMCID: PMC11719824 DOI: 10.3390/foods14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Dextran is an exopolysaccharide (EPS) with multifunctional applications in the food and pharmaceutical industries, primarily synthesized from Leuconostoc mesenteroides. Dextran can be produced from dextrin through Gluconobacter oxydans fermentation, utilizing its dextran dextrinase activity. This study examined how jar fermentor conditions impact the growth and enzyme activity of G. oxydans, with a focus on the effects of pH on dextran synthesis via bioconversion (without pH control, pH 4.5, and pH 5.0; Jp-UC, Jp-4.5, and Jp-5.0). After 72 h, the cell density (O.D. at 600 nm) was 7.2 for Jp-4.5, 6.5 for Jp-5.0, and 3.7 for Jp-UC. Flow property analysis, indicating dextran production, showed that Jp-4.5 had the highest viscosity (30.99 mPa·s). 1H-NMR analysis confirmed the formation of α-1,6 glycosidic bonds in bioconversion products, with bond ratios ranging from ~1:0.17 to ~1:2.84. The distribution of molecular weights varied from 1.3 × 103 Da to 5.1 × 104 Da depending on pH. The hydrolysis rates to glucose differed with pH, with the slowest rate at pH 4.5 (53.96%). These results suggest that the production of dextran by G. oxydans is significantly influenced by the pH conditions. This dextran could function as a slowly digestible carbohydrate, aiding in postprandial glycemic regulation and mitigating chronic metabolic diseases like diabetes.
Collapse
Affiliation(s)
- Seung-Min Baek
- Fermentation Research Department, National Institute of Agricultural Science, RDA, Jeonju 54875, Republic of Korea
| | - Bo-Ram Park
- Fermentation Research Department, National Institute of Agricultural Science, RDA, Jeonju 54875, Republic of Korea
| | - Legesse Shiferaw Chewaka
- Fermentation Research Department, National Institute of Agricultural Science, RDA, Jeonju 54875, Republic of Korea
| | - Yun-Sang So
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Ji-Hye Jung
- Fermentation Research Department, National Institute of Agricultural Science, RDA, Jeonju 54875, Republic of Korea
| | - Seul Lee
- Fermentation Research Department, National Institute of Agricultural Science, RDA, Jeonju 54875, Republic of Korea
| | - Ji Young Park
- Fermentation Research Department, National Institute of Agricultural Science, RDA, Jeonju 54875, Republic of Korea
| |
Collapse
|
4
|
Kang JU, So YS, Kim G, Lee W, Seo DH, Shin H, Yoo SH. Efficient Biosynthesis of Theanderose, a Potent Prebiotic, Using Amylosucrase from Deinococcus deserti. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25197-25209. [PMID: 39480747 PMCID: PMC11565756 DOI: 10.1021/acs.jafc.4c05763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
The study aimed to develop an efficient bioprocess for the discovery and synthesis of theanderose by using amylosucrase from Deinococcus deserti (DdAS). An unknown trisaccharide produced by DdAS was detected by high-performance anion-exchange chromatography-pulsed amperometric detection and high-performance liquid chromatography-evaporative light scattering detection, purified using medium-pressure liquid chromatography, and identified as theanderose (α-d-glucopyranosyl-(1→6)-α-d-glucopyranosyl-(1→2)-β-d-fructofuranoside) through nuclear magnetic resonance and mass spectrometry. DdAS synthesized theanderose with a 25.4% yield (174.1 g/L) using 2.0 M sucrose at 40 °C for 96 h. In an in vitro digestion model, theanderose showed a 6.5% hydrolysis rate over 16 h. Prebiotic efficacy tests confirmed that theanderose significantly enhanced the proliferation of selected Bifidobacterium strains in the culturing medium with theanderose as the main carbon source. Subsequently, fecal fermentation was performed by adding theanderose to the feces of 20 individuals of varying ages to assess its effect on the gut microbiota. Theanderose increased the relative abundance of Bifidobacteriaceae and Prevotellaceae while decreasing the population ratio of Lachnospiraceae and Ruminococcaceae. Conclusively, theanderose displayed excellent prebiotic potential when judged by low digestibility and selective growth of beneficial microbes over harmful microbes.
Collapse
Affiliation(s)
- Jeon-Uk Kang
- Department of Food Science
and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Yun-Sang So
- Department of Food Science
and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Gyungcheon Kim
- Department of Food Science
and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - WonJune Lee
- Department of Food Science
and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science
and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Hakdong Shin
- Department of Food Science
and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science
and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
5
|
Bae D, Song YB, Choi H, Lee BH. Slowly hydrolyzable property of microbial dextrans at the small intestinal α-glucosidase levels leads to the modulated glycemic responses in the mouse model. Int J Biol Macromol 2024; 277:134322. [PMID: 39094862 DOI: 10.1016/j.ijbiomac.2024.134322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Dextran-type α-glucans have been known as non-digestible ingredients that can be considered prebiotics to promote colon health. However, recent studies have revealed that various α-linked glucosyl units are hydrolyzed to glucose by small intestinal α-glucosidases. This study analyzed the structural characteristics of exopolysaccharides (EPSs) from Weissella species, and the hydrolysis properties at both in vitro/in vivo levels were investigated. Compared with a previous in vitro digestion model using fungal α-hydrolytic enzymes, dextrans, which mainly consist of α-1,6 linkages with small amounts of α-1,3 linked glucose units, were slowly hydrolyzed to glucose by mammalian mucosal α-glucosidases, resulting in attenuation of the initial glycemic response following administration of EPS samples to mice via oral gavage. The results of this study demonstrate the concept of dextran-type α-glucans as glycemic carbohydrates rather than dietary fibers or prebiotics. Slowly digestible dextrans can be applied as a functional ingredient to regulate postprandial glucose delivery throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Dain Bae
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyunwook Choi
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
6
|
Lee WM, Song YB, Han KS, Sim WS, Lee BH. Hydrolysis of oligosaccharides in the gastrointestinal tract alters their prebiotic effects on probiotic strains. Food Sci Biotechnol 2024; 33:2255-2260. [PMID: 39130657 PMCID: PMC11315819 DOI: 10.1007/s10068-023-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 08/13/2024] Open
Abstract
Oligosaccharides have been widely used as prebiotics in the food industry, however their properties have been examined in vitro, without considering hydrolysis in the human digestive tract, especially in the small intestine. Here, we hypothesized that the prebiotic effects and utilization efficiency of ingested oligosaccharides would be altered in the colon, as their structures are partially hydrolyzed during digestion. Different types of oligosaccharides were partially degraded during simulated digestion, and digestible monosaccharides were released from the initial substrates. The growth of some probiotic strains responded to the presence of digestible/absorbable mono- and disaccharides (components of the prebiotic oligosaccharides), but not to that of the oligosaccharides themselves. These findings regarding oligosaccharide degradation in the gastrointestinal tract can be used to achieve greater experimental accuracy when examining the effects of prebiotics on gut flora via in vitro studies (e.g., on fecal fermentation or microbial growth rates). Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01474-z.
Collapse
Affiliation(s)
- Won-Min Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Young-Bo Song
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Ki-Soo Han
- NeoCremar Co., Ltd, Seoul, 05702 Republic of Korea
| | - Wan-Sup Sim
- NeoCremar Co., Ltd, Seoul, 05702 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
7
|
Jo M, Qi J, Du Z, Li Y, Shi YC. Changes in the structure and enzyme binding of starches during in vitro enzymatic hydrolysis using mammalian mucosal enzyme mixtures. Carbohydr Polym 2024; 335:122070. [PMID: 38616092 DOI: 10.1016/j.carbpol.2024.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.
Collapse
Affiliation(s)
- Myeongsu Jo
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea
| | - Jing Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
8
|
Lim HE, Song YB, Choi HW, Lee BH. α-Glucan-type exopolysaccharides with varied linkage patterns: Mitigating post-prandial glucose spike and prolonging the glycemic response. Carbohydr Polym 2024; 331:121898. [PMID: 38388043 DOI: 10.1016/j.carbpol.2024.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Microbial exopolysaccharides (EPSs) are traditionally known as prebiotics that foster colon health by serving as microbiota nutrients, while remaining undigested in the small intestine. However, recent findings suggest that α-glucan structures in EPS, with their varied α-linkage types, can be hydrolyzed by mammalian α-glucosidases at differing rates. This study explores α-glucan-type EPSs, including dextran, alternan, and reuteran, assessing their digestive properties both in vitro and in vivo. Notably, while fungal amyloglucosidase - a common in vitro tool for carbohydrate digestibility analysis - shows limited efficacy in breaking down these structures, mammalian intestinal α-glucosidases can partially degrade them into glucose, albeit slowly. In vivo experiments with mice revealed that various EPSs elicited a significantly lower glycemic response (p < 0.05) than glucose, indicating their nature as carbohydrates that are digested slowly. This leads to the conclusion that different α-glucan-type EPSs may serve as ingredients that attenuate post-prandial glycemic responses. Furthermore, rather than serving as mere dietary fibers, they hold the potential for blood glucose regulation, offering new avenues for managing obesity, Type 2 diabetes, and other related-chronic diseases.
Collapse
Affiliation(s)
- Hae-Eun Lim
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Bo Song
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyun-Wook Choi
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
9
|
Dávila León R, González‐Vázquez M, Lima‐Villegas KE, Mora‐Escobedo R, Calderón‐Domínguez G. In vitro gastrointestinal digestion methods of carbohydrate-rich foods. Food Sci Nutr 2024; 12:722-733. [PMID: 38370076 PMCID: PMC10867469 DOI: 10.1002/fsn3.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
The trend toward healthier food products has led to an increase in the research of in vitro gastrointestinal digestion methods. Among the most used models, static models are the simplest. Most static models have three stages: oral, gastric, and intestinal, simulating the enzymatic, electrolyte, pH, temperature, and bile salt conditions. The studies that have taken the most notice are those related to antioxidant activity, followed by those dealing with proteins and carbohydrates using most of them static in vitro digestion models. The number of these studies has increased over the years, passing from 45 to 415 in a 10-year period (2012-2023) and showing an interest in knowing the impact of food on human health. Nevertheless, published papers report different methodologies and analytical approaches. This review discusses the similarities and differences between the published static in vitro gastrointestinal digestion methods, with a focus on carbohydrates, finding that the most used protocol is Infogest, but with differences, mainly in the type of enzymes and their activity. Regarding in vitro gastrointestinal digestion of carbohydrates, many of the published studies are related to food and biomacromolecules, being the oral phase the most omitted, while the intestinal phase in the most diverse. Other methodologies to study the intestinal phase have been recommended, but the number of in vitro digestion studies using these methodologies (RSIE and BBMV) is still scarce but could represent a good alternative to analyze carbohydrates foods when combining with Infogest. More studies are required in this area.
Collapse
Affiliation(s)
- Rebeca Dávila León
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | | | | - Rosalva Mora‐Escobedo
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | |
Collapse
|
10
|
Shim YE, Song YB, Yoo SH, Lee BH. Production of highly branched α-limit dextrins with enhanced slow digestibility by various glycogen-branching enzymes. Carbohydr Polym 2023; 310:120730. [PMID: 36925263 DOI: 10.1016/j.carbpol.2023.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
α-Limit dextrins (α-LDx) are slowly digestible carbohydrates that attenuate postprandial glycemic response and trigger the secretion of satiety-related hormones. In this study, more highly branched α-LDx were enzymatically synthesized to enhance the slowly digestible property by various origins of glycogen branching enzyme (GBE), which catalyzes the transglycosylation to form α-1,6 branching points after cleaving α-1,4 linkages. Results showed that the proportion of branched α-LDx in starch molecules increased around 2.2-8.1 % compared to α-LDx from starch without GBE treatment as the ratio of α-1,6 linkages increased after different types of GBE treatments. Furthermore, the enzymatic increment of branching points enhanced the slowly digestible properties of α-LDx at the mammalian α-glucosidase level by 17.3-28.5 %, although the rates of glucose generation were different depending on the source of GBE treatment. Thus, the highly branched α-LDx with a higher amount of α-1,6 linkages and a higher molecular weight can be applied as a functional ingredient to deliver glucose throughout the entire small intestine without a glycemic spike which has the potential to control metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Ye-Eun Shim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea; Core-Facility for Bionano Materials, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
11
|
Ryu HJ, Song YB, Choi W, Yoo SH, Lee BH. Macromolecular α-glucans with α-1,3/α-1,4 branching structures produced using dual glycosyltransferases: Elucidation of physicochemical and slowly digestible properties. Int J Biol Macromol 2023; 242:124921. [PMID: 37201882 DOI: 10.1016/j.ijbiomac.2023.124921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Amylosucrase from Neisseria polysaccharea (NpAS) produces the linear amylose-like α-glucans by the elongation property from sucrose, and 4,3-α-glucanotransferase from Lactobacillus fermentum NCC 2970 (4,3-αGT) newly synthesizes the α-1,3 linkages after cleaving the α-1,4 linkages by the glycosyltransferring property. This study focused on the synthesis of high molecular α-1,3/α-1,4-linked glucans by combining NpAS and 4,3-αGT and analyzed their structural and digestive properties. The enzymatically synthesized α-glucans have a molecular weight of >1.6 × 107 g mol-1, and the α-4,3 branching ratios on the structures increased as the amount of 4,3-αGT increased. The synthesized α-glucans were hydrolyzed to linear maltooligosaccharides and α-4,3 branched α-limit dextrins (α-LDx) by human pancreatic α-amylase, and the amounts of produced α-LDx were increased depending on the ratio of synthesized α-1,3 linkages. In addition, approximately 80 % of the synthesized products were partially hydrolyzed by mammalian α-glucosidases, and the glucose generation rates decelerated as the amounts of α-1,3 linkages increased. In conclusion, new types of α-glucans with α-1,4 and α-1,3 linkages were successfully synthesized by a dual enzyme reaction. These can be utilized as slowly digestible and prebiotic ingredients in the gastrointestinal tract due to their novel linkage patterns and high molecular weights.
Collapse
Affiliation(s)
- Hye-Jung Ryu
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Bo Song
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Wonkyun Choi
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
12
|
Um HE, Park BR, Kim YM, Lee BH. Slow digestion properties of long-sized isomaltooligosaccharides synthesized by a transglucosidase from Thermoanaerobacter thermocopriae. Food Chem 2023; 417:135892. [PMID: 36933421 DOI: 10.1016/j.foodchem.2023.135892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Isomaltooligosaccharides (IMOs) are widely used as prebiotic ingredients that promote colon health; however, recent studies revealed that these are slowly hydrolyzed to glucose within the small intestine. Here, novel α-glucans with a higher number of α-1,6 linkages were synthesized from maltodextrins using the Thermoanaerobacter thermocopriae-derived transglucosidase (TtTG) to decrease susceptibility to hydrolysis and improve slow digestion properties. The synthesized long-sized IMOs (l-IMOs; 70.1% of α-1,6 linkages), comprising 10-12 glucosyl units, exhibited slow hydrolysis to glucose when compared to commercial IMOs under treatment with mammalian α-glucosidase level. In male mice, the ingestion of l-IMOs significantly decreased the post-prandial glycemic response compared to other samples (p < 0.05). Therefore, enzymatically synthesized l-IMOs can be applied as functional ingredients for the modulation of blood glucose homeostasis in obesity, Type 2 diabetes, and other chronic diseases.
Collapse
Affiliation(s)
- Ha-Eun Um
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea.
| | - Young Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
13
|
Kim DK, Lee BH. New glucogenesis inhibition model based on complete α-glucosidases from rat intestinal tissues validated with various types of natural and pharmaceutical inhibitors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4419-4424. [PMID: 35077587 DOI: 10.1002/jsfa.11795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Inhibition of intestinal α-glucosidases from rat intestinal acetone powder (RIAP) has been widely used in research focused on regulating glucogenesis to be applied as a strategy to control obesity and type II diabetes. However, the crude extract has different compositions of α-glucosidases than a complete RIAP suspension due to enzymes anchored on the intestinal tissues after the extraction. Here, the inhibitory effects of different pharmaceutical and food-grade inhibitors on the enzymes in the RIAP suspension were investigated. RESULTS Instead of crude extracts from RIAP, the RIAP suspension without the extraction process was applied to optimize the α-glucosidase inhibitory model by pharmaceutical/natural inhibitors. The results clearly showed that the half-maximal inhibitory concentration ratios of four individual α-glucosidases by various inhibitors were different between the RIAP suspension and the crude extract. In particular, isomaltase from the RIAP suspension required more inhibitors than the crude extraction did, as this enzyme is still anchored to the remaining intestinal tissue from the extraction process. CONCLUSION The crude extract from RIAP contains only a portion of the enzymes, which poses limitations for determining the precise inhibitory properties by various types of enzyme inhibitors. On the contrary, an in vitro assay with RIAP suspension that has all the α-glucosidases is a more suitable method for determining digestibility of glycemic carbohydrates. This new approach can be applied to the development of natural/synthetic α-glucosidase inhibitors to attenuate the postprandial glycemic response more accurately. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Do Kyoung Kim
- Department of Food Science & Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
14
|
Song YB, Lamothe LM, Esmeralda Nava Rodriguez N, Rose DR, Lee BH. New insights suggest isomaltooligosaccharides are slowly digestible carbohydrates, rather than dietary fibers, at constitutive mammalian α-glucosidase levels. Food Chem 2022; 383:132456. [PMID: 35182873 DOI: 10.1016/j.foodchem.2022.132456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Isomaltooligosaccharides (IMOs) have been characterized as dietary fibers that resist digestion in the small intestine; however, previous studies suggested that various α-glycosidic linkages in IMOs were hydrolyzed by mammalian α-glucosidases. This study investigated the hydrolysis of IMOs by small intestinal α-glucosidases from rat and human recombinant sucrase-isomaltase complex compared to commonly used fungal amyloglucosidase (AMG) in vitro. Interestingly, mammalian α-glucosidases fully hydrolyzed various IMOs to glucose at a slow rate compared with linear maltooligosaccharides, whereas AMG could not fully hydrolyze IMOs because of its very low hydrolytic activity on α-1,6 linkages. This suggests that IMOs have been misjudged as prebiotic ingredients that bypass the small intestine due to the nature of the assay used. Instead, IMOs can be applied in the food industry as slowly digestible materials to regulate the glycemic response and energy delivery in the mammalian digestive system, rather than as dietary fibers.
Collapse
Affiliation(s)
- Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Lisa M Lamothe
- Nestlé Research, Vers chez les Blanc, CP44, 1000 Lausanne 26, Switzerland
| | | | - David R Rose
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
15
|
Ryu JJ, Li X, Lee ES, Li D, Lee BH. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo. Carbohydr Polym 2022; 275:118685. [PMID: 34742415 DOI: 10.1016/j.carbpol.2021.118685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Starch molecules are first degraded to slowly digestible α-limit dextrins (α-LDx) and rapidly hydrolyzable linear malto-oligosaccharides (LMOs) by salivary and pancreatic α-amylases. In this study, we designed a slowly digestible highly branched α-LDx with maximized α-1,6 linkages using 4,6-α-glucanotransferase (4,6-αGT), which creates a short length of α-1,4 side chains with increasing branching points. The results showed that a short length of external chains mainly composed of 1-8 glucosyl units was newly synthesized in different amylose contents of corn starches, and the α-1,6 linkage ratio of branched α-LDx after the chromatographical purification was significantly increased from 4.6% to 22.1%. Both in vitro and in vivo studies confirmed that enzymatically modified α-LDx had improved slowly digestible properties and extended glycemic responses. Therefore, 4,6-αGT treatment enhanced the slowly digestible properties of highly branched α-LDx and promises usefulness as a functional ingredient to attenuate postprandial glucose homeostasis.
Collapse
Affiliation(s)
- Jae-Jin Ryu
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities, Education Department of Jilin Provincial Government, Changchun University, Changchun 130022, People's Republic of China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
16
|
Gallego-Lobillo P, Ferreira-Lazarte A, Hernández-Hernández O, Villamiel M. In vitro digestion of polysaccharides: InfoGest protocol and use of small intestinal extract from rat. Food Res Int 2021; 140:110054. [PMID: 33648279 DOI: 10.1016/j.foodres.2020.110054] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Starch, dextran, pectin and modified citrus pectin were subjected to intestinal digestion following InfoGest protocol and a rat small intestine extract (RSIE) treatment. Gastric stage did not show any modification in the structure of the carbohydrates, except for modified pectin. Regarding intestinal phases, starch was hydrolyzed by different ways, resulting in a complementary behavior between InfoGest and RSIE. Contrarily, digestion of dextran was only observed using RSIE. Similar situation occurred in the case of pectins with RSIE, obtaining a partial hydrolysis, especially in the modified citrus pectin. However, citrus pectin was the less prone to hydrolysis by enzymes. The results demonstrated that InfoGest method underestimates the significance of the carbohydrates hydrolysis at the small intestine, thus indicating that RSIE is a very reliable and useful method for a more realistic study of polysaccharides digestion.
Collapse
Affiliation(s)
- Pablo Gallego-Lobillo
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alvaro Ferreira-Lazarte
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Oswaldo Hernández-Hernández
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mar Villamiel
- Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|