1
|
Mehta PK, Peter JK, Kumar A, Yadav AK, Singh R. From nature to applications: Laccase immobilization onto bio-based materials for eco-conscious environmental remediation. Int J Biol Macromol 2025; 307:142157. [PMID: 40096928 DOI: 10.1016/j.ijbiomac.2025.142157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Biodegradable and sustainable materials utilized for laccase immobilization have garnered substantial scholarly interest owing to their capacity to enhance enzyme stability and reusability, which are paramount for effective bioremediation methodologies. Laccase, a versatile oxidase, possesses the ability to degrade a broad spectrum of environmental contaminants, thus rendering it an invaluable asset in bioremediation endeavours. The immobilization of laccase onto biodegradable substrates not only augments its operational stability but also resonates with sustainable environmental strategies. This article systematically investigates recent advancements in sustainable and eco-conscious methodologies aimed at immobilizing laccase. By integrating biodegradable and non-toxic components, we elucidated how these materials not only proficiently enhanced the operational stability of laccases, but also improved their biodegradation effectiveness. A comprehensive analysis revealed that these sustainable materials facilitate immobilized laccase-mediated efficient removal of hazardous chemicals. Furthermore, we highlight the challenges that persist despite the encouraging characteristics of sustainable and eco-friendly approaches to laccase immobilization and pollutant elimination, and engage in discourse regarding potential pathways for their broader application and scalable solutions. This review highlights the significance of incorporating green technologies into environmental remediation efforts, thereby fostering the development of more effective and ecologically sound solutions for sustainable laccase immobilization to mitigate environmental contaminants efficiently.
Collapse
Affiliation(s)
- Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Jammu & Kashmir, India
| | - Jyotsna Kiran Peter
- Centre for Molecular Biology, Central University of Jammu, Jammu & Kashmir, India
| | - Arun Kumar
- Centre for Molecular Biology, Central University of Jammu, Jammu & Kashmir, India
| | - Ashok Kumar Yadav
- Department of Zoology, Central University of Jammu, Jammu & Kashmir, India
| | - Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea.
| |
Collapse
|
2
|
Nouaa S, Aziam R, Carja G, Chiban M, Froidevaux R. Immobilization of Trametes versicolor laccase on LDH/alginate composite beads for improved textile dyes decolorization. Int J Biol Macromol 2025; 303:140577. [PMID: 39904437 DOI: 10.1016/j.ijbiomac.2025.140577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Laccase is an oxido-reductase known for its applications in biomass valorization (lignin depolymerization), in fine chemicals (building-blocks synthesis) or in environment (wastewater treatment). It works with molecular oxygen and produces water as its only by-product. However, its practical use remains limited due to the low stability and poor reusability of free laccase. To overcome these challenges, laccase from Trametes versicolor was immobilized onto layered double hydroxide and alginate composite beads by a glutaraldehyde cross-linker to create an easily separable and stable enzyme. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the as-synthesized composite beads (laccase@MgFe(LDH)/alginate). The activity of the immobilized laccase was measured with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) model substrate. Here, the optimal conditions of laccase immobilization were explored and the effects of various conditions of immobilization, pH, storage stability and thermal resistance of the (laccase@MgFe(LDH)/alginate) were also studied. The results revealed that the optimal conditions for laccase immobilization were a concentration of glutaraldehyde of 2.5 %, an amount of laccase (0.5 U/mg) of 2 mg/mL, and an immobilization time of 6 h. The stability of (laccase@MgFe(LDH)/alginate) was >70 % of its initial activity, even after 10 cycles. The study of dye decolorization showed up to 74 % of methylene blue (MB) and 69 % of Crystal violet (CV) degradation, suggesting the use of immobilized laccase on MgFe(LDH)/alginate composite beads as a promising and environmentally friendly tool for the degradation of environmental pollutants, in particular for the removal of textile dyes from wastewater.
Collapse
Affiliation(s)
- Safa Nouaa
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - Rachid Aziam
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Gabriela Carja
- Laboratory of Materials Nanoarchitectonics, Faculty of Chemical Engineering and Environment Protection, Technical University of 'Gheorghe Asachi' of Iasi, Iasi, Romania
| | - Mohamed Chiban
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Renato Froidevaux
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, ICV - Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
3
|
Cabezudo I, L E Furlan R. Thin layer chromatography assay to detect laccase inhibitors. Food Chem 2024; 460:140583. [PMID: 39089026 DOI: 10.1016/j.foodchem.2024.140583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Thin-layer chromatography (TLC) hyphenated to bioassays is a modern tool used for discovery of biologically active compounds from complex mixtures. The first bioautographic assay for detecting laccase inhibitors on a TLC plate was developed in this study. The on-plate reaction of laccase with colourless ABTS that renders the blue ABTS∙+ radical was optimised. Combination of the enzymatic TLC-assay with a control TLC-assay, wherein ABTS∙+ radical is chemically generated and then applied on the TLC, allowed to differentiate between the pure laccase inhibitor sodium azide and radical scavengers such as gallic and kojic acids. The limit of detection and quantification for the method were 54.9 and 166 ng of sodium azide respectively. The methodology was applied successfully to a recently discovered laccase inhibitor chemotype: hydrazones. A model hydrazone was compared with several hydrazones synthesized for this study. For the first time, laccase inhibitors separated on a TLC plate can be detected individually.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
4
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
5
|
Rasheed U, Ain QU, Liu B. Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil. CHEMOSPHERE 2024; 367:143424. [PMID: 39368492 DOI: 10.1016/j.chemosphere.2024.143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Enzymatic degradation of aflatoxins in food commodities has gained significant attention. However, enzyme denaturation in organic media discourages their direct use in oils to remove aflatoxins. For that, enzymes are immobilized or encapsulated for improved stability and reusability under unfavorable conditions. We sandwiched the laccase between a carrier and an outer protective layer. We used spent-mushroom-substrate (SMS) derived porous magnetic biochar as the laccase carrier and coated it with an iron MOF to create a biocomposite, Fe-BTC@Lac@FB. The immobilized laccase demonstrated enhanced chemical, thermal, and storage stability and proficient reusability. Fe-BTC@Lac@FB exhibited 11 times enhanced aflatoxin B1 (AFB1) degradation compared to free laccase (FL). In addition, thermally inactivated Fe-BTC@Lac@FB could adsorb 11.2 mg/g of AFB1 from peanut oil. Multi-aflatoxin removal also proved promising, while Fe-BTC@Lac@FB could retain >85 % of AFB1 removal efficacy after five reusability cycles. Fe-BTC@Lac@FB treatment did not affect peanut oil quality as indicated by different oil quality parameters and proved essentially non-cytotoxic. All these aspects helped recognize Fe-BTC@Lac@FB as an excellent laccase-carrying material with exceptionally higher stability, activity, and reusability.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China.
| |
Collapse
|
6
|
Wu X, Cai C, Cen Q, Fu G, Lu X, Zheng H, Zhang Q, Cui X, Liu Y. Efficient catalytic removal of phenolic pollutants by laccase from Coriolopsis gallica: Binding interaction and polymerization mechanism. Int J Biol Macromol 2024; 279:135272. [PMID: 39226979 DOI: 10.1016/j.ijbiomac.2024.135272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Laccase is a green catalyst that can efficiently catalyze phenolic pollutants, and its catalytic efficiency is closely related to the interaction between enzyme and substrates. To investigate the binding effects between enzyme and phenolic pollutants, phenol, p-chlorophenol, and bisphenol A were used as substrates in this study. We focused on the removal and catalytic mechanism of these pollutants in water using yellow laccase derived from Coriolopsis gallica. The enzymatic catalytic products were characterized using Ultraviolet-Visible Absorption Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and High-Resolution Mass Spectrometry (HRMS), and the catalytic mechanism of laccase on phenolic pollutants was further explored by molecular docking. Based on the structural characterization and molecular docking results, the possible polymerization pathways of these phenolic compounds were speculated. Laccase catalyzed phenol to produce phenolic hydroxyl radicals, their para-radicals, and ortho-radicals, which polymerized to form oligomers linked by benzene‑oxygen-benzene and benzene-benzene. P-chlorophenol produced phenolic hydroxyl radicals and their ortho-radicals, polymerizing to form oligomers connected by benzene‑oxygen-benzene or benzene-benzene. The CC bond of the isopropyl group of bisphenol A broke to formed an intermediate product, which was further polymerized to formed a benzene‑oxygen-benzene linked oligomer.
Collapse
Affiliation(s)
- Xiaodan Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Changjun Cai
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qingjing Cen
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China.
| | - Xuan Lu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongli Zheng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
7
|
Hao M, Yao J, Chen J, Zhu R, Gu Z, Xin Y, Zhang L. Enhanced degradation of phenolic pollutants by a novel cold-adapted laccase from Peribacillus simplex. Int J Biol Macromol 2024; 277:134583. [PMID: 39122074 DOI: 10.1016/j.ijbiomac.2024.134583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Laccase (EC 1.10.3.2), as eco-friendly biocatalysts, holds immense potential for sustainable applications across various environmental and industrial sectors. Despite the growing interest, the exploration of cold-adapted laccases, especially their unique properties and applicability, remains limited. In this study, we have isolated, cloned, expressed, and purified a novel laccase from Peribacillus simplex (GenBank: PP430751), which was derived from permafrost layer. The recombinant laccase (PsLac) exhibited optimal activity at 30 °C and a pH optimum of 3.5. Remarkably, PsLac exhibited remarkable stability in the presence of organic solvents, with its enzyme activity increasing by 20 % after being incubated in a 30 % trichloromethane solution for 12 h, compared to its initial activity. Furthermore, the enzyme preserved 100 % of its activity after undergoing eight freeze-thaw cycles. Notably, the catalytic center of PsLac contains Zn2+ instead of the typically observed Cu2+ found in other laccases, and metal-ion substitution experiments raised the catalytic efficiency to 3-fold when Zn2+ was replaced with Fe2+. Additionally, PsLac has demonstrated a proficient ability to degrade phenolic pollutants, such as hydroquinone, even at a low temperature of 16 °C, positioning it as a promising candidate for environmental bioremediation and contributing to cleaner production processes.
Collapse
Affiliation(s)
- Mengyao Hao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - JiaXin Yao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Jianxiong Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Rui Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Zhenghua Gu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China
| | - Yu Xin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
| | - Liang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
| |
Collapse
|
8
|
Yasmin HAN, Kunasundari B, Shuit SH, Tompang MF. Paddy straw saccharification using immobilized laccase on magnetized multiwall carbon nanotubes. Biotechnol Lett 2024; 46:559-569. [PMID: 38748066 DOI: 10.1007/s10529-024-03494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 07/03/2024]
Abstract
The effective recovery of the immobilized enzymes using magnetic carriers has led to growing interest in this technology. The objective of this research was to evaluate the efficiency of immobilized laccase on magnetized multiwall carbon nanotubes (m-MWCNTs) in terms of stability and reusability. Laccases were efficiently adsorbed onto magnetized multiwall carbon nanotubes (m-MWCNTs) synthesized using water. The concentration of 7 mg laccase/mL was found to be ideal for immobilization. The optimal activity of both free and immobilized laccases was observed at pH 5, while for the latter, the optimal temperature was shifted from 40 to 50 °C. Compared to the free laccase, the immobilized laccase exhibited a greater range of stability at more extreme temperatures. At the fourth cycle of reactions, the immobilized laccase exhibited more than 60% relative activity in terms of reusability. Based on the fourier-transform infrared spectroscopy (FTIR) peak at 2921 cm-1, saccharification of paddy straw using immobilized laccase verified lignin degradation. The easy recovery of the immobilized laccase on m-MWCNTs lends credence to its potential use in biomass hydrolysis.
Collapse
Affiliation(s)
| | - Balakrishnan Kunasundari
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Mohamad Fahrurrazi Tompang
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| |
Collapse
|
9
|
Deng W, Ge M, Wang Z, Weng C, Yang Y. Efficient degradation and detoxification of structurally different dyes and mixed dyes by LAC-4 laccase purified from white-rot fungi Ganoderma lucidum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116450. [PMID: 38768540 DOI: 10.1016/j.ecoenv.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The purpose of this study is to evaluate the decolorization ability and detoxification effect of LAC-4 laccase on various types of single and mixed dyes, and lay a good foundation for better application of laccase in the efficient treatment of dye pollutants. The reaction system of the LAC-4 decolorizing single dyes (azo, anthraquinone, triphenylmethane, and indigo dyes, 17 dyes in total) were established. To explore the decolorization effect of the dye mixture by LAC-4, two dyes of the same type or different types were mixed at the same concentration (100 mg/L) in the reaction system containing 0.5 U laccase, and time-course decolorization were performed on the dye mixture. The combined dye mixtures consisted of azo + azo, azo + anthraquinone, azo + indigo, azo + triphenylmethane, indigo + triphenylmethane, and triphenylmethane + triphenylmethane. The results obtained in this study were as follows. Under optimal conditions of 30 °C and pH 5.0, LAC-4 (0.5 U) can efficiently decolorize four different types of dyes. The 24-hour decolorization efficiencies of LAC-4 for 800 mg/L Orange G and Acid Orange 7 (azo), Remazol Brilliant Blue R (anthraquinone), Bromophenol Blue and Methyl Green (triphenylmethane), and Indigo Carmine (indigo) were 75.94%, 93.30%, 96.56%, 99.94%, 96.37%, and 37.23%, respectively. LAC-4 could also efficiently decolorize mixed dyes with different structures. LAC-4 can achieve a decolorization efficiency of over 80% for various dye mixtures such as Orange G + Indigo Carmine (100 mg/L+100 mg/L), Reactive Orange 16 + Methyl Green (100 mg/L+100 mg/L), and Remazol Brilliant Blue R + Methyl Green (100 mg/L+100 mg/L). During the decolorization process of the mixed dyes by laccase, four different interaction relationships were observed between the dyes. Decolorization efficiencies and rates of the dyes that were difficult to be degraded by laccase could be greatly improved when mixed with other dyes. Degradable dyes could greatly enhance the ability of LAC-4 to decolorize extremely difficult-to-degrade dyes. It was also found that the decolorization efficiencies of the two dyes significantly increased after mixing. The possible mechanisms underlying the different interaction relationships were further discussed. Free, but not immobilized, LAC-4 showed a strong continuous batch decolorization ability for single dyes, two-dye mixtures, and four-dye mixtures with different structures. LAC-4 exhibited high stability, sustainable degradability, and good reusability in the continuous batch decolorization. The LAC-4-catalyzed decolorization markedly reduced or fully abolished the toxic effects of single dyes (azo, anthraquinone, and indigo dye) and mix dyes (nine dye mixtures containing four structural types of dyes) on plants. Our findings indicated that LAC-4 laccase had significant potential for use in bioremediation due to its efficient degradation and detoxification of single and mixed dyes with different structural types.
Collapse
Affiliation(s)
- Wei Deng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Mingrui Ge
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Ziyi Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Chenwen Weng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Yang Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
10
|
Dong W, Yan J, Yang Y, Wu Q, Hu X. Immobilization of laccase on magnetic mesoporous silica as a recoverable biocatalyst for the efficient degradation of benzo[a]pyrene. CHEMOSPHERE 2024; 346:140642. [PMID: 37939925 DOI: 10.1016/j.chemosphere.2023.140642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Laccase is an efficient green biocatalyst, widely used for the degradation of various organic pollutants. However, free laccase is unstable and difficult to recover, which limits its practical application. In this study, a multilayer core-shell magnetic mesoporous silica (Fe3O4@d-SiO2@p-SiO2) microsphere with high specific surface area (275 m2 g-1) was fabricated for immobilization of laccase. The unique structure of Fe3O4@d-SiO2@p-SiO2 enabled the successful immobilization of laccase. Under the optimal immobilization conditions of laccase concentration of 1.5 mg mL-1, immobilization time of 6 h, immobilization pH of 6, the loading capacity of laccase was up to 567 mg g-1. Compared with free laccase, immobilized laccase exhibited remarkable pH stability, thermal stability and storage stability. Moreover, the immobilized laccase was easy to achieve magnetic recovery and possessed excellent reusability, with its activity remaining 58.2% after 10 consecutive reuses. More importantly, immobilized laccase had good degradation performance for benzo[a]pyrene (BaP), which can achieve rapid and efficient degradation of low concentration BaP over a wide range of pH and temperature. The removal efficiency of BaP was up to 99.0% within 1 h, and still exceeded 35.0% after 5 cycles. The removal of BaP by immobilized laccase was achieved through both adsorption and degradation. The degradation products and possible degradation pathways were determined by GC-MS analysis. This study indicated that Fe3O4@d-SiO2@p-SiO2 could effectively enhance the stability and biocatalytic activity of laccase, which is expected to provide a new clean biotechnology for the remediation of BaP contaminated sites.
Collapse
Affiliation(s)
- Wenya Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jiaqi Yan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yaoyu Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
11
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. Int J Biol Macromol 2023; 246:125723. [PMID: 37419265 DOI: 10.1016/j.ijbiomac.2023.125723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, horseradish peroxidase (HRP) was immobilized for the first time on Ca alginate-starch hybrid beads and employed for the biodegradation of phenol red dye. The optimal protein loading was 50 mg/g of support. Immobilized HRP demonstrated improved thermal stability and maximum catalytic activity at 50 °C and pH 6.0, with an increase in half-life (t1/2) and enzymatic deactivation energy (Ed) compared to free HRP. After 30 days of storage at 4 °C, immobilized HRP retained 109% of its initial activity. Compared to free HRP, the immobilized enzyme exhibited higher potential for phenol red dye degradation, as evidenced by the removal of 55.87% of initial phenol red after 90 min, which was 11.5 times greater than free HRP. In sequential batch reactions, the immobilized HRP demonstrated good potential efficiency for the biodegradation of phenol red dye. The immobilized HRP was used for a total of 15 cycles, degrading 18.99% after 10 cycles and 11.69% after 15 cycles, with a residual enzymatic activity of 19.40% and 12.34%, respectively. Overall, the results suggest that HRP immobilized on Ca alginate-starch hybrid supports shows promise as a biocatalyst for industrial and biotechnological applications, particularly for the biodegradation of recalcitrant compounds such as phenol red dye.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | | | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
12
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
13
|
Etemadi A, Karimi-Jafari MH, Negahdari B, Asgari Y, Reza Khorramizadeh M, Mohammadian F, Mazloomi M. Design of a dual-function agent by fusing a designed anti-VEGF-A binder and CPG-2 enzyme. J Biomol Struct Dyn 2023; 41:11463-11470. [PMID: 36629035 DOI: 10.1080/07391102.2022.2162584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Anti-VEGF therapies are common for the treatment of cancer. Carboxypeptidase G (CPG-2) enzyme is a zinc-dependent metalloenzyme that metabolizes non-toxic synthetic 'benzoic mustard prodrugs' to cytotoxic moieties in tumor cells. In this study, we designed a dual-activity agent by combining a designed anti-VEGF- and CPG-2 enzyme to convert methotrexate (MTX). VEGF-A was docked against a set of scaffolds, and suitable inverse rotamers were made. Rosetta design was used for the interface design. The top 1200 binders were chosen by flow cytometry and displayed in yeast. The activity of CPG-2 enzyme was analyzed at different temperature conditions and in the presence of the substrate, MTX. Optimal binders were selected and protein was eluted using immobilized metal affinity chromatography and size-exclusion chromatography. Both, native PAGE and on-yeast flow cytometry confirmed the binding of the binder to VEGF-A. The activity of truncated enzymes was slightly lower than that of full-length enzymes linked to VEGF-A. The method should be generally useful as a dual-activity agent for targeting VEGF-A and combination therapy with the enzyme CPG-2 for metabolizing non-toxic prodrugs to cytotoxic moieties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Etemadi
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Babak Negahdari
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yazdan Asgari
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farideh Mohammadian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Mazloomi
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
14
|
Co-immobilization of laccase and PEG modified COFs into Cu doped gel beads to achieve synergistic effect of photocatalysis and enzymatic catalysis for pollutants removal. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zhou X, Zhou W, Zhuang W, Zhu C, Ying H, Zhang H. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Khoja IA, Arsalan A, Biswas AK, Tandon S. Casein zymography based detection and one step purification for simultaneous quantification of calcium induced endogenous proteases in breast and thigh muscles from different chicken breeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- I. A. Khoja
- Division of Post‐Harvest Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. Arsalan
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. K. Biswas
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | | |
Collapse
|
17
|
Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Lu J, Nie M, Li Y, Zhu H, Shi G. Design of composite nanosupports and applications thereof in enzyme immobilization: A review. Colloids Surf B Biointerfaces 2022; 217:112602. [PMID: 35660743 DOI: 10.1016/j.colsurfb.2022.112602] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
Abstract
Enzyme immobilization techniques have developed dramatically over the past several decades. Support materials are key in shaping the function of a specific immobilized enzyme. Although they have large specific surface areas and functional active sites, single-component nanomaterials and their surface chemical modification derivatives struggle to meet increasing demand. Thus, composite materials, compounds of two or more materials, have been developed and applied in efficient immobilization through advances in materials science. More methods have been developed and employed to design composite nanomaterials in recent years. These novel composite nanomaterials often show superior physical, chemical, and biological performance as supports in enzyme immobilization, among other applications. In this review, immobilization techniques and their supports are stated first and methods to design and fabricate composite nanomaterials as nanosupports are also shown in the following section. Applications of composite nanosupports in laccase immobilization are discussed as models in the later sections of the paper. This review is intended to help readers gain insight into the design principles of composite nanomaterials for immobilization supports.
Collapse
Affiliation(s)
- Jiawei Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Mingfu Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Huilin Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
19
|
Zofair SFF, Ahmad S, Hashmi MA, Khan SH, Khan MA, Younus H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114676. [PMID: 35151142 DOI: 10.1016/j.jenvman.2022.114676] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
We are facing a high risk of exposure to emerging contaminants and increasing environmental pollution with the concomitant growth of industries. Persistence of these pollutants is a major concern to the ecosystem. Laccases, also known as "green catalysts" are multi-copper oxidases which offers an eco-friendly solution for the degradation of these hazardous pollutants to less or non-toxic compounds. Although various other biological methods exist for the treatment of pollutants, the fact that laccases catalyze the oxidation of broad range of substrates in the presence of molecular oxygen without any additional cofactor and releases water as the by-product makes them exceptional. They have a good possibility of utilization in various industries, especially for the purpose of bioremediation. Besides this, they have also been used in medical/health care, food industry, bio-bleaching, wine stabilization, organic synthesis and biosensors. This review covers the catalytic behaviour of laccases, their immobilization strategies, potential applications in bioremediation of recalcitrant environmental pollutants and their engineering. It provides a comprehensive summary of most factors to consider while working with laccases in an industrial setting. It compares the benefits and drawbacks of the current techniques. Immobilization and mediators, two of the most significant aspects in working with laccases, have been meticulously discussed.
Collapse
Affiliation(s)
- Syeda Fauzia Farheen Zofair
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Sumbul Ahmad
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shaheer Hasan Khan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
20
|
In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022; 209:642-654. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/14/2023]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
21
|
Abstract
The accumulation of waste and toxic compounds has become increasingly harmful to the environment and human health. In this context, the use of laccases has become a focus of interest, due to the properties of these versatile enzymes: low substrate specificity, and water formation as a non-toxic end product. Thus, we begin our study with a general overview of the importance of laccase for the environment and industry, starting with the sources of laccases (plant, bacterial and fungal laccases), the structure and mechanism of laccases, microbial biosynthesis, and the immobilization of laccases. Then, we continue with an overview of agro-waste treatment by laccases wherein we observe the importance of laccases for the biodisponibilization of substrates and the biodegradation of agro-industrial byproducts; we then show some aspects regarding the degradation of xenobiotic compounds, dyes, and pharmaceutical products. The objective of this research is to emphasize and fully investigate the effects of laccase action on the decomposition of lignocellulosic materials and on the removal of harmful compounds from soil and water, in order to provide a sustainable solution to reducing environmental pollution.
Collapse
|
22
|
Thiolation of Myco-Synthesized Fe3O4-NPs: A Novel Promising Tool for Penicillium expansium Laccase Immobilization to Decolorize Textile Dyes and as an Application for Anticancer Agent. J Fungi (Basel) 2022; 8:jof8010071. [PMID: 35050011 PMCID: PMC8777717 DOI: 10.3390/jof8010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Environmental pollution due to the continuous uncontrolled discharge of toxic dyes into the water bodies provides insight into the need to eliminate pollutants prior to discharge is significantly needed. Recently, the combination of conventional chemotherapeutic agents and nanoparticles has attracted considerable attention. Herein, the magnetic nanoparticles (Fe3O4-NPs) were synthesized using metabolites of Aspergillus niger. Further, the surfaces of Fe3O4-NPs were functionalized using 3-mercaptoproionic acid as confirmed by XRD, TEM, and SEM analyses. A purified P. expansum laccase was immobilized onto Fe3O4/3-MPA-SH and then the developed immobilized laccase (Fe3O4/3-MPA-S-S-laccase) was applied to achieve redox-mediated degradation of different dyes. The Fe3O4/3-MPA-S-S-laccase exhibited notably improved stability toward pH, temperature, organic solvents, and storage periods. The Fe3O4/3-MPA-S-S-laccase exhibited appropriate operational stability while retaining 84.34% of its initial activity after 10 cycles. The catalytic affinity (Kcat/Km) of the immobilized biocatalyst was increased above 10-fold. The experimental data showed remarkable improvement in the dyes’ decolorization using the immobilized biocatalyst in the presence of a redox mediator in seven successive cycles. Thus, the prepared novel nanocomposite-laccase can be applied as an alternative promising strategy for bioremediation of textile wastewater. The cytotoxic level of carboplatin and Fe3O4-NPs singly or in combination on various cell lines was concentration-dependent.
Collapse
|
23
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
24
|
Yin Y, Fei X, Tian J, Xu L, Li Y, Wang Y. Synthesis of lipase-hydrogel microspheres and their application in deacidification of high-acid rice bran oil. NEW J CHEM 2022. [DOI: 10.1039/d2nj03761k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The main challenge of rice bran oil (RBO) as a highly nutritional edible oil is the high content of free fatty acids.
Collapse
Affiliation(s)
- Yawen Yin
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, 1 Qinggongyuan Road, Dalian, 116034, China
| |
Collapse
|
25
|
Bao C, Wang Y, Xu X, Li D, Chen J, Guan Z, Wang B, Hong M, Zhang J, Wang T, Zhang Q. Reversible immobilization of laccase onto glycopolymer microspheres via protein-carbohydrate interaction for biodegradation of phenolic compounds. BIORESOURCE TECHNOLOGY 2021; 342:126026. [PMID: 34598072 DOI: 10.1016/j.biortech.2021.126026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
It is challenging to regenerate enzyme carriers when covalently immobilized enzymes suffered from inactivation during continuous operations. Hence, it is urgent to develop a facile strategy to immobilize enzymes reversibly. Herein, the non-covalent interaction between protein and carbohydrate was used to adsorb and desorb enzymes reversibly. Laccase was immobilized onto glycopolymer microspheres via protein-carbohydrate interaction using lectins as the intermediates. The enzyme loading and immobilization yield were up to 49 mg/g and 77.1% with highly expressed activity of 107.9 U/mg. The immobilized laccase exhibited enhanced pH stability and high activity in catalyzing the biodegradation of paracetamol. During ten successive recoveries, the immobilized laccases could be recycled while maintaining relatively high enzyme activity. The glycopolymer microspheres could be efficiently regenerated by elution with an aqueous solution of mannose or acid for further enzyme immobilization. This glycopolymer microspheres has excellent potential to act as reusable carriers for the non-covalent immobilization of different enzymes.
Collapse
Affiliation(s)
- Chunyang Bao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xiaoling Xu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Die Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jing Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhangbin Guan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Bingyu Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mei Hong
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jingyu Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tianheng Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
26
|
Liang J, Gong S, Sun Y, Zhang J, Zhang J. Enhanced degradation of phenol by a novel biomaterial through the immobilization of bacteria on cationic straw. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3791-3798. [PMID: 34928844 DOI: 10.2166/wst.2021.498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As phenol possesses a threat to human health, there is a great demand to search for fast and efficient methods for it to be discharged. In this study, a novel biomaterial was prepared by the immobilization of bacteria on a cationic straw carrier, and the remediation ability of the biomaterial on phenol-containing wastewater was investigated. The free bacteria could degrade 1,000 mg/L phenol within 240 h, while the prepared biomaterial was 192 h, shortening by 48 h that of free bacteria. In addition, the degradation tolerance of biomaterial increased from 1,000 mg/L to 1,200 mg/L than the free bacteria, within 216 h, which shortened by 24 h the degradation time of 1,000 mg/L phenol by free bacteria (240 h). Further, under different pH conditions, the degradation efficiency of phenol by prepared biomaterial was much higher than that of free bacteria. Especially for the lower pH 5, the degradation efficiency of biomaterial was nearly twice that of the free bacteria. This investigation demonstrates that this biomaterial has great potential in the field of remediation of organic pollution.
Collapse
Affiliation(s)
- Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China E-mail:
| | - Shuxin Gong
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China E-mail:
| | - Yuanhan Sun
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China E-mail:
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China E-mail:
| | - Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China E-mail:
| |
Collapse
|
27
|
Ahmad S, Arsalan A, Hashmi A, Khan MA, Siddiqui WA, Younus H. A comparative study based on activity, conformation and computational analysis on the inhibition of human salivary aldehyde dehydrogenase by phthalate plasticizers: Implications in assessing the safety of packaged food items. Toxicology 2021; 462:152947. [PMID: 34534558 DOI: 10.1016/j.tox.2021.152947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Phthalate plasticizers are commonly used in various consumer-end products. Human salivary aldehyde dehydrogenase (hsALDH) is a detoxifying enzyme which defends us from the toxic aldehydes. Here, the effect of phthalates [Di-2-ethylhexyl phthalate (DEHP), Diethyl phthalate (DEP) and Dibutyl phthalate (DBP)] on hsALDH has been investigated. These plasticizers inhibited hsALDH, and the IC50 values were 0.48 ± 0.04, 283.20 ± 0.09 and 285.00 ± 0.14 μM for DEHP, DEP and DBP, respectively. DEHP was the most potent inhibitor among the three plasticizers. They exhibited mixed-type linear inhibition with inclination towards competitive-non-competitive inhibition. They induced both tertiary and secondary structural changes in the enzyme. Quenching of intrinsic hsALDH fluorescence in a constant manner was observed with a binding constant (Kb) of 8.91 × 106, 2.80 × 104, and 1.31 × 105 M-1, for DEHP, DEP and DBP, respectively. Computational analysis showed that these plasticizers bind stably in the proximity of hsALDH catalytic site, reciprocating via non-covalent interactions with some of the amino acids which are evolutionary conserved. Therefore, exposure to these plasticizers inhibits hsALDH which increases the risk of aldehyde induced toxicity, adversely affecting oral health. The study has implications in assessing the safety of packaged food items which utilize phthalates.
Collapse
Affiliation(s)
- Sumbul Ahmad
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdullah Arsalan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Waseem Ahmad Siddiqui
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
28
|
Arsalan A, Hashmi MA, Zofair SFF, Ahmad S, Khan MA, Younus H. Activation of yeast alcohol dehydrogenase in the presence of citrate stabilized gold nanoparticles: An insight into its interaction and modulation mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Habimana P, Gao J, Mwizerwa JP, Ndayambaje JB, Liu H, Luan P, Ma L, Jiang Y. Improvement of Laccase Activity Via Covalent Immobilization over Mesoporous Silica Coated Magnetic Multiwalled Carbon Nanotubes for the Discoloration of Synthetic Dyes. ACS OMEGA 2021; 6:2777-2789. [PMID: 33553896 PMCID: PMC7860064 DOI: 10.1021/acsomega.0c05081] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/13/2021] [Indexed: 05/19/2023]
Abstract
Due to its environmental friendliness and biodegradable ability, the enzymatic decolorization of azo dyes is the best option. However, the free enzyme suffers from various limitations, including poor stability, no repeatable use, and a high expense, which is the key drawback for its practical use. In this analysis, the laccase enzyme was immobilized in mesoporous silica coated magnetic multiwalled carbon nanotubes (Fe3O4-MWCNTs@SiO2) by a glutaraldehyde cross-linker to create an easily separable and stable enzyme. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the as-synthesized Fe3O4-MWCNTs@SiO2. Laccase immobilized in Fe3O4-MWCNTs@SiO2 showed a good improvement in temperature, pH, and storage stability. Moreover, the operational stability of the biocatalyst was improved, retaining 87% of its original activity even after 10 cycles of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) oxidation. The biocatalysts were applied for the decolorization of selected azo dyes without a mediator, and up to 99% of Eriochrome Black T (EBT), 98% of Acid Red 88 (AR 88), and 66% of Reactive Black 5 (RB5) were decolorized. Based on these properties, the biocatalysts can be potentially utilized in various environmental and industrial applications.
Collapse
Affiliation(s)
- Pascal Habimana
- School
of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Jing Gao
- School
of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Jean Pierre Mwizerwa
- College
of Mechatronics and Control Engineering, Shenzhen University, Houhai Ave, Nanshan District, Shenzen, Guangdong Province, 518060, China
| | | | - Hengrao Liu
- School
of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Pengqian Luan
- School
of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Li Ma
- School
of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
- E-mail:
| | - Yanjun Jiang
- School
of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
| |
Collapse
|
30
|
Ren D, Wang Z, Jiang S, Yu H, Zhang S, Zhang X. Recent environmental applications of and development prospects for immobilized laccase: a review. Biotechnol Genet Eng Rev 2021; 36:81-131. [PMID: 33435852 DOI: 10.1080/02648725.2020.1864187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Laccases have enormous potential as promising 'green' biocatalysts in environmental applications including wastewater treatment and polluted soil bioremediation. The catalytic oxidation reaction they perform uses only molecular oxygen without other cofactors, and the only product after the reaction is water. The immobilization of laccase offers several improvements such as protected activity and enhanced stability over free laccase. In addition, the reusability of immobilized laccase is adistinct advantage for future applications. This review covers the sources of and progress in laccase research, and discusses the different methodologies of laccase immobilization that have emerged in the recent 5-10 years, as well as its applications to environmental fields, and evaluates these emerging technologies. Abbreviations: (2,4,6-TCP): 2,4,6-trichlorophenol; (2,4-DCP): 2,4-dichlorophenol; (ABTS), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); (ACE), acetaminophen; (BC-AS), almond shell; (BC-PM), pig manure; (BC-PW), pine wood; (BPA), bisphenol A; (BPA), bisphenol A; (BPF), bisphenol F; (BPS), bisphenol S; (C60), fullerene; (Ca-AIL), calcium-alginate immobilized laccase; (CBZ), carbamazepine; (CETY), cetirizine; (CHT-PGMA-PEI-Cu (II) NPs), Cu (II)-chelated chitosan nanoparticles; (CLEAs), cross-linked enzyme aggregates; (CMMC), carbon-based mesoporous magnetic composites; (COD), chemical oxygen demand; (CPH), ciprofloxacin hydrochloride; (CS), chitosan; (CTC), chlortetracycline; (Cu-AIL), copper-alginate immobilized laccase; (DBR K-4BL), Drimarene brilliant red K-4BL; (DCF), diclofenac; (E1),estrone; (E2), 17 β-estradiol; (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; (EDCs), endocrine disrupting chemicals; (EE2), 17α-ethinylestradiol; (EFMs), electrospun fibrous membranes; (FL), free laccase; (fsMP), fumed silica microparticles; (GA-CBs), GLU-crosslinked chitosan beads; (GA-CBs), glutaraldehyde-crosslinked chitosan beads; (GA-Zr-MOF), graphene aerogel-zirconium-metal organic framework; (GLU), glutaraldehyde; (GO), graphene oxide; (HMCs), hollow mesoporous carbon spheres; (HPEI/PES), hyperbranched polyethyleneimine/polyether sulfone; (IC), indigo carmine; (IL), immobilized laccase; (kcat), catalytic constant; (Km), Michealis constant; (M-CLEAs), Magnetic cross-linked enzyme aggregates; (MMSNPs-CPTS-IDA-Cu2+), Cu2+-chelated magnetic mesoporous silica nanoparticles; (MSS), magnetic mesoporous silica spheres; (MWNTs), multi-walled carbon nanotubes; (MWNTs), multi-walled carbon nanotubes; (NHS), N-hydroxy succinimide; (O-MWNTs), oxidized-MWNTs; (P(AAm-NIPA)), poly(acrylamide-N-isopropylacrylamide); (p(GMA)), poly(glycidyl methacrylate); (p(HEMA)), poly(hydroxyethyl methacrylate); (p(HEMA-g-GMA)-NH2, poly(glycidyl methacrylate) brush grafted poly(hydroxyethyl methacrylate); (PA6/CHIT), polyamide 6/chitosan; (PAC), powdered active carbon; (PAHs), polycyclic aromatic hydrocarbons; (PAM-CTS), chitosan grafted polyacrylamide hydrogel; (PAN/MMT/GO), polyacrylonitrile/montmorillonite/graphene oxide; (PAN/PVdF), polyacrylonitrile/polyvinylidene fluoride; (PEG), poly ethylene glycol; (PEI), Poly(ethyleneimine); (poly(4-VP)), poly(4-vinyl pyridine); (poly(GMA-MAA)), poly(glycidyl methacrylate-methacrylic acid); (PVA), polyvinyl alcohol; (RBBR), Remazol Brilliant Blue R; (SDE), simulated dye effluent; (semi-IPNs), semi-interpenetrating polymer networks; (TC), tetracycline; (TCH), tetracycline hydrochloride; (TCS), triclosan; (Vmax), maximum activity; (Zr-MOF, MMU), micro-mesoporous Zr-metal organic framework.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Hongyan Yu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| |
Collapse
|
31
|
Modification of Electrospun Regenerate Cellulose Nanofiber Membrane via Atom Transfer Radical Polymerization (ATRP) Approach as Advanced Carrier for Laccase Immobilization. Polymers (Basel) 2021; 13:polym13020182. [PMID: 33419168 PMCID: PMC7825495 DOI: 10.3390/polym13020182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to modify an electrospun regenerated cellulose (RC) nanofiber membrane by surface grafting 2-(dimethylamino) ethyl methacrylate (DMAEMA) as a monomer via atom transfer radical polymerization (ATRP), as well as investigate the effects of ATRP conditions (i.e., initiation and polymerization) on enzyme immobilization. Various characterizations including XPS, FTIR spectra, and SEM images of nanofiber membranes before and after monomer grafting verified that poly (DMAEMA) chains/brushes were successfully grafted onto the RC nanofiber membrane. The effect of different ATRP conditions on laccase immobilization was investigated, and the results indicated that the optimal initiation and monomer grafting times were 1 and 2 h, respectively. The highest immobilization amount was obtained from the RC-Br-1h-poly (DMAEMA)-2h membrane (95.04 ± 4.35 mg), which increased by approximately 3.3 times compared to the initial RC membrane (28.57 ± 3.95 mg). All the results suggested that the optimization of initiation and polymerization conditions is a key factor that affects the enzyme immobilization amount, and the surface modification of the RC membrane by ATRP is a promising approach to develop an advanced enzyme carrier with a high enzyme loading capacity.
Collapse
|
32
|
Kadam AA, Sharma B, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Kim DY, Sung JS. Thiolation of Chitosan Loaded over Super-Magnetic Halloysite Nanotubes for Enhanced Laccase Immobilization. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2560. [PMID: 33419305 PMCID: PMC7766806 DOI: 10.3390/nano10122560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
This study focuses on the development of a nanosupport based on halloysite nanotubes (HNTs), Fe3O4 nanoparticles (NPs), and thiolated chitosan (CTs) for laccase immobilization. First, HNTs were modified with Fe3O4 NPs (HNTs-Fe3O4) by the coprecipitation method. Then, the HNTs-Fe3O4 surface was tuned with the CTs (HNTs-Fe3O4-CTs) by a simple refluxing method. Finally, the HNTs- Fe3O4-CTs surface was thiolated (-SH) (denoted as; HNTs- Fe3O4-CTs-SH) by using the reactive NHS-ester reaction. The thiol-modified HNTs (HNTs- Fe3O4-CTs-SH) were characterized by FE-SEM, HR-TEM, XPS, XRD, FT-IR, and VSM analyses. The HNTs-Fe3O4-CTs-SH was applied for the laccase immobilization. It gave excellent immobilization of laccase with 100% activity recovery and 144 mg/g laccase loading capacity. The immobilized laccase on HNTs-Fe3O4-CTs-SH (HNTs-Fe3O4-CTs-S-S-Laccase) exhibited enhanced biocatalytic performance with improved thermal, storage, and pH stabilities. HNTs-Fe3O4-CTs-S-S-Laccase gave outstanding repeated cycle capability, at the end of the 15th cycle, it kept 61% of the laccase activity. Furthermore, HNTs-Fe3O4-CTs-S-S-Laccase was applied for redox-mediated removal of textile dye DR80 and pharmaceutical compound ampicillin. The obtained result marked the potential of the HNTs-Fe3O4-CTs-S-S-Laccase for the removal of hazardous pollutants. This nanosupport is based on clay mineral HNTs, made from low-cost biopolymer CTs, super-magnetic in nature, and can be applied in laccase-based decontamination of environmental pollutants. This study also gave excellent material HNTs-Fe3O4-CTs-SH for other enzyme immobilization processes.
Collapse
Affiliation(s)
- Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea; (A.A.K.); (R.G.S.)
| | - Bharat Sharma
- Department of Materials Science and Engineering, Incheon National University, Academy Road Yeonsu, Incheon, Seoul 22012, Korea;
| | - Surendra K. Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (S.K.S.); (G.S.G.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea; (S.K.S.); (G.S.G.)
| | - Ganesh D. Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea;
| | - Rijuta G. Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea; (A.A.K.); (R.G.S.)
| | - Do-Yeong Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Korea; (A.A.K.); (R.G.S.)
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Korea
| |
Collapse
|
33
|
An efficient decolorization of methyl orange dye by laccase from Marasmiellus palmivorus immobilized on chitosan-coated magnetic particles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Kadam AA, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Sharma B, Hyun S, Sung JS. Chitosan-Grafted Halloysite Nanotubes-Fe 3O 4 Composite for Laccase-Immobilization and Sulfamethoxazole-Degradation. Polymers (Basel) 2020; 12:E2221. [PMID: 32992644 PMCID: PMC7600077 DOI: 10.3390/polym12102221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
A surface-engineered nano-support for enzyme laccase-immobilization was designed by grafting the surface of halloysite nanotubes (HNTs) with Fe3O4 nanoparticles and chitosan. Herein, HNTs were magnetized (HNTs-M) by a cost-effective reduction-precipitation method. The synthesized HNTs-M were grafted with 0.25%, 0.5%, 1%, and 2% chitosan (HNTs-M-chitosan), respectively. Synthesized HNTs-M-chitosan (0.25%), HNTs-M-chitosan (0.5%), HNTs-M-chitosan (1%) and HNTs-M-chitosan (2%) were linked with glutaraldehyde (GTA) for laccase immobilization. Among these formulations, HNTs-M-chitosan (1%) exhibited the highest laccase immobilization with 95.13% activity recovery and 100.12 mg/g of laccase loading. The optimized material was characterized thoroughly by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analysis. The immobilized laccase (HNTs-M-chitosan (1%)-GTA-Laccase) exhibited higher pH, temperature, and storage stabilities. The HNTs-M-chitosan (1%)-GTA-Laccase possesses excellent reusability capabilities. At the end of 10 cycles of the reusability experiment, HNTs-M-chitosan (1%)-GTA-Laccase retained 59.88% of its initial activity. The immobilized laccase was utilized for redox-mediated degradation of sulfamethoxazole (SMX), resulting in 41%, 59%, and 62% degradation of SMX in the presence of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), guaiacol (GUA), and syringaldehyde (SA), respectively. Repeated SMX degradation (57.10% after the sixth cycle) confirmed the potential of HNTs-M-chitosan (1%)-GTA-Laccase for environmental pollutant degradation. Thus, we successfully designed chitosan-based, rapidly separable super-magnetic nanotubes for efficacious enhancement of laccase biocatalysis, which can be applied as nano-supports for other enzymes.
Collapse
Affiliation(s)
- Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (A.A.K.); (R.G.S.)
| | - Surendra K. Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.K.S.); (G.S.G.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.K.S.); (G.S.G.)
| | - Ganesh D. Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Korea;
| | - Rijuta G. Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (A.A.K.); (R.G.S.)
| | - Bharat Sharma
- Department of Materials Science and Engineering, Incheon National University, Academy Road Yeonsu, Incheon 22012, Korea;
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea;
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea
| |
Collapse
|