1
|
Osterne VS, Lima LD, Oliveira MV, Pinto-Junior VR, Neto CC, Correia SEG, Suarez C, Van Damme EJM, Serna S, Reichardt NC, Nascimento KS, Cavada BS. Novel Lectins from Bauhinia with Differential N-Glycan Binding Profiles. ACS OMEGA 2025; 10:15637-15645. [PMID: 40290935 PMCID: PMC12019499 DOI: 10.1021/acsomega.5c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
The specific interaction of lectins with carbohydrates and glycoconjugates grants these proteins a distinct ability to decode the glycocode. Essential for various biological processes in all organisms, this carbohydrate-binding activity also establishes lectins as valuable tools in fields such as glycomics, medicine, and biotechnology. Considering that the discovery of novel lectins with unique binding profiles is particularly relevant, this study investigated the binding specificity of two lectins extracted from Bauhinia seeds toward simple sugars, N-glycans and O-glycans. The combination of agglutination-inhibition assays and glycan arrays revealed subtle differences in the binding of the lectins to galactosides and glycans containing specific motifs, such as LewisX, LacdiNAc, and fucosylated LacdiNAc. Despite slight differences in carbohydrate-binding patterns, both lectins showed similar results in toxicity assays using Artemia salina nauplii and cytotoxicity assays on cancer cell lines, with neither lectin exhibiting significant toxicity. Additionally, both lectins demonstrated low cytotoxicity toward HeLa (cervical adenocarcinoma), HT1080 (fibrosarcoma), and NHDF (normal fibroblasts), even at concentrations up to 125 μg/mL. Analysis of the partial amino acid sequences of these lectins revealed conserved residues compared to other lectins of the genus, as well as secondary structure conformations similar to those of other legume lectins. This research represents a significant advancement in the understanding of lectins from the genus Bauhinia, and future structural studies could further elucidate the interactions of these proteins with their ligands, providing fundamental insights into their biological functions and paving the way toward potential applications.
Collapse
Affiliation(s)
- Vinicius
J. S. Osterne
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
- Laboratory
of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Lara D. Lima
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Messias V. Oliveira
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Vanir R. Pinto-Junior
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Cornevile C. Neto
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Sarah E. G. Correia
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Clara Suarez
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Els J. M. Van Damme
- Laboratory
of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Sonia Serna
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Niels C. Reichardt
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Kyria S. Nascimento
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Benildo S. Cavada
- Department
of Biochemistry and Molecular Biology, BioMol-Lab, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| |
Collapse
|
2
|
Nascimento KS, Morada RCV, Oliveira MV, Martins FWV, Sacramento-Neto JC, Cavada BS. Purification and partial characterization of a new melibiose-specific lectin from Bauhinia catingae Harms. Int J Biol Macromol 2024; 282:136564. [PMID: 39414198 DOI: 10.1016/j.ijbiomac.2024.136564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Lectins are ubiquitous proteins that selectively bind to carbohydrates, serving as vital models for understanding protein-carbohydrate interactions. While extensively distributed across various life forms, plant lectins, especially from the Leguminosae family, have garnered significant attention. However, limited research exists on lectins from the Caesalpinioideae subfamily, suggesting a source of untapped biotechnological potential. This underscores the imperative for further exploration, particularly in isolating lectins from the Bauhinia genus, which remains relatively understudied, despite harboring lectins with diverse characteristics and promising biotechnological activities. In this study, a novel lectin extracted from Bauhinia catingae Harms seeds (BCL) was isolated in three chromatographic steps. BCL exhibited affinity for galactose and derivatives, akin to other Bauhinia lectins, with SDS-PAGE confirming its molecular weight around 30 kDa. Notably, BCL demonstrated stability across temperature and pH ranges and lacked metalloprotein characteristics. Electrospray ionization mass spectrometry revealed a partial sequence covering 81 % of the total protein sequence with nearly 80 % identity to Bauhinia forficata. Structural analysis suggested a β-sheet-rich secondary structure similar to that of other lectins. Further structural elucidation of BCL is essential to unveil its full potential and applications.
Collapse
Affiliation(s)
- Kyria S Nascimento
- Federal University of Ceara, Department of Biochemistry and Molecular Biology, Laboratory of Biologically Active Molecules, José Aurelio Camara, 60.440-970 Fortaleza, CE, Brazil.
| | - Rebeca Cristian V Morada
- Federal University of Ceara, Department of Biochemistry and Molecular Biology, Laboratory of Biologically Active Molecules, José Aurelio Camara, 60.440-970 Fortaleza, CE, Brazil
| | - Messias V Oliveira
- Federal University of Ceara, Department of Biochemistry and Molecular Biology, Laboratory of Biologically Active Molecules, José Aurelio Camara, 60.440-970 Fortaleza, CE, Brazil
| | - Francisco William V Martins
- Federal University of Ceara, Department of Biochemistry and Molecular Biology, Laboratory of Biologically Active Molecules, José Aurelio Camara, 60.440-970 Fortaleza, CE, Brazil
| | - José Carlos Sacramento-Neto
- Federal University of Ceara, Department of Biochemistry and Molecular Biology, Laboratory of Biologically Active Molecules, José Aurelio Camara, 60.440-970 Fortaleza, CE, Brazil
| | - Benildo S Cavada
- Federal University of Ceara, Department of Biochemistry and Molecular Biology, Laboratory of Biologically Active Molecules, José Aurelio Camara, 60.440-970 Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Liu S, Zhang X, Chen Y, Li Y, Liu X. Study on the interaction between agglutinin and chondroitin sulfate and dermatan sulfate using multiple methods. Int J Biol Macromol 2024; 272:132624. [PMID: 38838594 DOI: 10.1016/j.ijbiomac.2024.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
In this work, the interaction of chondroitin sulfate (CS) and dermatan sulfate (DS) with plant lectins was studied by affinity capillary electrophoresis (ACE), surface plasmon resonance (SPR) technology, molecular docking simulation, and circular dichroism spectroscopy. The ACE method was used for the first time to study the interaction of Ricinus Communis Agglutinin I (RCA I), Wisteria Floribunda Lectin (WFA), and Soybean Agglutinin (SBA) with CS and DS, and the results were in good agreement with those of the SPR method. The results of experiments indicate that RCA I has a strong binding affinity with CS, and the sulfated position does not affect the relationship, but the degree of sulfation can affect the combination of RCA I with CS to some extent. However, the binding affinity with DS is very weak. This study lays the foundation for developing more specialized analysis methods for CS and DS based on RCA I.
Collapse
Affiliation(s)
- Shuxian Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Zhang
- Shandong Lukang Pharmaceutical Co., LTD, Jining 272000, China
| | - Ying Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yitong Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Cavada BS, Oliveira MVD, Osterne VJS, Pinto-Junior VR, Martins FWV, Correia-Neto C, Pinheiro RF, Leal RB, Nascimento KS. Recent advances in the use of legume lectins for the diagnosis and treatment of breast cancer. Biochimie 2022; 208:100-116. [PMID: 36586566 DOI: 10.1016/j.biochi.2022.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Poor lifestyle choices and genetic predisposition are factors that increase the number of cancer cases, one example being breast cancer, the third most diagnosed type of malignancy. Currently, there is a demand for the development of new strategies to ensure early detection and treatment options that could contribute to the complete remission of breast tumors, which could lead to increased overall survival rates. In this context, the glycans observed at the surface of cancer cells are presented as efficient tumor cell markers. These carbohydrate structures can be recognized by lectins which can act as decoders of the glycocode. The application of plant lectins as tools for diagnosis/treatment of breast cancer encompasses the detection and sorting of glycans found in healthy and malignant cells. Here, we present an overview of the most recent studies in this field, demonstrating the potential of lectins as: mapping agents to detect differentially expressed glycans in breast cancer, as histochemistry/cytochemistry analysis agents, in lectin arrays, immobilized in chromatographic matrices, in drug delivery, and as biosensing agents. In addition, we describe lectins that present antiproliferative effects by themselves and/or in conjunction with other drugs in a synergistic effect.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | - Messias Vital de Oliveira
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinícius Jose Silva Osterne
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Vanir Reis Pinto-Junior
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Cornevile Correia-Neto
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ronald Feitosa Pinheiro
- Núcleo de Pesquisa e Desenvolvimento de Medicações (NPDM), Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Kyria Santiago Nascimento
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| |
Collapse
|
5
|
Costa ACM, Malveira EA, Mendonça LP, Maia MES, Silva RRS, Roma RR, Aguiar TKB, Grangeiro YA, Souza PFN. Plant Lectins: A Review on their Biotechnological Potential Toward Human Pathogens. Curr Protein Pept Sci 2022; 23:851-861. [PMID: 36239726 DOI: 10.2174/1389203724666221014142740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
The indiscriminate use of antibiotics is associated with the appearance of bacterial resistance. In light of this, plant-based products treating infections are considered potential alternatives. Lectins are a group of proteins widely distributed in nature, capable of reversibly binding carbohydrates. Lectins can bind to the surface of pathogens and cause damage to their structure, thus preventing host infection. The antimicrobial activity of plant lectins results from their interaction with carbohydrates present in the bacterial cell wall and fungal membrane. The data about lectins as modulating agents of antibiotic activity, potentiates the effect of antibiotics without triggering microbial resistance. In addition, lectins play an essential role in the defense against fungi, reducing their infectivity and pathogenicity. Little is known about the antiviral activity of plant lectins. However, their effectiveness against retroviruses and parainfluenza is reported in the literature. Some authors still consider mannose/ glucose/N-Acetylglucosamine binding lectins as potent antiviral agents against coronavirus, suggesting that these lectins may have inhibitory activity against SARS-CoV-2. Thus, it was found that plant lectins are an alternative for producing new antimicrobial drugs, but further studies still need to decipher some mechanisms of action.
Collapse
Affiliation(s)
- Ana C M Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Ellen A Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Lidiane P Mendonça
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Maria E S Maia
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Yasmim A Grangeiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil.,Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Caixa 60430- 275 Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Du C, Si Y, Pang N, Li Y, Guo Y, Liu C, Fan H. Prokaryotic expression, purification, physicochemical properties and antifungal activity analysis of phloem protein PP2-A1 from cucumber. Int J Biol Macromol 2022; 194:395-401. [PMID: 34822821 DOI: 10.1016/j.ijbiomac.2021.11.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022]
Abstract
Phloem protein 2 (PP2) is a protein having lectin properties that can be isolated from the phloem sap. Based on our previous proteomic study of phloem sap of Cucumis sativus, it was found that the expression of PP2 A1-like was significantly up-regulated under salt stress, which may be a molecular mechanism of plant adaptation to stress. This paper carried out the expression and purification of the CsPP2-A1 gene in E. coli for further characteristic analysis. The results demonstrated that the CsPP2-A1 in shake flask cultures was mainly expressed in the soluble form at 15 °C or in inclusion bodies at 37 °C. Secondly, Ni-IDA affinity chromatography and SDS-PAGE were employed to yield highly purified CsPP2-A1 protein. The purified CsPP2-A1 was then subjected to Western blot and MALDI-TOF-MS analysis for protein identification. The biological activity analysis results showed that CsPP2-A1 had hemagglutinating activities to rabbit erythrocytes, and Chitotetraose may be the specific inhibitory sugar of CsPP2-A1. The optimal hemagglutination activity of CsPP2-A1 protein was achieved between pH 5-9, and between 20 and 60 °C. Moreover, CsPP2-A1 had significant inhibitory effects on Botrytis cinerea and Phytophthora infestans, and the inhibitory effect on B. cinerea was better than that on P. infestans.
Collapse
Affiliation(s)
- Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yuyang Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Ningning Pang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yapeng Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yuting Guo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Chen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
7
|
Van Damme EJM. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J 2022; 39:83-97. [PMID: 34427812 PMCID: PMC8383723 DOI: 10.1007/s10719-021-10015-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Plants contain an extended group of lectins differing from each other in their molecular structures, biochemical properties and carbohydrate-binding specificities. The heterogeneous group of plant lectins can be classified in several families based on the primary structure of the lectin domain. All proteins composed of one or more lectin domains, or having a domain architecture including one or more lectin domains in combination with other protein domains can be defined as lectins. Plant lectins reside in different cell compartments, and depending on their location will encounter a large variety carbohydrate structures, allowing them to be involved in multiple biological functions. Over the years lectins have been studied intensively for their carbohydrate-binding properties and biological activities, which also resulted in diverse applications. The present overview on plant lectins especially focuses on the structural and functional characteristics of plant lectins and their applications for crop improvement, glycobiology and biomedical research.
Collapse
Affiliation(s)
- Els J. M. Van Damme
- Laboratory of Glycobiology and Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
9
|
Mwangi RW, Macharia JM, Wagara IN, Bence RL. The medicinal properties of Cassia fistula L: A review. Biomed Pharmacother 2021; 144:112240. [PMID: 34601194 DOI: 10.1016/j.biopha.2021.112240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023] Open
Abstract
Medicinal plant species contain vast and unexploited riches of chemical substances with high medical potential making these plant species valuable as biomedicine sources. Cassia fistula L is an important medicinal plant used in many traditional medicinal systems including Ayurveda and Chinese Traditional Medicine. It is a deciduous medium sized tree with elongated and rod-shaped fruits having pulp and have bright yellow flowers, earning the name 'Yellow Shower'. The present review provides a version of updated information on its botanical description and pharmacological properties including antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antitumor, hepatoprotective among other activities. Pharmacological reviews on medicinal plants will provide valuable information; thus, Cassia fistula L can provide important discoveries of valuable bioactive natural products facilitating in developing novel pharmaceuticals products.
Collapse
Affiliation(s)
- Ruth W Mwangi
- Department of Biological Sciences, Egerton University, Nakuru, Kenya.
| | - John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Hungary.
| | - Isabel N Wagara
- Department of Biological Sciences, Egerton University, Nakuru, Kenya.
| | - Raposa L Bence
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Hungary.
| |
Collapse
|
10
|
Botelho T, Osterne VJS, Pinto-Junior VR, Oliveira MV, Cavada BS, Nascimento KS, Dos Santos L. Differential vasodilator effect of Dioclea rostrata lectin in conductance and resistance arteries: Mechanisms and glycoconjugate binding relationships. Basic Clin Pharmacol Toxicol 2021; 129:130-138. [PMID: 33993648 DOI: 10.1111/bcpt.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
Lectins are proteins that recognize specific carbohydrates, and the vasorelaxant effect of legume lectins has been previously reported, for example the Dioclea rostrata lectin (DRL). This study evaluated major pathways of DRL-induced relaxation in different artery segments and the possible molecular interactions involved. Rat thoracic aorta, coronary and mesenteric resistance arteries were tested "in vitro" with concentration-response curves to DRL (0.01-100 µg/mL). L-NAME, indomethacin and high KCl were used to evaluate nitric oxide, cyclooxygenase and hyperpolarization-dependent effects. DRL promoted relaxation of all vessels throughout different mechanisms. L-NAME blunted DRL-induced effects only in the aorta and mesenteric resistance artery. By the use of depolarizing KCl solution, vasodilation was reduced in all arteries, while incubation with indomethacin indicated a role of cyclooxygenase-derived factors for DRL effects in mesenteric and coronary arteries, but not in the aorta. Molecular docking results suggested interactions between DRL and heparan sulphate, CD31 and other glycans present on the membrane surface. These data indicate that the mechanisms involved in DRL-mediated vasodilation vary between conductance and resistance arteries of different origins, and these effects may be related to the capacity of DRL to bind a diversity of glycans, especially heparan sulphate, a proposed mechanoreceptor for nitric oxide synthase and cyclooxygenase activation.
Collapse
Affiliation(s)
- Tatiani Botelho
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Vinicius J S Osterne
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil.,Department of Nutrition, State University of Ceara, Fortaleza, Brazil
| | - Vanir R Pinto-Junior
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil.,Department of Physics, Federal University of Ceara, Fortaleza, Brazil
| | - Messias V Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Benildo S Cavada
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Kyria S Nascimento
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
11
|
Xiong W, Zhou C, Yin S, Chai J, Zeng B, Wu J, Li Y, Li L, Xu X. Fejerlectin, a Lectin-like Peptide from the Skin of Fejervarya limnocharis, Inhibits HIV-1 Entry by Targeting Gp41. ACS OMEGA 2021; 6:6414-6423. [PMID: 33718732 PMCID: PMC7948434 DOI: 10.1021/acsomega.1c00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is mainly transmitted by sexual intercourse, and effective microbicides preventing HIV-1 transmission are still required. Amphibian skin is a rich source of defense peptides with antiviral activity. Here, we characterized a lectin-like peptide, fejerlectin (RLCYMVLPCP), isolated from the skin of the frog Fejervarya limnocharis. Fejerlectin showed significant hemagglutination and d-(+)-galacturonic acid-binding activities. Furthermore, fejerlectin suppressed the early entry of HIV-1 into target cells by binding to the N-terminal heptad repeat of HIV-1 gp41 and preventing 6-HB formation and Env-mediated membrane fusion. Fejerlectin is the smallest lectin-like peptide identified to date and represents a new and promising platform for anti-HIV-1 drug development.
Collapse
Affiliation(s)
- Weichen Xiong
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Chenliang Zhou
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Shuwen Yin
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
- Department
of Pharmacy, Sun Yat-sen University Cancer
Center, State Key Laboratory of Oncology in South China, Collaborative
Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinwei Chai
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Baishuang Zeng
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Yibin Li
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Lin Li
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| | - Xueqing Xu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Shatai Nan Road, No. 1023-1063, Guangzhou 510515, China
| |
Collapse
|
12
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Oliveira MV, Silva IB, Laranjeira EPP, Pires AF, Domingos JLC, Ferreira WP, Sousa JS, Assreuy AMS, Nascimento KS. In depth analysis on the carbohydrate-binding properties of a vasorelaxant lectin from Dioclea lasiophylla Mart Ex. Benth seeds. J Biomol Struct Dyn 2021; 40:6817-6830. [PMID: 33616012 DOI: 10.1080/07391102.2021.1890224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lectins are a class of proteins or glycoproteins capable of recognizing and interacting with carbohydrates in a specific and reversible manner. Owing to this property, these proteins can interact with glycoconjugates present on the cell surface, making it possible to decipher the glycocode, as well as elicit biological effects, such as inflammation and vasorelaxation. Here, we report a structural and biological study of the mannose/glucose-specific lectin from Dioclea lasiophylla seeds, DlyL. The study aimed to evaluate in detail the interaction of DlyL with Xman and high-mannose N-glycans (MAN3, MAN5 and MAN9) by molecular dynamics (MD) and the resultant in vitro effect on vasorelaxation using rat aortic rings. In silico analysis of molecular docking was performed to obtain the initial coordinates of the DlyL complexes with the carbohydrates to apply as inputs in MD simulations. The MD trajectories demonstrated the stability of DlyL over time as well as different profiles of interaction with Xman and N-glycans. Furthermore, aortic rings assays demonstrated that the lectin could relax pre-contracted aortic rings with the participation of the carbohydrate recognition domain (CRD) and nitric oxide (NO) when endothelial tissue is preserved. These results confirm the ability of DlyL to interact with high-mannose N-glycans with its expanded CRD, supporting the hypothesis that DlyL vasorelaxant activity occurs primarily through its interaction with cell surface glycosylated receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vanir Reis Pinto-Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.,Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.,Departamento de Nutrição, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ivanice Bezerra Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Alana Freitas Pires
- Instituto Superior de Ciências Biomédicas, Universidade Estadual Do Ceará, Fortaleza, Brazil
| | | | | | | | | | | |
Collapse
|