1
|
Zhra M, Akhund SA, Mohammad KS. Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies. Pharmaceuticals (Basel) 2025; 18:520. [PMID: 40283955 PMCID: PMC12030420 DOI: 10.3390/ph18040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma is recognized as the most prevalent primary bone malignancy, primarily affecting children and adolescents. It is characterized by its aggressive behavior and high metastatic potential, which often leads to poor patient outcomes. Despite advancements in surgical techniques and chemotherapy regimens, the prognosis for patients with osteosarcoma remains unsatisfactory, with survival rates plateauing over the past few decades. A significant barrier to effective treatment is the development of chemotherapy resistance, which complicates the management of the disease and contributes to high rates of recurrence. This review article aims to provide a comprehensive overview of recent advancements in osteosarcoma therapy, particularly in overcoming chemotherapy resistance. We begin by discussing the current standard treatment modalities, including surgical resection and conventional chemotherapy agents such as methotrexate, doxorubicin, and cisplatin. While these approaches have been foundational in managing osteosarcoma, they are often limited by adverse effects and variability in efficacy among patients. To address these challenges, we explore novel pharmacological strategies that aim to enhance treatment outcomes. This includes targeted therapies focusing on specific molecular alterations in osteosarcoma cells and immunotherapeutic approaches designed to harness the body's immune system against tumors. Additionally, we review innovative drug delivery systems that aim to improve the bioavailability and efficacy of existing treatments while minimizing toxicity. The review also assesses the mechanisms underlying chemotherapy resistance, such as drug efflux mechanisms, altered metabolism, and enhanced DNA repair pathways. By synthesizing current research findings, we aim to highlight the potential of new therapeutic agents and strategies for overcoming these resistance mechanisms. Ultimately, this article seeks to inform future research directions and clinical practices, underscoring the need for continued innovation in treating osteosarcoma to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.); (S.A.A.)
| |
Collapse
|
2
|
Huang H, Asghar S, Lin L, Chen S, Yuan C, Sang M, Xiao Y. Design and evaluation of a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma. Int J Pharm 2025; 671:125191. [PMID: 39788397 DOI: 10.1016/j.ijpharm.2025.125191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The combination of chemotherapy and photothermal therapy not only improves the therapeutic effect but also limits the side effects of drugs. Herein, a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma was designed by utilizing alendronate sodium as a bone-targeting ligand for the targeted delivery of doxorubicin (DOX) loaded polydopamine nanoparticles (PDA NPs) coated with γ-polyglutamic acid (APC@PDA/DOX NPs). The average size of spherical NPs was 140.0 nm with a zeta potential of -25.63 mV. The drug loading and encapsulation efficiency were 11.63 % and 96.44 %, respectively. The constructed NPs were responsive to acidic pH, redox conditions, and near-infrared light as the drug release rate of the system reached 70 %. Cell experiments showed that APC@PDA/DOX NPs significantly enhanced cytotoxicity in mouse K7M2 osteosarcoma cells due to PDA-induced hyperthermia and DOX-induced cytotoxicity. Compared with the free DOX solution, the area under the curve of APC@PDA/DOX NPs increased by 8.52 times, iterating the significantly prolonged circulation time of NPs in vivo that manifested in higher bioavailability. The biodistribution study showed that APC@PDA/DOX NPs enacted excellent bone targeting and tumor tissue localization. In general, APC@PDA/DOX NPs may offer a feasible and effective strategy for osteosarcoma-targeted therapy.
Collapse
Affiliation(s)
- Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004 China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling Lin
- School of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Su Chen
- School of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Chenjun Yuan
- School of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Muhui Sang
- Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin 214400 China.
| | - Yanyu Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004 China; School of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
3
|
Miao L, Zhu Y, Chang H, Zhang X. Nanotheranostics in Breast Cancer Bone Metastasis: Advanced Research Progress and Future Perspectives. Pharmaceutics 2024; 16:1491. [PMID: 39771471 PMCID: PMC11676679 DOI: 10.3390/pharmaceutics16121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer-related morbidity and mortality among women worldwide, with bone being the most common site of all metastatic breast cancer. Bone metastases are often associated with pain and skeletal-related events (SREs), indicating poor prognosis and poor quality of life. Most current therapies for breast cancer bone metastasis primarily serve palliative purposes, focusing on pain management, mitigating the risk of bone-related complications, and inhibiting tumor progression. The emergence of nanodelivery systems offers novel insights and potential solutions for the diagnosis and treatment of breast cancer-related bone metastasis. This article reviews the recent advancements and innovative applications of nanodrug delivery systems in the context of breast cancer bone metastasis and explores future directions in nanotheranostics.
Collapse
Affiliation(s)
- Lin Miao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| | - Yidan Zhu
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hong Chang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
| | - Xinfeng Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
5
|
Skrinda-Melne M, Locs J, Grava A, Dubnika A. Calcium phosphates enhanced with liposomes - the future of bone regeneration and drug delivery. J Liposome Res 2024; 34:507-522. [PMID: 37988074 DOI: 10.1080/08982104.2023.2285973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Effective healing and regeneration of various bone defects is still a major challenge and concern in modern medicine. Calcium phosphates have emerged as extensively studied bone substitute materials due to their structural and chemical resemblance to the mineral phase of bone, along with their versatile properties. Calcium phosphates present promising biological characteristics that make them suitable for bone substitution, but a critical limitation lies in their low osteoinductivity. To supplement these materials with properties that promote bone regeneration, prevent infections, and cure bone diseases locally, calcium phosphates can be biologically and therapeutically modified. A promising approach involves combining calcium phosphates with drug-containing liposomes, renowned for their high biocompatibility and ability to provide controlled and sustained drug delivery. Surprisingly, there is a lack of research focused on liposome-calcium phosphate composites, where liposomes are dispersed within a calcium phosphate matrix. This raises the question of why such studies are limited. In order to provide a comprehensive overview of existing liposome and calcium phosphate composites as bioactive substance delivery systems, the authors review the literature exploring the interactions between calcium phosphates and liposomes. Additionally, it seeks to identify potential interactions between calcium ions and liposomes, which may impact the feasibility of developing liposome-containing calcium phosphate composite materials. Liposome capacity to protect bioactive compounds and facilitate localized treatment can be particularly valuable in scenarios involving bone regeneration, infection prevention, and the management of bone diseases. This review explores the implications of liposomes and calcium phosphate material containing liposomes on drug delivery, bioavailability, and stability, offering insights into their advantages.
Collapse
Affiliation(s)
- Marite Skrinda-Melne
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
6
|
Meher MK, Naidu G, Mishra A, Poluri KM. A review on multifaceted biomedical applications of heparin nanocomposites: Progress and prospects. Int J Biol Macromol 2024; 260:129379. [PMID: 38242410 DOI: 10.1016/j.ijbiomac.2024.129379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Advances in polymer-based nanocomposites have revolutionized biomedical applications over the last two decades. Heparin (HP), being a highly bioactive polymer of biological origin, provides strong biotic competence to the nanocomposites, broadening the horizon of their applicability. The efficiency, biocompatibility, and biodegradability properties of nanomaterials significantly improve upon the incorporation of heparin. Further, inclusion of structural/chemical derivatives, fractionates, and mimetics of heparin enable fabrication of versatile nanocomposites. Modern nanotechnological interventions have exploited the inherent biofunctionalities of heparin by formulating various nanomaterials, including inorganic/polymeric nanoparticles, nanofibers, quantum dots, micelles, liposomes, and nanogels ensuing novel functionalities targeting diverse clinical applications involving drug delivery, wound healing, tissue engineering, biocompatible coatings, nanosensors and so on. On this note, the present review explicitly summarises the recent HP-oriented nanotechnological developments, with a special emphasis on the reported successful engagement of HP and its derivatives/mimetics in nanocomposites for extensive applications in the laboratory and health-care facility. Further, the advantages and limitations/challenges specifically associated with HP in nanocomposites, undertaken in this current review are quintessential for future innovations/discoveries pertaining to HP-based nanocomposites.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
7
|
Yu X, Zhu L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int J Nanomedicine 2024; 19:1867-1886. [PMID: 38414525 PMCID: PMC10898486 DOI: 10.2147/ijn.s442768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular "cargo" particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
8
|
Lan H, Wu B, Jin K, Chen Y. Beyond boundaries: unraveling innovative approaches to combat bone-metastatic cancers. Front Endocrinol (Lausanne) 2024; 14:1260491. [PMID: 38260135 PMCID: PMC10800370 DOI: 10.3389/fendo.2023.1260491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Evidence demonstrated that bones, liver, and lungs are the most common metastasis sites in some human malignancies, especially in prostate and breast cancers. Bone is the third most frequent target for spreading tumor cells among these organs and tissues. Patients with bone-metastatic cancers face a grim prognosis characterized by short median survival time. Current treatments have proven insufficient, as they can only inhibit metastasis or tumor progression within the bone tissues rather than providing a curative solution. Gaining a more profound comprehension of the interplay between tumor cells and the bone microenvironment (BME) is of utmost importance in tackling this issue. This knowledge will pave the way for developing innovative diagnostic and therapeutic approaches. This review summarizes the mechanisms underlying bone metastasis and discusses the clinical aspects of this pathologic condition. Additionally, it highlights emerging therapeutic interventions aimed at enhancing the quality of life for patients affected by bone-metastatic cancers. By synthesizing current research, this review seeks to shed light on the complexities of bone metastasis and offer insights for future advancements in patient care.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Bo Wu
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yefeng Chen
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
9
|
Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, Mohammadinejad R, Ozdemir F, Sahin O, Adiguzel S, Khan H, Zarrabi A, Sharifi E, Kumar A, Mostafavi E, Kouchehbaghi NH, Mattoli V, Zhang F, Jucaud V, Najafabadi AH, Khademhosseini A. Biomedical applications of engineered heparin-based materials. Bioact Mater 2024; 31:87-118. [PMID: 37609108 PMCID: PMC10440395 DOI: 10.1016/j.bioactmat.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Heparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical applications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.
Collapse
Affiliation(s)
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatma Ozdemir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Onur Sahin
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D'Oltremare pad. 20, 80125, Naples, Italy
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| |
Collapse
|
10
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
11
|
Zeng Y, Pan Z, Yuan J, Song Y, Feng Z, Chen Z, Ye Z, Li Y, Bao Y, Ran Z, Li X, Ye H, Zhang K, Liu X, He Y. Inhibiting Osteolytic Breast Cancer Bone Metastasis by Bone-Targeted Nanoagent via Remodeling the Bone Tumor Microenvironment Combined with NIR-II Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301003. [PMID: 37211708 DOI: 10.1002/smll.202301003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Bone is one of the prone metastatic sites of patients with advanced breast cancer. The "vicious cycle" between osteoclasts and breast cancer cells plays an essential role in osteolytic bone metastasis from breast cancer. In order to inhibit bone metastasis from breast cancer, NIR-II photoresponsive bone-targeting nanosystems (CuP@PPy-ZOL NPs) are designed and synthesized. CuP@PPy-ZOL NPs can trigger the photothermal-enhanced Fenton response and photodynamic effect to enhance the photothermal treatment (PTT) effect and thus achieve synergistic anti-tumor effect. Meanwhile, they exhibit a photothermal enhanced ability to inhibit osteoclast differentiation and promote osteoblast differentiation, which reshaped the bone microenvironment. CuP@PPy-ZOL NPs effectively inhibited the proliferation of tumor cells and bone resorption in the in vitro 3D bone metastases model of breast cancer. In a mouse model of breast cancer bone metastasis, CuP@PPy-ZOL NPs combined with PTT with NIR-II significantly inhibited the tumor growth of breast cancer bone metastases and osteolysis while promoting bone repair to achieve the reversal of osteolytic breast cancer bone metastases. Furthermore, the potential biological mechanisms of synergistic treatment are identified by conditioned culture experiments and mRNA transcriptome analysis. The design of this nanosystem provides a promising strategy for treating osteolytic bone metastases.
Collapse
Affiliation(s)
- Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P. R. China
| | - Zhenzhen Feng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Zhaoyi Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ying Bao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhili Ran
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xinyi Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huiling Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
12
|
Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, Lu M, Ma Y, Li Z, Wang L, Zhu N, Yang J. Cracking the code: Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int Immunopharmacol 2023; 121:110422. [PMID: 37302370 DOI: 10.1016/j.intimp.2023.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. It is characterized by a rapid progression, poor prognosis, and early pulmonary metastasis. Over the past 30 years, approximately 85% of patients with osteosarcoma have experienced metastasis. The five-year survival of patients with lung metastasis during the early stages of treatment is less than 20%. The tumor microenvironment (TME) not only provides conditions for tumor cell growth but also releases a variety of substances that can promote the metastasis of tumor cells to other tissues and organs. Currently, there is limited research on the role of the TME in osteosarcoma metastasis. Therefore, to explore methods for regulating osteosarcoma metastasis, further investigations must be conducted from the perspective of the TME. This will help to identify new potential biomarkers for predicting osteosarcoma metastasis and assist in the discovery of new drugs that target regulatory mechanisms for clinical diagnosis and treatment. This paper reviews the research progress on the mechanism of osteosarcoma metastasis based on TME theory, which will provide guidance for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jiacheng Cong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin 541199, China
| | - Xinyi Zhong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingying Su
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Mingchuan Lu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yifen Ma
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Zihe Li
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China
| | - Ningxia Zhu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| | - Jinfeng Yang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
13
|
Shi P, Cheng Z, Zhao K, Chen Y, Zhang A, Gan W, Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnology 2023; 21:103. [PMID: 36944946 PMCID: PMC10031984 DOI: 10.1186/s12951-023-01826-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
15
|
Costăchescu B, Niculescu AG, Iliescu BF, Dabija MG, Grumezescu AM, Rotariu D. Current and Emerging Approaches for Spine Tumor Treatment. Int J Mol Sci 2022; 23:15680. [PMID: 36555324 PMCID: PMC9779730 DOI: 10.3390/ijms232415680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Spine tumors represent a significant social and medical problem, affecting the quality of life of thousands of patients and imposing a burden on healthcare systems worldwide. Encompassing a wide range of diseases, spine tumors require prompt multidisciplinary treatment strategies, being mainly approached through chemotherapy, radiotherapy, and surgical interventions, either alone or in various combinations. However, these conventional tactics exhibit a series of drawbacks (e.g., multidrug resistance, tumor recurrence, systemic adverse effects, invasiveness, formation of large bone defects) which limit their application and efficacy. Therefore, recent research focused on finding better treatment alternatives by utilizing modern technologies to overcome the challenges associated with conventional treatments. In this context, the present paper aims to describe the types of spine tumors and the most common current treatment alternatives, further detailing the recent developments in anticancer nanoformulations, personalized implants, and enhanced surgical techniques.
Collapse
Affiliation(s)
- Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Florin Iliescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Marius Gabriel Dabija
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Daniel Rotariu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
16
|
Wu H, Ma J, Qian S, Jiang W, Liu Y, Li J, Ke Z, Feng K. Co-amorphization of posaconazole using citric acid as an acidifier and a co-former for solubility improvement. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Ye X, Chen X, He R, Meng W, Chen W, Wang F, Meng X. Enhanced anti-breast cancer efficacy of co-delivery liposomes of docetaxel and curcumin. Front Pharmacol 2022; 13:969611. [PMID: 36324685 PMCID: PMC9618653 DOI: 10.3389/fphar.2022.969611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 08/28/2023] Open
Abstract
The successful treatment of breast cancer is hampered by toxicity to normal cells, impaired drug accumulation at the tumor site, and multidrug resistance. We designed a novel multifunctional liposome, CUR-DTX-L, to co-deliver curcumin (CUR) and the chemotherapeutic drug docetaxel (DTX) for the treatment of breast cancer in order to address multidrug resistance (MDR) and the low efficacy of chemotherapy. The mean particle size, polydispersity index, zeta potential, and encapsulation efficiency of CUR-DTX-L were 208.53 ± 6.82 nm, 0.055 ± 0.001, -23.1 ± 2.1 mV, and 98.32 ± 2.37%, respectively. An in vitro release study and CCK-8 assays showed that CUR-DTX-L has better sustained release effects and antitumor efficacy than free drugs, the antitumor efficacy was verified by MCF-7 tumor-bearing mice, the CUR-DTX-L showed better antitumor efficacy than other groups, and the in vivo pharmacokinetic study indicated that the plasma concentration-time curve, mean residence time, and biological half-life time of CUR-DTX-L were significantly increased compared with free drugs, suggesting that it is a promising drug delivery system for the synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Xi Ye
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xin Chen
- Department of Pharmacy, Anhui Provincial Crops Hospital, Hefei, China
| | - Ruixi He
- Anhui University of Chinese Medicine, Hefei, China
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Wangyang Meng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Chen
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Fengling Wang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| |
Collapse
|
19
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
20
|
IL-11Rα-targeted nanostrategy empowers chemotherapy of relapsed and patient-derived osteosarcoma. J Control Release 2022; 350:460-470. [PMID: 36041590 DOI: 10.1016/j.jconrel.2022.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Osteosarcoma (OS) is a rare but frequently lethal bone malignancy in children and adolescents. The adjuvant chemotherapy with doxorubicin (Dox) and cisplatin remains a mainstream clinical practice though it affords only limited clinical benefits due to low tumor deposition, dose-limiting toxicity and high rate of relapse/metastasis. Here, taking advantage of high IL-11Rα expression in the OS patients, we installed IL-11Rα specific peptide (sequence: CGRRAGGSC) onto redox-responsive polymersomes encapsulating Dox (IL11-PDox) to boost the specificity and anti-OS efficacy of chemotherapy. Of note, IL-11Rα peptide at a density of 20% greatly augmented the internalization, apoptotic activity, and migration inhibition of Dox in IL-11Rα-overexpressing 143B OS cells. The active targeting effect of IL-11-PDox was supported in orthotopic and relapsed 143B OS models, as shown by striking repression of tumor growth and lung metastasis and substantial survival benefits over free Dox control. We further verified that IL11-PDox could effectively inhibit patient-derived OS xenografts. IL-11Rα-targeted nanodelivery of chemotherapeutics provides a potential therapeutic strategy for advanced osteosarcoma.
Collapse
|
21
|
Wu H, Gao Y, Ma J, Hu M, Xia J, Bao S, Liu Y, Feng K. Cytarabine delivered by CD44 and bone targeting redox sensitive liposomes for treatment of acute myelogenous leukemia. Regen Biomater 2022; 9:rbac058. [PMID: 36110161 PMCID: PMC9469920 DOI: 10.1093/rb/rbac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/14/2022] Open
Abstract
Acute myelogenous leukemia (AML) remains a serious fatal disease for the patients and effective treatment strategies are urgently needed. Based on the characteristics of the AML, we developed the CD44 and bone targeting liposomes delivery system decorated with the redox-cleavable polymer. First, ALN-HA was obtained by amination between alendronate (ALN) and hyaluronic acid (HA), and cholesterol (Chol) was coupled by a disulfide linker (-SS-) with biological reducibility to obtain the goal polymer, ALN-HA-SS-Chol, decorated the liposomes loaded with the Cytarabine (AraC). ALN-HA-SS-AraC-Lip exhibited a spherical morphology with the diameter of 117.5 nm and expanded at the environment of 10 mM dithiothreitol. Besides, compared with other groups, ALN-HA-SS-AraC-Lip showed benign hydroxyapatite affinity in vitro and bone targeting in C57/BL6 mice, also, ALN-HA-SS-AraC-Lip exhibited encouraging antitumor which significantly reduced the white blood cell amount in bone marrow and blood smear caused by AML model, besides, the dual targeting liposomes also prolong the survival time of mice. In conclusion, the bone and CD44 dual targeting liposomes with redox sensitivity could target to the leukemia stem cells regions and then uptake by the tumor cells, which would be a valuable target for the treatment of the AML.
Collapse
Affiliation(s)
- Hao Wu
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Yuan Gao
- Beijing Shunyi Hospital Department of Oncology, , NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Jia Ma
- Beijing Shunyi Hospital Department of Neurology, , NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Maosong Hu
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Jing Xia
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Shuting Bao
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Yuxi Liu
- Chuzhou University College of Materials & Chemical Engineering, , Chuzhou 239000, China
| | - Kai Feng
- Beijing Shunyi Hospital Department of Neurology, , NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| |
Collapse
|
22
|
Niculescu AG, Grumezescu AM. Novel Tumor-Targeting Nanoparticles for Cancer Treatment-A Review. Int J Mol Sci 2022; 23:5253. [PMID: 35563645 PMCID: PMC9101878 DOI: 10.3390/ijms23095253] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Being one of the leading causes of death and disability worldwide, cancer represents an ongoing interdisciplinary challenge for the scientific community. As currently used treatments may face limitations in terms of both efficiency and adverse effects, continuous research has been directed towards overcoming existing challenges and finding safer specific alternatives. In particular, increasing interest has been gathered around integrating nanotechnology in cancer management and subsequentially developing various tumor-targeting nanoparticles for cancer applications. In this respect, the present paper briefly describes the most used cancer treatments in clinical practice to set a reference framework for recent research findings, further focusing on the novel developments in the field. More specifically, this review elaborates on the top recent studies concerning various nanomaterials (i.e., carbon-based, metal-based, liposomes, cubosomes, lipid-based, polymer-based, micelles, virus-based, exosomes, and cell membrane-coated nanomaterials) that show promising potential in different cancer applications.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
23
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
24
|
Liang W, Dong Y, Shao R, Zhang S, Wu X, Huang X, Sun B, Zeng B, Zhao J. Application of Nanoparticles in Drug Delivery for the Treatment of Osteosarcoma: Focusing on the Liposomes. J Drug Target 2021; 30:463-475. [PMID: 34962448 DOI: 10.1080/1061186x.2021.2023160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies in children and adolescents. The toxicity to healthy tissues from conventional therapeutic strategies, including chemotherapy and radiotherapy, and drug resistance, severely affect OS patients' quality of life and cancer-specific outcomes. Many efforts have been made to develop various nanomaterial-based drug delivery systems with specific properties to overcome these limitations. Among the developed nanocarriers, liposomes are the most successful and promising candidates for providing targeted tumor therapy and enhancing the safety and therapeutic effect of encapsulated agents. Liposomes have low immunogenicity, high biocompatibility, prolonged half-life, active group protection, cell-like membrane structure, safety, and effectiveness. This review will discuss various nanomaterial-based carriers in cancer therapy and then the characteristics and design of liposomes with a particular focus on the targeting feature. We will also summarize the recent advances in the liposomal drug delivery system for OS treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yongqiang Dong
- Department of Orthopedics, Xinchang People's Hospital, Shaoxing 312500, China
| | - Ruyi Shao
- Department of Orthopedics, Zhuji People's Hospital, Shaoxing 312500, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| |
Collapse
|
25
|
Zhong Y, Li S. New Progress in Improving the Delivery Methods of Bisphosphonates in the Treatment of Bone Tumors. Drug Des Devel Ther 2021; 15:4939-4959. [PMID: 34916778 PMCID: PMC8672028 DOI: 10.2147/dddt.s337925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Bone tumors are tumors that occur in the bone or its accessory tissues, including primary tumors and metastatic tumors. The main mechanism of bisphosphonate is to inhibit the resorption of destructive bone, inhibit the activity of osteoclasts and reduce the concentration of blood calcium. Therefore, bisphosphonates can be used for malignant hypercalcaemia, pain caused by osteolytic bone metastasis, prevention of osteolytic bone metastasis, multiple myeloma osteopathy, improving radiosensitivity and so on. However, the traditional administration of bisphosphonates can cause a series of adverse reactions. To overcome this disadvantage, it is necessary to develop novel methods to improve the delivery of bisphosphonates. In this paper, the latest research progress of new and improved bisphosphonate drug delivery methods in the treatment of bone tumors is reviewed. At present, the main design idea is to connect bisphosphonate nanoparticles, liposomes, microspheres, microcapsules, couplings, prodrugs and bone tissue engineering to targeted anti-tumors systems, and positive progress has been made in in vitro and animal experiments. However, its safety and effectiveness in human body still need to be verified by more studies.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China
| |
Collapse
|
26
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
27
|
Lima Salviano T, Dos Santos Macedo DC, de Siqueira Ferraz Carvalho R, Pereira MA, de Arruda Barbosa VS, Dos Santos Aguiar J, Souto FO, Carvalho da Silva MDP, Lapa Montenegro Pimentel LM, Correia de Sousa LDÂ, Costa Silva BS, da Silva TG, da Silva Góes AJ, Santos Magalhães NS, Cajubá de Britto Lira Nogueira M. Fucoidan-Coated Liposomes: A Target System to Deliver the Antimicrobial Drug Usnic Acid to Macrophages Infected with Mycobacterium tuberculosis. J Biomed Nanotechnol 2021; 17:1699-1710. [PMID: 34544546 DOI: 10.1166/jbn.2021.3139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study describes the use of fucoidan, a negative sulfated polysaccharide, as a coating material for the development of liposomes targeted to macrophages infected with Mycobacterium tuberculosis. First, fucoidan was chemically modified to obtain a hydrophobized-fucoidan derivative (cholesteryl-fucoidan) using a two-step microwave-assisted (μW) method. The total reaction time was decreased from 14 hours to 1 hour while maintaining the overall yield. Cholesterylfucoidan was then used to prepare surface-modified liposomes containing usnic acid (UA-LipoFuc), an antimicrobial lichen derivative. UA-LipoFuc was evaluated for mean particle size, polydispersity index (PDI), surface charge (ζ), and UA encapsulation efficiency. In addition, a cytotoxicity study, competition assay and an evaluation of antimycobacterial activity against macrophages infected with M. tuberculosis (H37Ra) were performed. When the amount of fucoidan was increased (from 5 to 20 mg), vesicle size increased (from 168 ± 2.82 nm to 1.18 ± 0.01 μm). Changes in from +20 ± 0.41 mV for uncoated liposomes to -5.41 ± 0.23 mV for UA-LipoFuc suggested that the fucoidan was placed on the surface of the liposomes. UA-LipoFuc exhibited a lower IC50 (8.26 ± 1.11 μM) than uncoated liposomes (18.37 ± 3.34 μM), probably due to its higher uptake. UA-LipoFuc5 was internalized through the C-type carbohydrate recognition domain of the cell membrane. Finally, usnic acid, both in its free form and encapsulated in fucoidan-coated liposomes (UA-LipoFuc5), was effective against infected macrophages. Hence, this preliminary investigation suggests that encapsulated usnic acid will aid in further studies related to infected macrophages and may be a potential option for tuberculosis treatment.
Collapse
Affiliation(s)
- Taciana Lima Salviano
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, 50670-901, Brazil
| | | | | | - Marcela Araújo Pereira
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, 50670-901, Brazil
| | | | | | - Fabrício Oliveira Souto
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, 50670-901, Brazil
| | | | | | | | - Bezerra Sidicleia Costa Silva
- Department of Fundamental Chemistry, Hybrid Interface and Colloid Compound Laboratory, Federal University of Pernambuco, Recife, 50670-901, Brazil
| | | | | | | | | |
Collapse
|
28
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|
29
|
Wang F, Li Y, Jiang H, Li C, Li Z, Qi C, Li Z, Gao Z, Zhang B, Wu J. Dual-Ligand-Modified Liposomes Co-Loaded with Anti-Angiogenic and Chemotherapeutic Drugs for Inhibiting Tumor Angiogenesis and Metastasis. Int J Nanomedicine 2021; 16:4001-4016. [PMID: 34135585 PMCID: PMC8200177 DOI: 10.2147/ijn.s309804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tumor angiogenesis has been proven to potentiate tumor growth and metastasis; therefore, the strategies targeting tumor-related angiogenesis have great potentials in antitumor therapy. METHODS Here, the GA&Gal dual-ligand-modified liposomes co-loaded with curcumin and combretastatin A-4 phosphate (CUCA/GA&Gal-Lip) were prepared and characterized. A novel "BEL-7402+HUVEC" co-cultured cell model was established to mimic tumor microenvironment. The cytotoxicity and migration assays were performed against the novel co-cultured model. Angiogenesis ability was evaluated by tube formation test, and in vivo metastatic ability was evaluated by lung metastasis test. RESULTS The result demonstrated that dual-ligand-modified liposomes showed greater inhibition of tumor angiogenesis and metastasis in comparison with other combined groups. Significantly, the mechanism analysis revealed that curcumin and combretastatin A-4 phosphate could inhibit tumor angiogenesis and metastasis via down-regulation of VEGF and VEGFR2 expression, respectively, and that GA&Gal-Lip could improve antitumor effect by GA/Gal-mediated active-targeting delivery. CONCLUSION CUCA/GA&Gal-Lip hold great potentials in hepatoma-targeting delivery of antitumor drugs and can achieve anti-angiogenic and anti-metastatic effects by simultaneously blocking VEGF/VEGFR2 signal pathway, therefore exhibiting superior anti-hepatoma efficacy.
Collapse
Affiliation(s)
- Fangqing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Yanying Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Hong Jiang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhaohuan Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Cuiping Qi
- School of Nursing, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhipeng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|
30
|
Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent Advances in Nanotechnology-Based Diagnosis and Treatments of Human Osteosarcoma. BIOSENSORS 2021; 11:55. [PMID: 33672770 PMCID: PMC7924594 DOI: 10.3390/bios11020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OSA) is a type of bone cancer that begins in the cells that form bones.OSA is a rare mesenchymal bone neoplasm derived from mesenchymal stem cells. Genome disorganization, chromosomal modifications, deregulation of tumor suppressor genes, and DNA repair defects are the factors most responsible for OSA development. Despite significant advances in the diagnosing and treatment of OSA, patients' overall survival has not improved within the last twenty years. Lately, advances in modern nanotechnology have spurred development in OSA management and offered several advantages to overcome the drawbacks of conventional therapies. This technology has allowed the practical design of nanoscale devices combined with numerous functional molecules, including tumor-specific ligands, antibodies, anti-cancer drugs, and imaging probes. Thanks to their small sizes, desirable drug encapsulation efficiency, and good bioavailability, functionalized nanomaterials have found wide-spread applications for combating OSA progression. This review invokes the possible utility of engineered nanomaterials in OSA diagnosis and treatment, motivating the researchers to seek new strategies for tackling the challenges associated with it.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Saman Sargazi
- Cellular and Molecule Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Sadanand Pandey
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
31
|
Conceição F, Sousa DM, Paredes J, Lamghari M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021; 9:9. [PMID: 33547275 PMCID: PMC7864971 DOI: 10.1038/s41413-021-00137-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.
Collapse
Affiliation(s)
- Francisco Conceição
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Meriem Lamghari
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
32
|
Cao D, Li H, Luo Y, Feng N, Ci T. Heparin modified photosensitizer-loaded liposomes for tumor treatment and alleviating metastasis in phototherapy. Int J Biol Macromol 2020; 168:526-536. [PMID: 33310104 DOI: 10.1016/j.ijbiomac.2020.12.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
Phototherapy holds promise in cancer treatment for its prominent antitumor efficacy and low systematic toxicity compared with traditional chemotherapy. However, the higher risk of tumor metastasis caused by the severe hypoxic state during phototherapy is a threat in practical use. Here, in order to tackle this challenge, we developed a delivery system via loading the photosensitizer indocyanine green (ICG) into the low molecular weight heparin (LMWH) modified liposomes (LMWH-ICG-Lip) to realize the synergistic effects between photosensitizer and drug vehicle, achieving better phototherapeutic efficacy and meanwhile alleviating the potential risk of tumor metastasis caused by phototherapy. In this system, besides elongating the photosensitizers' circulation time and enhancing their accumulating efficacy to tumor tissues, LMWH itself also exhibited anti-metastasis efficacy via inhibiting adhesion of platelets to tumor cells and decreasing migration and invasion capability of tumor cells. In vivo efficacy evaluation was conducted on orthotopic 4T1 breast cancer model, and the system of LMWH-ICG-Lip could alleviate metastasis potential of residual tumor cells after irradiation, and elicit optimistic antitumor and anti-metastasis efficacy for phototherapy.
Collapse
Affiliation(s)
- Dinglingge Cao
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Huangjuan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Yuan Luo
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China.
| |
Collapse
|