1
|
Yoodee S, Malaitad T, Plumworasawat S, Thongboonkerd V. The relevance of calcium-binding domains to promoting activities of annexin A2 in calcium oxalate stone formation. Int J Biol Macromol 2025; 310:143460. [PMID: 40280516 DOI: 10.1016/j.ijbiomac.2025.143460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Annexin A2 (ANXA2) is a Ca2+-binding protein involved in kidney stone disease (KSD) but with unclear mechanism. Herein, five Ca2+-binding domains of ANXA2 were mutated by substituting glutamic acid (E) at positions 53rd (domain I), 96th (domain II) and 247th (domain IV), and aspartic acid (D) at positions 162nd (domain III) and 322nd (domain V) with alanine (A). Recombinant ANXA2 wide type (WT) and mutants (E53A, E96A, D162A, E247A and D322A) were constructed, produced, purified and subjected to multiple crystal and functional assays. Crystal assays revealed that ANXA2 WT increased calcium oxalate monohydrate (COM) crystal size during crystallization and enhanced growth and crystal-cell adhesion phases compared with blank and negative controls. However, crystals exposed to all ANXA2 mutants had comparable or slightly lower parameters compared with controls. Although ANXA2 WT did not affect crystal aggregation, its mutants still showed a lower degree of crystal aggregation. Immunofluorescence staining and Ca2+-binding assay demonstrated that ANXA2 WT had the greatest affinity to COM crystals and free Ca2+ ions, whereas all the mutants showed lower affinity. Taken together, all five Ca2+-binding domains are relevant to the promoting activities of ANXA2 in COM stone formation by interacting with COM crystal surfaces and free Ca2+ ions.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanyalak Malaitad
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
Hadpech S, Srinarawat W, Thongboonkerd V. Promoting activities of human cyclophilin A on calcium oxalate stone formation at crystal growth, aggregation and crystal-cell adhesion phases. Int J Biol Macromol 2025; 310:143374. [PMID: 40258556 DOI: 10.1016/j.ijbiomac.2025.143374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Kidney stone is a specialized form of biomineralization involving complex interactions between crystals and urinary macromolecules. Renal tubular cells secrete cyclophilin A (CyPA), a protein whose elevated level is associated with various kidney diseases. Nevertheless, its role in kidney stone formation has not previously been explored. This study thus aimed to investigate roles of CyPA in kidney stone formation through various calcium oxalate (CaOx) crystal assays. Recombinant human CyPA was generated to mimic its secretory form excreted into the urine. Crystal assays yielded the first evidence demonstrating that CyPA significantly promoted CaOx growth, aggregation and crystal-cell adhesion, all of which are the critical steps during initial CaOx stone formation. Despite the lack of specific Ca2+-binding and Ox2--binding domains and its inability to bind free Ca2+/Ox2- ions in solution, CyPA demonstrated a distinct ability to bind CaOx crystals. Upon binding, CyPA facilitated further CaOx growth, aggregation of adjacent crystals and crystal-cell adhesion. These findings unravel a novel mechanism of kidney stone pathogenesis, expanding the known functions of CyPA. This research also provides solid evidence of how CyPA became one of the compositions in the stone matrix and highlights its potential to be a therapeutic/preventive target for management/prevention of kidney stone disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Waralee Srinarawat
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
3
|
Hadpech S, Peerapen P, Rattananinsruang P, Detsangiamsak S, Phuangkham S, Chotikawanich E, Sritippayawan S, Thongboonkerd V. Comprehensive identification of stone-promoting proteins in the urine of kidney stone formers. Int J Biol Macromol 2025; 310:143251. [PMID: 40253023 DOI: 10.1016/j.ijbiomac.2025.143251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Urinary proteins have crucial roles in modulating kidney stone formation. While stone-inhibiting urinary proteins are well characterized, stone-promoting urinary proteins are insufficiently explored. This knowledge gap limits our ability to fully comprehend the pathogenic mechanisms underlying nephrolithiasis and hampers the development of targeted therapeutic/preventive interventions. Therefore, we systematically identified stone-promoting proteins from the urine of 30 calcium oxalate (CaOx) nephrolithiatic patients (stone formers). Urinary proteins were fractionated by anion exchange and size-exclusion chromatography. A total of 15 protein fractions (SF1-SF15) were tested for their modulating activities on CaOx crystals by various assays compared with the control. The fractions with net CaOx-promoting activities were then identified by nanoLC-ESI-Qq-TOF MS/MS. From 15 fractions, 9 had net CaOx-promoting activities in all crystal assays. Among 3-99 proteins identified from these fractions, alpha-1acid glycoprotein 2, alpha-1-antitrypsin, apolipoprotein D, CD44 antigen, endosialin, fibrinogen alpha chain, interleukin-18-binding protein, kallikrein-1, retinol-binding protein 4, and titin have been found to increase in the urine of stone formers compared with controls, reinforcing their potential roles as CaOx stone promoters. This study offers the largest collection of CaOx stone-promoting proteins that will shed light on pathogenic mechanisms of nephrolithiasis and may allow further development of new drug targets to treat/prevent nephrolithiasis.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyaporn Rattananinsruang
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sasinun Detsangiamsak
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ekkarin Chotikawanich
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suchai Sritippayawan
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Popova E, Tkachev S, Shapoval A, Karpenko A, Lee Y, Chislov P, Ershov B, Golub D, Galechyan G, Bogoedov D, Akovantseva A, Gafarova E, Musaelyan R, Schekleina M, Clark S, Ali S, Dymov A, Vinarov A, Glybochko P, Timashev P. Kidney Stones as Minerals: How Methods from Geology Could Inform Urolithiasis Treatment. J Clin Med 2025; 14:997. [PMID: 39941670 PMCID: PMC11818645 DOI: 10.3390/jcm14030997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Despite the recent advances in minimally invasive surgery, kidney stones still pose a significant clinical challenge due to their high recurrence rate of 50% in 5-10 years after the first stone episode. Using the methods of geosciences and biology, the GeoBioMed approach treats kidney stones as biogenic minerals, offering a novel perspective on their formation and dissolution processes. In this review, we discuss kidney stones' structural and mechanical properties as emerging biomarkers of urolithiasis, emphasizing the importance of a comprehensive stone analysis in developing personalized treatment strategies. By focusing on unexplored properties like crystalline architecture, porosity, permeability, cleavage, and fracture, alongside the conventionally used composition and morphology, we show how these stone characteristics influence the treatment efficacy and the disease recurrence. This review also highlights the potential of advanced imaging techniques to uncover novel biomarkers, contributing to a deeper understanding of stone pathogenesis. We discuss how the interdisciplinary collaboration within the GeoBioMed approach aims to enhance the diagnostic accuracy, improve the treatment outcomes, and reduce the recurrence of urolithiasis.
Collapse
Affiliation(s)
- Elena Popova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Moscow 115682, Russia;
| | - Sergey Tkachev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Artur Shapoval
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anastasia Karpenko
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Yuliya Lee
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Pavel Chislov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Boris Ershov
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Danila Golub
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Gevorg Galechyan
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | | | - Anastasiya Akovantseva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elvira Gafarova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | | | - Maria Schekleina
- Department of Petrology and Volcanology, Moscow State University, Moscow 119991, Russia
| | - Stuart Clark
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stanislav Ali
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Alim Dymov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Andrey Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Petr Glybochko
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
5
|
Chen XW, Gu LQ, Zeng XY, Sun XY, Ouyang JM. Sulfated Pelvetia siliquosa Polysaccharides Inhibit CaOx Stone Formation by Inhibiting Calcium Oxalate Crystallization, Cellular Inflammation, and Crystal Adhesion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1542-1562. [PMID: 39741421 DOI: 10.1021/acs.jafc.4c07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Hyperoxaluria can easily induce calcium oxalate (CaOx) crystals and cause cell damage, thereby increasing the risk of kidney stone formation. In this study, three sulfated Pelvetia siliquosa polysaccharides (PSPs) were obtained by the sulfur trioxide-pyridine method. The antioxidant activity of PSPs and the inhibitory effects of PSPs on CaOx crystallization, cellular oxidative damage, and cellular inflammation were explored in vitro, and PSPs were used to treat hyperoxaluria-induced crystallization model mice in order to validate the stone-preventive effect of PSPs in vivo. PSPs can inhibit CaOx crystal formation, as well as reduce reactive oxygen species (ROS) levels through their own antioxidant properties and up-regulation of antioxidant enzyme (SOD and CAT) expression, which in turn reduces the release of lactate dehydrogenase (LDH) and malondialdehyde (MDA), improves lysosomal integrity, cellular morphology, and cytoskeleton, inhibits the decrease of mitochondrial membrane potential, reduces adhesion protein (CD44 and OPN) expression, alleviates cellular inflammatory factor (IL-6, TNF-α, and IL-1β) levels, and inhibits apoptosis. PSP3, which has the highest degree of sulfation, had the best protection capacity. PSP3 also showed good antistone ability in mice, and it may be a potential drug for kidney stone prevention.
Collapse
Affiliation(s)
- Xue-Wu Chen
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Liu-Qing Gu
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xin-Yu Zeng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Nong WJ, Tong XY, Ouyang JM. Comparison of Endoplasmic Reticulum Stress and Pyroptosis Induced by Pathogenic Calcium Oxalate Monohydrate and Physiologic Calcium Oxalate Dihydrate Crystals in HK-2 Cells: Insights into Kidney Stone Formation. Cells 2024; 13:2070. [PMID: 39768161 PMCID: PMC11674083 DOI: 10.3390/cells13242070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) can activate pyroptosis through CHOP and TXNIP; however, the correlation between this process and the formation of kidney stones has not been reported. The purpose is to investigate the effects of calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) on ERS and pyroptosis in HK-2 cells and to explore the formation mechanism of calcium oxalate stones. HK-2 cells were injured by 3 μm COM and COD. COM and COD significantly upregulated the expression levels of GRP78, CHOP, TXNIP, and pyroptosis-related proteins (NLRP3, caspase-1, GSDMD-N, and IL-1β). Fluorescence colocalization revealed that COM induced pyroptosis by inducing the interaction between TXNIP and NLRP3. Both COM and COD crystals can induce ERS and pyroptosis in HK-2 cells. COM induces the interaction with NLRP3 by the upregulation of CHOP and TXNIP and then promotes pyroptosis, while COD only promotes pyroptosis by the upregulation of CHOP. The cytotoxicity and the ability of COM to promote crystal adhesion and aggregation are higher than COD, suggesting that COM is more dangerous for calcium oxalate kidney stone formation.
Collapse
Affiliation(s)
| | | | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Yoodee S, Peerapen P, Thongboonkerd V. Defining physicochemical properties of urinary proteins that determine their inhibitory activities against calcium oxalate kidney stone formation. Int J Biol Macromol 2024; 279:135242. [PMID: 39218173 DOI: 10.1016/j.ijbiomac.2024.135242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
We have recently reported a set of urinary proteins that inhibited calcium oxalate (CaOx) stone development. However, physicochemical properties that determine their inhibitory activities remained unknown. Herein, human urinary proteins were chromatographically fractionated into 15 fractions and subjected to various CaOx crystal assays and identification by nanoLC-ESI-Qq-TOF MS/MS. Their physicochemical properties and crystal inhibitory activities were subjected to Pearson correlation analysis. The data showed that almost all urinary protein fractions had crystal inhibitory activities. Up to 128 proteins were identified from each fraction. Crystallization inhibitory activity correlated with percentages of Ca2+-binding proteins, stable proteins, polar amino acids, alpha helix, beta turn, and random coil, but inversely correlated with number of Ox2--binding motifs/protein and percentage of unstable proteins. Crystal aggregation inhibitory activity correlated with percentage of stable proteins but inversely correlated with percentage of unstable proteins. Crystal adhesion inhibitory activity correlated with percentage of stable proteins and GRAVY, but inversely correlated with pI, instability index and percentages of unstable proteins and positively charged amino acids. However, there was no correlation between crystal growth inhibitory activity and any physicochemical properties. In summary, some physicochemical properties of urinary proteins can determine and may be able to predict their CaOx stone inhibitory activities.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
8
|
Yoodee S, Peerapen P, Rattananinsruang P, Detsangiamsak S, Sukphan S, Thongboonkerd V. Large-scale identification of calcium oxalate stone inhibitory proteins in normal human urine. Int J Biol Macromol 2024; 275:133646. [PMID: 38969041 DOI: 10.1016/j.ijbiomac.2024.133646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Recent evidence has shown that proteins in normal human urine can inhibit calcium oxalate (CaOx) kidney stone formation. Herein, we performed fast protein liquid chromatography (FPLC) to fractionate normal human urinary proteins using anion-exchange (DEAE) and size-exclusion (Superdex 200) materials. FPLC fractions (F1-F15) were examined by CaOx crystallization, growth, aggregation and crystal-cell adhesion assays. The fractions with potent inhibitory activities against CaOx crystals were then subjected to mass spectrometric protein identification. The data revealed that 13 of 15 fractions showed inhibitory activities in at least one crystal assay. Integrating CaOx inhibitory scores demonstrated that F6, F7 and F8 had the most potent inhibitory activities. NanoLC-ESI-Qq-TOF MS/MS identified 105, 93 and 53 proteins in F6, F7 and F8, respectively. Among them, 60 were found in at least two fractions and/or listed among known inhibitors with solid experimental evidence in the StoneMod database (https://www.stonemod.org). Interestingly, 10 of these 60 potential inhibitors have been reported with lower urinary levels in CaOx stone formers compared with healthy (non-stone) individuals, strengthening their roles as potent CaOx stone inhibitors. Our study provides the largest dataset of potential CaOx stone inhibitory proteins that will be useful for further elucidations of stone-forming mechanisms and ultimately for therapeutic/preventive applications.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyaporn Rattananinsruang
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sasinun Detsangiamsak
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirirat Sukphan
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
9
|
Hadpech S, Chaiyarit S, Phuangkham S, Sukphan S, Thongboonkerd V. The modulatory effects of large and small extracellular vesicles from normal human urine on calcium oxalate crystallization, growth, aggregation, adhesion on renal cells, and invasion through extracellular matrix: An in vitro study. Biomed Pharmacother 2024; 173:116393. [PMID: 38461684 DOI: 10.1016/j.biopha.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Sukphan
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Hadpech S, Peerapen P, Thongboonkerd V. The upregulation of lamin A/C as a compensatory mechanism during tight junction disruption in renal tubular cells mediated by calcium oxalate crystals. Curr Res Toxicol 2023; 6:100145. [PMID: 38193033 PMCID: PMC10772403 DOI: 10.1016/j.crtox.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Calcium oxalate monohydrate (COM), the most important crystal causing kidney stone disease, upregulates lamin A/C but downregulates zonula occludens-1 (ZO-1) in renal tubular cells. While roles for F-actin and α-tubulin and their association with ZO-1 are known to regulate COM-mediated tight junction (TJ) disruption, roles of lamin A/C and its interplay with ZO-1 in COM kidney stone model remain unclear and are thus the objectives of this study. Lamin A/C was knocked down in MDCK cells by silencing RNA specific for LMNA (siLMNA). Both wild-type (WT) and siLMNA cells were treated with COM for 48-h compared with the untreated (control) cells. Western blotting and immunofluorescence staining revealed upregulated lamin A/C and downregulated ZO-1 in the COM-treated WT cells. siLMNA successfully reduced lamin A/C expression in both control and COM-treated cells. Nonetheless, siLMNA did not reverse the effect of COM on the decreases in ZO-1 and transepithelial resistance, but further reduced their levels in both control and COM-treated cells. Protein-protein interaction analysis demonstrated that two cytoskeletal proteins (actin and tubulin) served as the linkers to connect lamin A/C with ZO-1 and occludin (both of which are the TJ proteins). Altogether, these data implicate that lamin A/C and ZO-1 are indirectly associated to control TJ function, and ZO-1 expression is regulated by lamin A/C. Moreover, COM-induced upregulation of lamin A/C most likely serves as a compensatory mechanism to cope with the downregulation of ZO-1 during COM-mediated TJ disruption.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
11
|
Hadpech S, Chaiyarit S, Thongboonkerd V. Calcineurin B inhibits calcium oxalate crystallization, growth and aggregation via its high calcium-affinity property. Comput Struct Biotechnol J 2023; 21:3854-3864. [PMID: 37593722 PMCID: PMC10427926 DOI: 10.1016/j.csbj.2023.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
Calcineurin inhibitors (CNIs) are widely used in organ transplantation to suppress immunity and prevent allograft rejection. However, some transplant patients receiving CNIs have hypocitraturia, hyperoxaluria and kidney stone with unclear mechanism. We hypothesized that CNIs suppress activities of urinary calcineurin, which may serve as the stone inhibitor. This study aimed to investigate effects of calcineurin B (CNB) on calcium oxalate monohydrate (COM) stone formation. Sequence and structural analyses revealed that CNB contained four EF-hand (Ca2+-binding) domains, which are known to regulate Ca2+ homeostasis and likely to affect COM crystals. Various crystal assays revealed that CNB dramatically inhibited COM crystallization, crystal growth and crystal aggregation. At an equal amount, degrees of its inhibition against crystallization and crystal growth were slightly inferior to total urinary proteins (TUPs) from healthy subjects that are known to strongly inhibit COM stone formation. Surprisingly, its inhibitory effect against crystal aggregation was slightly superior to TUPs. While TUPs dramatically inhibited crystal-cell adhesion, CNB had no effect on this process. Ca2+-affinity assay revealed that CNB strongly bound Ca2+ at a comparable degree as of TUPs. These findings indicate that CNB serves as a novel inhibitor of COM crystallization, growth and aggregation via its high Ca2+-affinity property.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Liu Q, Tang J, Chen Z, Wei L, Chen J, Xie Z. Polyunsaturated fatty acids ameliorate renal stone-induced renal tubular damage via miR-93-5p/Pknox1 axis. Nutrition 2023; 105:111863. [PMID: 36356379 DOI: 10.1016/j.nut.2022.111863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Polyunsaturated fatty acids (PUFAs) can decrease the risk of calcium oxalate stone formation, which accounts for 80% of all renal stones. This study aimed to investigate the protective mechanisms of PUFAs against renal stones. METHODS Urine samples of patients with renal stones and biopsy tissue samples from patients with nephrocalcinosis were tested for miR-93-5p expression. A renal stone mouse model was established with intraperitoneal injection of glyoxylic acid, during which mice were treated with PUFAs and/or an miR-93-5p inhibitor adenovirus. Periodic acid-Schiff staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling staining, oil red O staining, triacylglycerol assay, and colorimetry testing were performed to assess glycogen deposition, apoptosis, lipid accumulation, blood urea nitrogen, and serum creatinine levels, respectively. Renal proximal tubular epithelial cells (human kidney 2 [HK-2]) were subjected to gain- and loss-of-function assays before calcium-oxalate monohydrate (COM) induction and PUFA treatment. Cell counting kit 8, flow cytometry, and lactate dehydrogenase activity assays were used to examine cell viability, apoptosis, and damage. A luciferase reporter gene assay verified the interaction between miR-93-5p and Pknox1, and miR-93-5p and Pknox1 levels were assessed using a reverse transcription-quantitative polymerase chain reaction and Western blot analysis. RESULTS miR-93-5p was downregulated in clinical samples with renal stones and negatively targeted Pknox1. PUFAs increased miR-93-5p expression and reduced apoptosis, glycogen deposition, and lipid accumulation in mice with renal stones, which were annulled by miR-93-5p downregulation. PUFAs increased proliferation and diminished apoptosis, lipid accumulation, and lactate dehydrogenase activity in COM-induced HK-2 cells, which were negated by miR-93-5p inhibition. Pknox1 overexpression reversed the effect of miR-93-5p upregulation on COM-induced HK-2 cells. CONCLUSIONS PUFAs repressed renal stone-induced renal tubular damage via the miR-93-5p/Pknox1 axis.
Collapse
Affiliation(s)
- Qin Liu
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Jun Tang
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Lanji Wei
- Health Management Center, The Affiliated Nanhua Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (Mawangdui Hospital), Changsha, Hunan, China
| | - Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China.
| |
Collapse
|
13
|
Noonin C, Peerapen P, Thongboonkerd V. Contamination of bacterial extracellular vesicles (bEVs) in human urinary extracellular vesicles (uEVs) samples and their effects on uEVs study. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e69. [PMID: 38938597 PMCID: PMC11080850 DOI: 10.1002/jex2.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/29/2024]
Abstract
Bacterial overgrowth is common for improperly stored urine. However, its effects on human urinary extracellular vesicles (uEVs) study had not been previously examined nor documented. This study investigated the presence of bacterial EVs (bEVs) contaminated in uEVs samples and their effects on uEVs study. Nanoscale uEVs were isolated from normal human urine immediately after collection (0-h) or after 25°C-storage with/without preservative (10 mM NaN3) for up to 24-h. Turbidity, bacterial count and total uEVs proteins abnormally increased in the 8-h and 24-h-stored urine without NaN3. NanoLC-ESI-LTQ-Orbitrap MS/MS identified 6-13 bacterial proteins in these contaminated uEVs samples. PCR also detected bacterial DNAs in these contaminated uEVs samples. Besides, uEVs derived from 8-h and 24-h urine without NaN3 induced macrophage activation (CD11b and phagocytosis) and secretion of cytokines (IFN-α, IL-8, and TGF-β) from macrophages and renal cells (HEK-293, HK-2, and MDCK). All of these effects induced by bacterial contamination were partially/completely prevented by NaN3. Interestingly, macrophage activation and cytokine secretion were also induced by bEVs purified from Escherichia coli. This study clearly shows evidence of bEVs contamination and their effects on human uEVs study when the urine samples were inappropriately stored, whereas NaN3 can partially/completely prevent such effects from the contaminated bEVs.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
14
|
Wuttimongkolchai N, Kanlaya R, Nanthawuttiphan S, Subkod C, Thongboonkerd V. Chlorogenic acid enhances endothelial barrier function and promotes endothelial tube formation: A proteomics approach and functional validation. Biomed Pharmacother 2022; 153:113471. [DOI: 10.1016/j.biopha.2022.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022] Open
|
15
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. Roles of heat-shock protein 90 and its four domains (N, LR, M and C) in calcium oxalate stone-forming processes. Cell Mol Life Sci 2022; 79:454. [PMID: 35900595 PMCID: PMC9330963 DOI: 10.1007/s00018-022-04483-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Human heat-shock protein 90 (HSP90) has four functional domains, including NH2-terminal (N), charged linker region (LR), middle (M) and COOH-terminal (C) domains. In kidney stone disease (or nephrolithiasis/urolithiasis), HSP90 serves as a receptor for calcium oxalate monohydrate (COM), which is the most common crystal to form kidney stones. Nevertheless, roles of HSP90 and its four domains in kidney stone formation remained unclear and under-investigated. We thus examined and compared their effects on COM crystals during physical (crystallization, growth and aggregation) and biological (crystal–cell adhesion and crystal invasion through extracellular matrix (ECM)) pathogenic processes of kidney stone formation. The analyses revealed that full-length (FL) HSP90 obviously increased COM crystal size and abundance during crystallization and markedly promoted crystal growth, aggregation, adhesion onto renal cells and ECM invasion. Comparing among four individual domains, N and C domains exhibited the strongest promoting effects, whereas LR domain had the weakest promoting effects on COM crystals. In summary, our findings indicate that FL-HSP90 and its four domains (N, LR, M and C) promote COM crystallization, crystal growth, aggregation, adhesion onto renal cells and invasion through the ECM, all of which are the important physical and biological pathogenic processes of kidney stone formation.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
16
|
Kanlaya R, Thongboonkerd V. Persistent Escherichia coli infection in renal tubular cells enhances calcium oxalate crystal-cell adhesion by inducing ezrin translocation to apical membranes via Rho/ROCK pathway. Cell Mol Life Sci 2022; 79:381. [PMID: 35751006 PMCID: PMC11072855 DOI: 10.1007/s00018-022-04414-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 01/18/2023]
Abstract
Recent evidence has suggested that recurrent urinary tract infection (UTI) can cause not only infection stones but also metabolic stones (e.g., those containing calcium oxalate monohydrate or COM). However, precise mechanisms underlying UTI-induced metabolic stones remained unknown. In this study, Escherichia coli, the most common bacterium found in recurrent UTI was used to establish the in vitro model for persistent infection of renal epithelial cells. The promoting effects of persistent E. coli infection on kidney stone formation were validated by COM crystal-cell adhesion assay, followed by immunofluorescence study for changes in surface expression of the known COM crystal receptors. Among the five receptors examined, only ezrin had significantly increased level on the surface of persistently infected cells without change in its total level. Such translocation of ezrin to apical membranes was confirmed by Western blotting of apical membrane and cytosolic fractions and confocal microscopic examination. Additionally, persistent infection increased phosphorylation (Thr567) of ezrin. However, all of these changes induced by persistent E. coli infection were significantly inhibited by small-interfering RNA (siRNA) specific for ezrin or a Rho-associated kinase (ROCK)-specific inhibitor (Y-27632). In summary, this study provides a piece of evidence demonstrating that persistent infection by E. coli, one of the non-urease-producing bacteria, may contribute to COM metabolic stone formation by translocation of ezrin to apical membranes, thereby promoting COM crystal-cell adhesion. Such ezrin translocation was mediated via Rho/ROCK signaling pathway. These findings may, at least in part, explain the pathogenic mechanisms underlying recurrent UTI-induced metabolic kidney stone disease.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
17
|
Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomed Pharmacother 2022; 149:112876. [PMID: 35367760 DOI: 10.1016/j.biopha.2022.112876] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Trigonelline is the second most abundant bioactive alkaloid found in coffee. It is classified as a phytoestrogen with similar structure as of estradiol and exhibits an estrogenic effect. A previous study has reported that fenugreek seed extract rich with trigonelline can reduce renal crystal deposition in ethylene glycol-induced nephrolithiatic rats. However, direct evidence of such anti-lithogenic effects of trigonelline and underlying mechanisms have not previously been reported. Our study therefore addressed the protective effects and mechanisms of trigonelline against kidney stone-forming processes using crystallization, crystal growth, aggregation and crystal-cell adhesion assays. Also, proteomics was applied to identify changes in receptors for calcium oxalate monohydrate (COM), the most common stone-forming crystal, on apical membranes of trigonelline-treated renal tubular cells. The analyses revealed that trigonelline significantly reduced COM crystal size, number and mass during crystallization. Additionally, trigonelline dose-dependently inhibited crystal growth and crystal-cell adhesion, but did not affect crystal aggregation. Mass spectrometric protein identification showed the smaller number of COM crystal receptors on apical membranes of the trigonelline-treated cells. Western blotting confirmed the decreased levels of some of these crystal receptors by trigonelline. These data highlight the protective mechanisms of trigonelline against kidney stone development by inhibiting COM crystallization, crystal growth and crystal-cell adhesion via downregulation of the crystal receptors on apical membranes of renal tubular cells.
Collapse
|
18
|
Noonin C, Peerapen P, Yoodee S, Kapincharanon C, Kanlaya R, Thongboonkerd V. Systematic analysis of modulating activities of native human urinary Tamm-Horsfall protein on calcium oxalate crystallization, growth, aggregation, crystal-cell adhesion and invasion through extracellular matrix. Chem Biol Interact 2022; 357:109879. [PMID: 35263610 DOI: 10.1016/j.cbi.2022.109879] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022]
Abstract
Functions of Tamm-Horsfall protein (THP), the most abundant human urinary protein, have been studied for decades. However, its precise roles in kidney stone formation remain controversial. In this study, we aimed to clarify the roles of native human urinary THP in calcium oxalate monohydrate (COM) kidney stone formation. THP was purified from the human urine by adsorption method using diatomaceous earth (DE). Its effects on stone formation processes, including COM crystallization, crystal growth, aggregation, crystal-cell adhesion and invasion through extracellular matrix (ECM), were examined. SDS-PAGE and Western blotting confirmed that DE adsorption yielded 84.9% purity of the native THP isolated from the human urine. Systematic analyses revealed that THP (at 0.4-40 μg/ml) concentration-dependently reduced COM crystal size but did not affect the crystal mass during initial crystallization. At later steps, THP concentration-dependently inhibited COM crystal growth and aggregation, and prevented crystal-cell adhesion only at 40 μg/ml. However, THP did not affect crystal invasion through the ECM. Sequence analysis revealed two large calcium-binding domains (residues 65-107 and 108-149) and three small oxalate-binding domains (residues 199-207, 361-368 and 601-609) in human THP. Immunofluorescence study confirmed the binding of THP to COM crystals. Analyses for calcium-affinity and/or oxalate-affinity demonstrated that THP exerted a high affinity with only calcium, not oxalate. Functional validation revealed that saturation of THP with calcium, not with oxalate, could abolish the inhibitory effects of THP on COM crystal growth, aggregation and crystal-cell adhesion. These data highlight the inhibitory roles of the native human urinary THP in COM crystal growth, aggregation and crystal-cell adhesion, which are the important processes for kidney stone formation. Such inhibitory effects of THP are most likely mediated via its high affinity with calcium ions.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunoot Kapincharanon
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
19
|
Chanthick C, Thongboonkerd V. Hyaluronic acid promotes calcium oxalate crystal growth, crystal-cell adhesion, and crystal invasion through extracellular matrix. Toxicol In Vitro 2022; 80:105320. [DOI: 10.1016/j.tiv.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
20
|
Yoodee S, Noonin C, Sueksakit K, Kanlaya R, Chaiyarit S, Peerapen P, Thongboonkerd V. Effects of secretome derived from macrophages exposed to calcium oxalate crystals on renal fibroblast activation. Commun Biol 2021; 4:959. [PMID: 34381146 PMCID: PMC8358035 DOI: 10.1038/s42003-021-02479-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
The association between kidney stone disease and renal fibrosis has been widely explored in recent years but its underlying mechanisms remain far from complete understanding. Using label-free quantitative proteomics (nanoLC-ESI-LTQ-Orbitrap MS/MS), this study identified 23 significantly altered secreted proteins from calcium oxalate monohydrate (COM)-exposed macrophages (COM-MP) compared with control macrophages (Ctrl-MP) secretome. Functional annotation and protein-protein interactions network analysis revealed that these altered secreted proteins were involved mainly in inflammatory response and fibroblast activation. BHK-21 renal fibroblasts treated with COM-MP secretome had more spindle-shaped morphology with greater spindle index. Immunofluorescence study and gelatin zymography revealed increased levels of fibroblast activation markers (α-smooth muscle actin and F-actin) and fibrotic factors (fibronectin and matrix metalloproteinase-9 and -2) in the COM-MP secretome-treated fibroblasts. Our findings indicate that proteins secreted from macrophages exposed to COM crystals induce renal fibroblast activation and may play important roles in renal fibrogenesis in kidney stone disease.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
21
|
Peerapen P, Thongboonkerd V. Kidney stone proteomics: an update and perspectives. Expert Rev Proteomics 2021; 18:557-569. [PMID: 34320328 DOI: 10.1080/14789450.2021.1962301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Main problems of kidney stone disease are its increasing prevalence and high recurrence rate after calculi removal in almost all areas around the globe. Despite enormous efforts in the past, its pathogenic mechanisms remain unclear and need further elucidations. Proteomics has thus become an essential tool to unravel such sophisticated disease mechanisms at cellular, subcellular, molecular, tissue, and whole organism levels. AREAS COVERED This review provides abrief overview of kidney stone disease followed by updates on proteomics for investigating urinary stone modulators, matrix proteins, cellular responses to different types/doses of calcium oxalate (CaOx) crystals, sex hormones and other stimuli, crystal-cell interactions, crystal receptors, secretome, and extracellular vesicles (EVs), all of which lead to better understanding of the disease mechanisms. Finally, the future challenges and translation of these obtained data to the clinic are discussed. EXPERT OPINION Knowledge from urinary proteomics for exploring the important stone modulators (either inhibitors or promoters) will be helpful for early detection of asymptomatic cases for prompt prevention of symptoms, complications, and new stone formation. Moreover, these modulators may serve as the new therapeutic targets in the future for successful treatment and prevention of kidney stone disease by medications or other means of intervention.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Khamchun S, Yoodee S, Thongboonkerd V. Dual modulatory effects of diosmin on calcium oxalate kidney stone formation processes: Crystallization, growth, aggregation, crystal-cell adhesion, internalization into renal tubular cells, and invasion through extracellular matrix. Biomed Pharmacother 2021; 141:111903. [PMID: 34328112 DOI: 10.1016/j.biopha.2021.111903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 01/26/2023] Open
Abstract
Diosmin is a natural flavone glycoside (bioflavonoid) found in fruits and plants with several pharmacological activities. It has been widely used as a dietary supplement or therapeutic agent in various diseases/disorders. Although recommended, evidence of its protective mechanisms against kidney stone disease (nephrolithiasis/urolithiasis), especially calcium oxalate (CaOx) monohydrate (COM) that is the most common type, remained unclear. In this study, we thus systematically evaluated the effects of diosmin (at 2.5-160 nM) on various stages of kidney stone formation processes, including COM crystallization, crystal growth, aggregation, crystal-cell adhesion, internalization into renal tubular cells and invasion through extracellular matrix (ECM). The results showed that diosmin had dose-dependent modulatory effects on all the mentioned COM kidney stone processes. Diosmin significantly increased COM crystal number and mass during crystallization, but reduced crystal size and growth. While diosmin promoted crystal aggregation, it inhibited crystal-cell adhesion and internalization into renal tubular cells. Finally, diosmin promoted crystal invasion through the ECM. Our data provide evidence demonstrating both inhibiting and promoting effects of diosmin on COM kidney stone formation processes. Based on these dual modulatory activities of diosmin, its anti-urolithiasis role is doubtful and cautions should be made for its use in kidney stone disease.
Collapse
Affiliation(s)
- Supaporn Khamchun
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand; Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
23
|
Tang Z, Wang X, Yang J, Song X, Huang Y, Chen C, Yang H, Fu Z, Gong X, Chen G. Microconvex Dot-Featured Silk Fibroin Films for Promoting Human Umbilical Vein Endothelial Cell Angiogenesis via Enhancing the Expression of bFGF and VEGF. ACS Biomater Sci Eng 2021; 7:2420-2429. [PMID: 33878261 DOI: 10.1021/acsbiomaterials.0c01647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insufficient vascularization of grafts often leads to delayed tissue ingrowth and impaired tissue function in tissue engineering. The surface topography of grafts plays critical roles in angiogenesis. In the present study, we prepared silk fibroin (SF)-based microtopography films with the number of convex dots ranging from 37 to 4835/mm2. The convex dot-featured topography surfaces were characterized by scanning electron microscopy, a Profilm3D optical profilometer, atomic force microscopy, and a contact angle goniometer. The effect of microtopographic films on the proliferation, adhesion, and expression of angiogenic factors of human umbilical vein endothelial cells (HUVECs) was investigated. Our results demonstrated that the SF film surface with 2899 convex dots/mm2 significantly enhanced adhesion, viability, and levels of vascular endothelial growth factors and basic fibroblast growth factors of HUVECs and significantly downregulated the level of α-SMA in human aortic smooth muscle cells, indicating that the microtopographic films could promote angiogenesis. Furthermore, in vitro results showed that HUVEC proliferation was positively correlated with yes-associated protein (YAP) activation, suggesting that the enhanced angiogenesis was mediated via the YAP pathway. Finally, mice subcutaneous embedding model results indicated that the SF film surface with 2899 convex dots/mm2 could significantly enhance angiogenesis in vivo. Altogether, our results showed that the SF film surface with 2899 convex dots/mm2 promoted the angiogenesis of HUVECs and offered a novel angiogenesis-promoting strategy of implant surface design for tissue engineering.
Collapse
Affiliation(s)
- Zhexiong Tang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Hao Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|