1
|
Ju M, Liu Y, Sun X, Zheng Y, Xia R, Zheng K, Cui Y, Li Z, Wang H, Wang Q. Efficient bamboo biorefining based on liquid hot water pretreatment: Co-production of xylo-oligosaccharides and lignin-containing cellulose nanofiber films. Int J Biol Macromol 2025; 307:141906. [PMID: 40068743 DOI: 10.1016/j.ijbiomac.2025.141906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Liquid hot water (LHW) pretreatment is an environmentally friendly that uses hot water under certain pressure to break down biomass in the absence of chemicals. In this paper, bamboo was used as the substrate to prepare the lignin-containing cellulose nanofibers (LCNFs) and xylo-oligosaccharides (XOS) using LHW strategy. The results showed that a total xylose yield of 63.95 % was achieved in only 20 min, with a high total xylose selectivity of 96.6 %. Meanwhile, a cellulose retention rate of 99.7 % was also achieved. The optimal conditions obtained from the 100 mL reactor were validated through three parallel experiments using the 2 L reactor, and the residue was treated with 1.5 wt% NaOH to reduce the lignin content. LCNF was obtained through ball milling and ultrasonic treatment, and the LCNF film was prepared using an evaporation-induced self-assembly approach, which showed excellent mechanical properties, including tensile strength (109.4 MPa), Young's modulus (1.4 GPa) and elongation at break (28.3 %). Additionally, the LCNF films exhibited effective UV-shielding capacity. This study achieved the full component utilization of bamboo for the co-production of high value-added chemicals and biomass-based materials.
Collapse
Affiliation(s)
- Miaomiao Ju
- School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Yunyun Liu
- School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xinlong Sun
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanqing Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Rundong Xia
- School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Kexin Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanran Cui
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Zhenglong Li
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Hongkun Wang
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China.
| | - Qiong Wang
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Xu J, Su Y, Yang J, Ma H, Fang H, Zhu J, Du J, Cheng YY, Kang Y, Zhong Y, Pan B, Song K. A 3D bioprinted gelatin/quaternized chitosan/decellularized extracellular matrix based hybrid bionic scaffold with multifunctionality for infected full-thickness skin wound healing. Int J Biol Macromol 2025; 309:142816. [PMID: 40185461 DOI: 10.1016/j.ijbiomac.2025.142816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Skin wound repair, a highly integrated and overlapping process, is susceptible to infection, hyperoxia and excessive inflammation, which can delay wound healing or even lead to chronic wounds. In this study, a GQL/dGQue bilayered multifunctional scaffold, epidermis composed of gelatin (G), quaternized chitosan (Q) and lignin (L), and dermis composed of skin-derived decellularized extracellular matrix (d), gelatin and quercetin (Que), with bionic skin structure, was constructed by 3D bioprinting technology. The results showed that lignin effectively improved the mechanical properties (Young's modulus above 90 MPa) and regulated the appropriate degradation (about 84 % for 15 d) of the scaffold, as well as endowed it with good UV shielding properties. In addition, GQL/dGQue showed prominent antibacterial activity of 90.76 ± 4.94 % and 90.34 ± 4.14 % against E. coli and S. aureus, respectively, good free radical scavenging (87.22 ± 1.71 %) and significant anti-inflammatory properties. In vivo studies demonstrated that GQL/dGQue scaffold could effectively prevent wound infection and mitigate inflammation, thereby accelerating vascularization and regeneration of hair follicle and sebaceous gland with a remarkable wound closure of 98.29 ± 1.77 % at 21 d. Therefore, the GQL/dGQue bilayered multifunctional scaffold has a considerable potential to apply in skin tissue engineering for clinical wound repair.
Collapse
Affiliation(s)
- Jie Xu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ya Su
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science, Zhengzhou 451100, China
| | - Jiayi Yang
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Hailin Ma
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiang Du
- Biology Teaching and Research Group, The High School Attached to Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Yue Kang
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yiming Zhong
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, China.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 46710 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
3
|
Wang X, Zhong C, Zhong Y, Fan Z, Liu Z, Xu P, Deng X, Guo J, Sawant TR, Zhou M, Wang Q, Liu H, Liu J. Impressive merits of Nanocellulose driving sustainable beauty. Carbohydr Polym 2025; 353:123270. [PMID: 39914960 DOI: 10.1016/j.carbpol.2025.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 05/07/2025]
Abstract
Nanocellulose has emerged as a promising sustainable material in green cosmetics, driven by increasing environmental concerns and consumer demand for natural ingredients, as well as its unique features. This review systematically summarizes the latest research findings in nanocellulose applications across the cosmetics industry. We systematically analyze nanocellulose's multifunctional roles, including its exceptional performance as a moisturizing agent, sunscreen, antioxidant, and active ingredient delivery system in cosmetics. This review examines the fundamental mechanisms underlying these properties, supported by recent scientific findings and practical applications. Through detailed examination of current research, technological challenges, and market opportunities, this review provides valuable insights for both academic researchers and industry professionals working towards sustainable cosmetic innovations. We conclude by identifying key research gaps and future directions, emphasizing the transformative potential of nanocellulose in advancing green cosmetic formulations.
Collapse
Affiliation(s)
- Xiangyu Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | | | - Zhixiong Fan
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ping Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinxin Deng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Trupti Rohan Sawant
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Su C, Wang X, Hirth K, Arvanitis M, Cao Y, Fang G, Zhu JY. Bioactive lignin from maleic acid hydrotropic fractionation: Revealing the structural-bioactivity relationship. Int J Biol Macromol 2025; 302:140519. [PMID: 39892548 DOI: 10.1016/j.ijbiomac.2025.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Lignin possesses diverse bioactivities due to its unique physicochemical structure. This study investigates the structural-bioactivity relationships of lignin derived from maleic acid hydrotropic fractionation (MAHF) of two types of herbaceous biomass. The results indicated that lignin with higher phenolic hydroxyl (-OH) content (up to 2.0 mmol/g) and carboxyl (-COOH) groups (up to 0.89 mmol/g) exhibited significantly enhanced antioxidant activity. The highest antioxidant of MAHF lignin (MAHL) reached 98 % for scavenging DPPH (2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl) at 0.56 mg/mL. Antibacterial tests revealed that MAHLs demonstrated inhibition rates of 66 % against E. coli and 54 % against S. aureus at 10 mg/mL. MAHLs at 1 mg/mL concentration blocked >98 % of UV radiation. Furthermore, the study demonstrated that lignin with higher phenolic hydroxyl (-OH), carboxyl (-COOH), and syringyl (S) units and conjugated double bonds exhibit enhanced bioactive properties. Lignin with lower Mw and PDI also tends to possess good bioactivities. The findings from the study can facilitate the application of lignin as an efficient, cost-effective, and renewable biopolymer additive in various industries.
Collapse
Affiliation(s)
- Chen Su
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; USDA Forest Products Laboratory, Madison, WI 53726, United States
| | - Xiu Wang
- Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Kolby Hirth
- USDA Forest Products Laboratory, Madison, WI 53726, United States
| | | | - Yunfeng Cao
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - J Y Zhu
- USDA Forest Products Laboratory, Madison, WI 53726, United States.
| |
Collapse
|
5
|
Hu M, Lv X, Wang Y, Ma L, Zhang Y, Dai H. Recent advance on lignin-containing nanocelluloses: The key role of lignin. Carbohydr Polym 2024; 343:122460. [PMID: 39174133 DOI: 10.1016/j.carbpol.2024.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Nanocelluloses (NCs) isolated from lignocellulosic resources usually require harsh chemical pretreatments to remove lignin, which face constraints such as high energy consumption and inefficient resource utilization. An alternative strategy involving the partial retention of lignin can be adopted to endow NCs with better versatility and functionality. The resulting lignin-containing nanocelluloses (LNCs) generally possess better mechanical property, thermal stability, barrier property, antioxidant activity, and surface hydrophobicity than lignin-free NCs, which have attracted extensive interest as a promising green nanomaterial for numerous applications. This review provides a comprehensive overview of the recent advances in the preparation, properties, and food application of LNCs. The effect of residual lignin on the preparation and properties of LNCs is discussed. Furthermore, the key roles of lignin in the properties of LNCs, including particle size, crystalline structure, dispersibility, thermal, mechanical, antibacterial, rheological and adhesion properties, are summarized comprehensively. Furthermore, capitalizing on their dietary fiber and nanostructure properties, the food applications of LNCs in the forms of films, gels and emulsions are also discussed. Finally, the challenges and opportunities regarding the development of LNCs are provided.
Collapse
Affiliation(s)
- Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
6
|
Wu X, Lian H, Xia C, Deng J, Li X, Zhang C. Mechanistic insights and applications of lignin-based ultraviolet shielding composites: A comprehensive review. Int J Biol Macromol 2024; 280:135477. [PMID: 39250986 DOI: 10.1016/j.ijbiomac.2024.135477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Lignin is a green aromatic polymer constructed from repeating phenylpropane units, incorporating features such as phenolic hydroxyl groups, carbonyl groups, and conjugated double bonds that serve as chromophores. These structural attributes enable it to absorb a wide spectrum of ultraviolet radiation within the 250-400 nm range. The resulting properties make lignin a material of considerable interest for its potential applications in polymers, packaging, architectural decoration, and beyond. By examining the structure of lignin, this research delves into the structural influence on its UV-shielding capabilities. Through a comparative analysis of lignin's use in various UV-shielding applications, the study explores the interplay between lignin's structure and its interactions with other materials. This investigation aims to elucidate the UV-shielding mechanism, thereby offering insights that could inform the development of high-value applications for lignin in UV-shielding composite materials.
Collapse
Affiliation(s)
- Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junqian Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changhang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Su C, Wang X, Deng Y, Tian Z, Huang C, Fang G. Comprehensive insights of pretreatment strategies on the structures and bioactivities variation of lignin-carbohydrate complexes. Front Bioeng Biotechnol 2024; 12:1465328. [PMID: 39229456 PMCID: PMC11368791 DOI: 10.3389/fbioe.2024.1465328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction: Due to its unique structural features and bioactivities, the lignin-carbohydrate complex (LCC) displays great potential in vast industrial applications. However, the elucidation of how various pretreatment methods affect the structure and bioactivities remains unaddressed. Method: The three pretreatment methods were systematically studied on the variations of structures and bioactivities, and the Gramineae plant, i.e., wheat straw, was adopted in this study. The structures and bioactivities variation caused by different pretreatments were studied in detail. Result and Discussion: The results showed that compared to physical or chemical pretreatments, biological pretreatment was the most effective approach in improving the bioactivities of LCC. The LCC from biological pretreatment (enzymatic hydrolysis, ELCC4) had more functional groups while the lower weight-average molecular weight (Mw) and polydispersity index (PDI) were well-endowed. The highest antioxidant abilities against ABTS and DPPH of ELCC4 were high up to 95% and 84%, respectively. Furthermore, ELCC4 also showed the best ultraviolet (UV)-blocking rate of 96%, which was increased by 6% and 2% compared to LCC8 (physical pretreatment) and LLCC4 (chemical pretreatment). This work prospectively boosts the understanding of pretreatment strategies on the structures and bioactivities variation of LCC and facilitates its utilization as sustainable and biologically active materials in various fields.
Collapse
Affiliation(s)
- Chen Su
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Xiu Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yongjun Deng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Guigan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Zhang S, Zhong X, Chen J, Nilghaz A, Yun X, Wan X, Tian J. Manufacturing biodegradable lignocellulosic films with tunable properties from spent coffee grounds: A sustainable alternative to plastics. Int J Biol Macromol 2024; 273:132918. [PMID: 38844282 DOI: 10.1016/j.ijbiomac.2024.132918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Manufacturing biodegradable lignocellulosic films from spent coffee grounds (SCG) as an alternative to commercial plastics is a viable solution to address plastic pollution. Here, the biodegradable lignocellulosic films from SCG were fabricated via a sequential alkaline treatment and ionic liquid-based dissolution process. The alkaline treatment process could swell the cell wall of SCG, change its carbohydrates and lignin contents, and enhance its solubility in ionic liquids. The prepared SCG films with different lignin contents exhibited outstanding UV blocking capability (42.07-99.99 % for UVB and 20.96-99.99 % for UVA) and light scattering properties, good surface hydrophobicity (water contact angle = 63.2°-88.7°), enhanced water vapor barrier property (2.28-6.79 × 10-12 g/m·s·Pa), and good thermal stability. Moreover, the SCG films exhibit excellent mechanical strength (50.10-81.56 MPa, tensile strength) and biodegradability (fully degraded within 30 days when buried in soil) compared to commercial plastic. The SCG films represent a promising alternative that can replace non-biodegradable plastics.
Collapse
Affiliation(s)
- Shaokai Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin Zhong
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junyu Chen
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaofang Wan
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junfei Tian
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
Zhang L, Huang Y, Zhang J, Zhu E, Ma J, Wang Z. Green synthesis of lignin-directed palladium nanoparticles/UiO-66-NH 2 paper-based composite catalyst for synergistic adsorption-catalysis removal of hexavalent chromium. Int J Biol Macromol 2024; 255:128187. [PMID: 37977467 DOI: 10.1016/j.ijbiomac.2023.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
A combination of multiple methods can greatly intensify the removal efficiency of hazardous substances. Herein, the synergistic utilization of adsorption and catalysis achieved for the highly efficient removal of hexavalent chromium (Cr6+). A paper-based palladium nanoparticles/UiO-66-NH2 (PdNPs/UiO-66-NH2/LP) composite catalyst was prepared using lignocellulose paper-based material (LP) for the loading of UiO-66-NH2 MOFs materials, with the lignin in LP as the reducer for the in-situ synthesis of PdNPs (12.3 nm) on UiO-66-NH2 MOF materials. Lignocellulose paper-based materials with high strength (82 N·m/g) realized low-cost and environmentally friendly preparation and guaranteed the practicability of PdNPs/UiO-66-NH2/LP composite catalyst. The prepared PdNPs/UiO-66-NH2/LP achieved high-efficiency catalytic activity for hazardous Cr6+ removal through a constructed adsorption-catalytic synergistic system, in which the removal efficiency of Cr6+ in 10 min was increased by 2 times compared with a composite catalyst without MOFs loading. Finally, the PdNPs/UiO-66-NH2/LP composite catalyst demonstrated the great efficiency and practicality of water pollution treatment through synergistic adsorption enrichment and catalytic reduction.
Collapse
Affiliation(s)
- Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yuefeng Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiaqing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Enqing Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Luo D, Sun G, Wang Y, Shu X, Chen J, Sun M, Liu X, Liu C, Xiao H, Xu T, Dai H, Zhou X, Huang C, Bian H. Metal ion and hydrogen bonding synergistically mediated carboxylated lignin/cellulose nanofibrils composite film. Carbohydr Polym 2024; 323:121456. [PMID: 37940315 DOI: 10.1016/j.carbpol.2023.121456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
In order to alleviate the resource and environmental problems caused by plastic film materials, the development of biodegradable cellulose-based films is crucial. Inspired by the strengthening mechanism of cellulose-lignin network from wood, carboxylated lignin (CL) was isolated using maleic acid (MA) pretreatment catalyzed by metal chlorides. Compared with pure MA, the presence of metal ions yielded CL with high carboxyl content (0.34 mmol/g), small size and good dispersibility. CL was then composited with CNF to prepare various CL/cellulose nanofibrils (CNF) composite films. When the addition of ferric chloride was 0.3 mmol/g maleic acid, the corresponding composite films exhibited highest tensile strength (180.0 MPa), Young's modulus (13.0 GPa) and excellent ultraviolet blocking rate (97.0 %). Meanwhile, the interaction forces measured by atomic force microscope showed that the binding between CNF and various CLs (276-406 nN) was higher than that between pure CNFs (202 nN), verifying that CL enhanced the mechanical properties of composite films. In summary, this work constructs a super-strong network between CL and CNF synergistically mediated by metal ion crosslinking and hydrogen bonding, which can be a promising alternative to replace conventional plastics in multiple areas.
Collapse
Affiliation(s)
- Dan Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Gaofeng Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yilin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mengya Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuyu Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Chao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
11
|
Lu Y, Jiang M, Pan Y, Wang F, Xu W, Zhou Y, Du X. Preparation of Ag@lignin nanotubes for the development of antimicrobial biodegradable films from corn straw. Int J Biol Macromol 2024; 254:127630. [PMID: 37939776 DOI: 10.1016/j.ijbiomac.2023.127630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Current environmental and energy issues have attracted considerable attention from industries, governments, and academia. Developing alternative diverse petrochemical-based plastics with biodegradable packaging materials from renewable resources is critical for ensuring both sustainability and safety. In this study, biodegradable films are fabricated from corn straw via a facile sol-gel process. Furthermore, these films are imbued with antimicrobial properties by coupling with silver@lignin nanotube hybrid antibacterial agents, formed via the in situ reduction of silver ions into elemental silver by lignin (mild reducing agent), followed by the self-assembly of lignin molecules into nanotubes assisted by an aqueous silver nitrate electrolyte solution. The developed antibacterial corn straw film exhibits strong mechanical and antibacterial properties, with a tensile strength and elongation at break of 68.7 MPa and 11.3 %, respectively, under optimum conditions and antibacterial activity against Escherichia coli and Staphylococcus aureus of 99.9 % and 97.2 %, respectively. The as-prepared corn straw films exhibit high hydrophobicity and ultraviolet resistance. The morphology, structure, and thermal properties of the corn straw films were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and thermogravimetric analysis. This study provides a straw-based biodegradable packaging film with antimicrobial properties.
Collapse
Affiliation(s)
- Yuan Lu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Man Jiang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yu Pan
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Feng Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Wangjie Xu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Yufan Zhou
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaoqing Du
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
12
|
Feng Q, Wang L, Wan Z, Bu X, Deng Q, Li D, Chen C, Xu Z. Efficient ultraviolet blocking film on the lignin-rich lignocellulosic nanofibril from bamboo. Int J Biol Macromol 2023; 250:126059. [PMID: 37544557 DOI: 10.1016/j.ijbiomac.2023.126059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
The ultraviolet (UV) blocking performance of current bio-based devices is always limited by delignification and exploited chemical treatment. Lignocellulosic nanofibril (LCNF) is a promising green alternative that could efficiently impede UV radiation. Herein, we proposed a robust LCNF film that achieved 99.8 ± 0.19 % UVB blocking, 96.1 ± 0.23 % UVA blocking, and was highly transparent without complex chemical modification. Compared to conventional lignin composites, this LCNF method involves 29.5 ± 2.31 % lignin content directly extracted from bamboo as a broad-spectrum sun blocker. This bamboo-based LCNF film revealed an excellent tensile strength of 94.9 ± 3.6 MPa and outstanding stability, adapting to the natural environment's variability. The residual hemicellulose could also embed the link between lignin and cellulose, confirming high lignin content in the network. The connection between lignin and hemicelluloses in the cellulose network was explored and described for the fibrillation of lignocellulosic nanofibrils. This research highlights the promising development of LCNFs for UV protection and bio-based solar absorption materials.
Collapse
Affiliation(s)
- Qian Feng
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Luzhen Wang
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Zhangmin Wan
- Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Xiangting Bu
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Qiaoyun Deng
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Dagang Li
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China.
| | - Chuchu Chen
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China.
| | - Zhaoyang Xu
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China.
| |
Collapse
|
13
|
Zhang Z, He YC, Liu Y. Efficient antibacterial and dye adsorption by novel fish scale silver biochar composite gel. Int J Biol Macromol 2023; 248:125804. [PMID: 37453636 DOI: 10.1016/j.ijbiomac.2023.125804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
A silver-loaded carbon-chitosan-polyvinyl alcohol gel (C/CTS/PVA) was designed for suppressing microbial growth and dye adsorption. The antibacterial test results showed that C/CTS/PVA gel had a good antibacterial ability against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The inhibition rate in water was 100 %, and the antibacterial rate remained above 95 % within 35 days after preparation. The tight spatial structure provided by the adhesive effect of PVA and CTS effectively prevented water loss and enhanced the stability of the gel. The adsorption curves of the gel were fitted by establishing the pseudo-first order and pseudo-second order kinetic models. The adsorption curves were more consistent with the pseudo-second-order kinetic model. The best adsorption effect for Malachite green was 128.12 mg/g. C/CTS/PVA gel had a remarkable adsorption effect on Malachite green, Congo red, Methyl orange, and Methylene blue. In general, C/CTS/PVA gels have great potential for the treatment of sewage in the future.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Sultana A, Kumar L, Gaikwad KK. Lignocellulose nanofibrils/guar gum-based ethylene scavenging composite film integrated with zeolitic imidazolate framework-8 for food packaging. Int J Biol Macromol 2023:125031. [PMID: 37244327 DOI: 10.1016/j.ijbiomac.2023.125031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Ethylene, a ripening hormone, is critical in limiting the shelf life of fresh produce, specifically climacteric fruits and vegetables. A simple and benign fabrication approach is used to transform sugarcane bagasse, an agro-industrial waste into lignocellulosic nanofibrils (LCNF). In this investigation, biodegradable film was fabricated using LCNF (extracted from sugarcane bagasse) and guar gum (GG) which was reinforced with zeolitic imidazolate framework (ZIF)-8/zeolite. The LCNF/GG film not only acts as a biodegradable matrix to hold the ZIF-8/zeolite composite, but also possesses ethylene scavenging, antioxidant, and UV-blocking properties. The characterization results suggested that pure LCNF showed antioxidant activity of around 69.55 %. The LCNF/GG/MOF-4 film has shown lowest UV-transmittance (5.06 %) and highest ethylene scavenging capacity (40.2 %) among all the samples. After 6 days of storage at 25 ± 2 °C, packaged control bananas samples underwent significant degradation. In contrast, a banana package consisting of LCNF/GG/MOF-4 film maintained their high quality in terms of colour. Fabricated novel biodegradable film has potential application prospects for being used in prolonging the shelf life of fresh produce.
Collapse
Affiliation(s)
- Afreen Sultana
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
15
|
Zhao H, Zhu Y, Zhang H, Ren H, Zhai H. UV-blocking composite films containing hydrophilized spruce kraft lignin and nanocellulose: Fabrication and performance evaluation. Int J Biol Macromol 2023:124946. [PMID: 37236567 DOI: 10.1016/j.ijbiomac.2023.124946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The development of biodegradable films with good UV-blocking and mechanical properties is of great significance for the alleviation of plastic pollution and the establishment of a sustainable society. Given that most natural biomass-derived films have poor mechanical and UV aging properties and are therefore of limited applicability, additives capable of mitigating these drawbacks are highly sought after. In particular, industrial alkali lignin, which is a byproduct of the pulp and paper industry, features a benzene ring-dominated structure with abundant active functional groups and is therefore a promising natural anti-UV additive and composite reinforcing agent. However, the commercial applications of alkali lignin are hindered by its structural complexity and polydispersity. Herein, spruce kraft lignin was fractionated and purified using acetone, subjected to structural characterization, and then quaternized based on the obtained structural data to increase water solubility. TEMPO-oxidized cellulose was supplemented with quaternized lignin at different loadings, and the mixtures were homogenized under high pressure to obtain uniform and stable lignin-containing nanocellulose dispersions, which were subsequently converted into films through suction filtration-based dewatering under pressure. The quaternization of lignin improved its compatibility with nanocellulose and endowed the corresponding composite films with excellent mechanical properties as well as high visible light transmission and UV-blocking performance. The film with a quaternized lignin loading of 6 % had UVA and UVB shielding efficiencies of 98.3 and 100 %, respectively, and featured a tensile strength (175.2 MPa) and elongation at break (7.6 %) that were 50.4 % and 72.7 % higher than those of the pure nanocellulose (CNF) film prepared under the same conditions, respectively. Thus, our work provides a cost-effective and viable method of preparing fully biomass-derived UV-blocking composite films.
Collapse
Affiliation(s)
- Hui Zhao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yanchen Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huamin Zhai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Zhao J, Yuan X, Wu X, Liu L, Guo H, Xu K, Zhang L, Du G. Preparation of Nanocellulose-Based Aerogel and Its Research Progress in Wastewater Treatment. Molecules 2023; 28:3541. [PMID: 37110772 PMCID: PMC10144172 DOI: 10.3390/molecules28083541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Nowadays, the fast expansion of the economy and industry results in a considerable volume of wastewater being released, severely affecting water quality and the environment. It has a significant influence on the biological environment, both terrestrial and aquatic plant and animal life, and human health. Therefore, wastewater treatment is a global issue of great concern. Nanocellulose's hydrophilicity, easy surface modification, rich functional groups, and biocompatibility make it a candidate material for the preparation of aerogels. The third generation of aerogel is a nanocellulose-based aerogel. It has unique advantages such as a high specific surface area, a three-dimensional structure, is biodegradable, has a low density, has high porosity, and is renewable. It has the opportunity to replace traditional adsorbents (activated carbon, activated zeolite, etc.). This paper reviews the fabrication of nanocellulose-based aerogels. The preparation process is divided into four main steps: the preparation of nanocellulose, gelation of nanocellulose, solvent replacement of nanocellulose wet gel, and drying of nanocellulose wet aerogel. Furthermore, the research progress of the application of nanocellulose-based aerogels in the adsorption of dyes, heavy metal ions, antibiotics, organic solvents, and oil-water separation is reviewed. Finally, the development prospects and future challenges of nanocellulose-based aerogels are discussed.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaoxiao Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
17
|
Wu H, Liu G, Wei Y, Liao S. Directional freezing in natural rubber foams to construct reinforced networks. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Hao Wu
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, School of Materials Science and Engineering Hainan University Haikou China
| | - Gui‐Xiang Liu
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, School of Materials Science and Engineering Hainan University Haikou China
| | - Yan‐Chan Wei
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, School of Materials Science and Engineering Hainan University Haikou China
| | - Shuangquan Liao
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, School of Materials Science and Engineering Hainan University Haikou China
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology, Ministry of Education Beijing China
| |
Collapse
|
18
|
Dai Q, Bai Y, Fu B, Yang F. Multifunctional Bacterial Cellulose Films Enabled by Deep Eutectic Solvent-Extracted Lignin. ACS OMEGA 2023; 8:7430-7437. [PMID: 36873000 PMCID: PMC9979238 DOI: 10.1021/acsomega.2c06123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Inspired by natural plant cells, lignin is utilized as a filler and a functional agent to modify bacterial cellulose (BC). By mimicking the lignin-carbohydrate structure, deep eutectic solvent (DES)-extracted lignin serves as a glue to strength the BC films and endows the films with diverse functionality. The lignin isolated by the DES (formed by choline chloride and lactic acid) is rich in phenol hydroxyl groups (5.5 mmol/g) and exhibits a narrow molecular weight distribution. A good interface compatibility can be obtained in the composite film, and lignin fills the void/gaps between BC fibrils. The integration of lignin endows the films with enhanced water-proof, mechanical, UV shielding, gas barrier, and antioxidant abilities. The BC/lignin composite film with 0.4 g of lignin addition (BL-0.4) exhibits an oxygen permeability and a water vapor transmission rate of 0.4 mL/m2/day/Pa and 0.9 g/m2/day, respectively. The multifunctional films are promising candidates for packing materials and exhibit a broad application prospect in the field of petroleum-based polymer replacement.
Collapse
Affiliation(s)
- Qihang Dai
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yunhua Bai
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Fu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fan Yang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- School
of Management Science and Engineering, Nanjing
University of Finance and Economics, Nanjing, Jiangsu 210023, China
| |
Collapse
|
19
|
Gelatin films functionalized by lignocellulose nanocrystals-tannic acid stabilized Pickering emulsions: Influence of cinnamon essential oil. Food Chem 2023; 401:134154. [DOI: 10.1016/j.foodchem.2022.134154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
|
20
|
Structural and UV-blocking properties of carboxymethyl cellulose sodium/CuO nanocomposite films. Sci Rep 2023; 13:1123. [PMID: 36670212 PMCID: PMC9860032 DOI: 10.1038/s41598-023-28032-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Nanoparticles have made a substantial contribution to the field of skincare products with UV filters in preserving human skin from sun damage. The current study aims to create new polymer nanocomposite filters for the efficient block of UV light that results from the stratospheric ozone layer loss. The casting approach was used to add various mass fractions of copper oxide nanoparticles (CuO-NPs) to a solution of carboxymethyl cellulose (CMC). The amorphous nature of CMC was revealed by XRD analysis, with the intensity of the typical peak of virgin polymer in the nanocomposite spectrum decreasing dramatically as the doping amount was increased. The FTIR spectra revealed the functional groups of CMC and the good interaction between the CMC chain and CuO-NPs. Optical experiments revealed that the optical transmittance of pure CMC was over 80%, whereas it dropped to 1% when CuO-NPs content was increased to 8 wt.%. Surprisingly, the inclusion of CuO-NPs considerably improved the UV blocking property of the films extended from the UV region (both UV-A: 320-400 nm and UV-B: 280-320 nm) to the visible region. Optical band gap of CMC decreased sharply with increasing CuO concentration. The tunable optical characteristics can be utilized in UV- blocking filters and various optoelectronics applications.
Collapse
|
21
|
Zhao J, Ren Y, Xie Y, Wang H, Wang T, Tang W, Jin Z, Ling Z, Yong Q. Allomorphic regulation of bamboo cellulose by mild alkaline peroxide for holocellulose nanofibrils production. Int J Biol Macromol 2022; 223:49-56. [PMID: 36349657 DOI: 10.1016/j.ijbiomac.2022.10.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The exploration of sustainable lignocellulosic nanomaterials with unique properties and applicable functions is receiving growing interest. In this work, holocellulose nanofibrils (HCNFs) were prepared from moso bamboo using mild alkaline peroxide bleaching method (MAPB) followed by mechanical nanofibrillation. MAPB was proved to effectively remove lignin and retain hemicellulose. Meanwhile, partial allomorphic changes from cellulose I to cellulose II were revealed together with varying degrees of crystallinity. Thermogravimetric analysis (TGA) experiment showed an increasing thermal stability trend due to more allomorphic changes into anti-parallel cellulose II. Well-dispersed HCNFs suspensions were successfully prepared by homogenization and HCNFs films with high transparency and flexibility were fabricated. The films reached the maximum tensile strength of 55.8 MPa and tensile strain of 1.55 % along with a calculated toughness of 25 MJ/m3. Moreover, the prepared materials are biocompatible and completely non-toxic, which will theoretically support the application of HCNFs materials in fields of biology, medicine and food industry.
Collapse
Affiliation(s)
- Jinyi Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hanhua Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi Jin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Metal-coordination and surface adhesion-assisted molding enabled strong, water-resistant carboxymethyl cellulose films. Carbohydr Polym 2022; 298:120084. [DOI: 10.1016/j.carbpol.2022.120084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/15/2022]
|
23
|
Muthamma K, Sunil D. Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS OMEGA 2022; 7:42681-42699. [PMID: 36467930 PMCID: PMC9713864 DOI: 10.1021/acsomega.2c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The falsification of documents, currency, pharmaceuticals, branded goods, clothing, food products, and packaging leads to severe consequences. Counterfeited products can not only pose health risks to consumers but also cause substantial economic losses that can negatively impact the global markets. Unfortunately, most anticounterfeiting strategies are easily duplicated due to rapid technological advancements. Therefore, innovative and cost-effective antiforgery techniques that can offer superior multilevel security features are continuously sought after. Due to the ever-growing global awareness of environmental pollution, renewable and eco-friendly native biopolymers are garnering wide attention in anticounterfeiting applications. This review highlights the potential use of cellulose-based eco-friendly materials to combat the counterfeiting of goods. The initial section of the review focuses on the structure, properties, and chemical modifications of cellulose as a sustainable biomaterial. Further, the topical developments reported on cellulose and nanocellulose-based materials used as fluorescent security inks, films, and papers for achieving protection against counterfeiting are presented. The studies suggest the convenient use of celluose and modified cellulose materials for promising optical antiforgery applications. Furthermore, the scope for future research developments is also discussed based on the current critical challenges in the fabrication of cellulose-based materials and their anticounterfeit applications.
Collapse
|
24
|
Biodegradable, Flexible and Ultraviolet Blocking Nanocellulose Composite Film Incorporated with Lignin Nanoparticles. Int J Mol Sci 2022; 23:ijms232314863. [PMID: 36499190 PMCID: PMC9735624 DOI: 10.3390/ijms232314863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The exploration of functional films using sustainable cellulose-based materials to replace plastics has been of much interest. In this work, two kinds of lignin nanoparticles (LNPs) were mixed with cellulose nanofibrils (CNFs) for the fabrication of composite films with biodegradable, flexible and ultraviolet blocking performances. LNPs isolated from p-toluenesulfonic acid hydrolysis was easily recondensed and deposited on the surface of composite film, resulting in a more uneven surface; however, the composite film consisting of CNFs and LNPs isolated from maleic acid hydrolysis exhibited a homogeneous surface. Compared to pure CNF film, the composite CNF/LNP films exhibited higher physical properties (tensile strength of 164 MPa and Young's modulus of 8.0 GPa), a higher maximal weight loss temperature of 310 °C, and a perfect UVB blocking performance of 95.2%. Meanwhile, the composite film had a lower environmental impact as it could be rapidly biodegraded in soil and manmade seawater. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites to produce functional and biodegradable film as a promising alternative to petrochemical plastics.
Collapse
|
25
|
Yuan M, Liu H, Shen K, Qiu C, Qi H. Transparent Cellulose-based Film with High UV-blocking Performance Fabricated by Surface Modification using Biginelli Reaction. Macromol Rapid Commun 2022; 43:e2200495. [PMID: 35856281 DOI: 10.1002/marc.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Indexed: 11/05/2022]
Abstract
Efficient and sustainable ultraviolet (UV)-blocking materials are of great interest in many fields. Herein, novel cellulose-based UV-blocking films were developed via surface modification using Biginelli reaction. The resulting films exhibited excellent visible transparency (80%) at 550 nm and superhigh UV-blocking performance, which can shield almost 100% UVA and UVB. These features are very stable even the materials being subjected to solvents, UV irradiation, and thermal treatment. This work provides a novel and facile strategy to fabricate functional cellulose-based films with superhigh anti-ultraviolet performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengzhen Yuan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongchen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China.,College of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Kaiyuan Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Changjing Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
26
|
Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response. Carbohydr Polym 2022; 296:119920. [DOI: 10.1016/j.carbpol.2022.119920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
|
27
|
Ling Z, Ma J, Zhang S, Shao L, Wang C, Ma J. Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application. Int J Biol Macromol 2022; 216:193-202. [PMID: 35788003 DOI: 10.1016/j.ijbiomac.2022.06.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 12/28/2022]
Abstract
Exploration of sustainable and functional materials from biomolecules has received much interest, while the limited mechanical property and possible bacterial contamination were proved to be their major shortages. Here, we proposed novel double network (DN) hydrogels based on galactomannan (GM) polysaccharide as backbone. Folic acid (FA) and polyacrylamide (PAM) were introduced to form hydrogen bond linkages and covalent bond networks respectively. The three-dimensional hydrogel networks showed greatly improved mechanical strength. Impressive compressive fatigue resistance was present for 100 cycles' compression forming only 0.7 % shape deformation. The phenomenon was mainly attributed to promoted stress-bearing and energy dissipation from the DN cross-linking. The GM hydrogels also exhibited good electronic conductivity and excellent anti-bacterial capabilities with inhibition against more than 80 % of E. coli., attributing to the tunable attachments of FA. Thus, we provided multi-functional hydrogels of high potential serving as anti-fatigue/bacterial and conductive strain sensors on the fields of wearable devices.
Collapse
Affiliation(s)
- Zhe Ling
- International Center for Bamboo and Rattan, Key Lab of Bamboo and Rattan Science & Technology, Beijing 100102, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Junmei Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lupeng Shao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianfeng Ma
- International Center for Bamboo and Rattan, Key Lab of Bamboo and Rattan Science & Technology, Beijing 100102, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
28
|
Jiang Y, Wang Z, Zhou L, Jiang S, Liu X, Zhao H, Huang Q, Wang L, Chen G, Wang S. Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications. Int J Biol Macromol 2022; 206:264-276. [PMID: 35240206 DOI: 10.1016/j.ijbiomac.2022.02.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Transparent lignocellulose nanopaper (LNP) has been demonstrated to be a promising candidate light-management material for next-generation optical engineering applications. Similar to its role in plant cell walls, lignin serves as a vital functional component in LNP matrices. However, its intrinsic light absorption property renders LNP undesirable for a range of optical management systems. Here, a highly efficient, controllable and ecofriendly lignin modification strategy is developed for modulating the optical performance of LNPs by taking advantage of the beneficial synergistic effect of H2O2 and UV light in selectively eliminating lignin chromophores. The obtained lignin-modified LNP features not only a high visible light transmittance (89%) but also a high haze (90%) and excellent UV-shielding capacity, owing to the well-preserved lignin aromatic skeleton structures after lignin modification. Furthermore, patterning is easily achieved on hot-pressing-induced densified LNPs through a selective lignin modification approach, which endows LNPs with intriguing optical designability. Benefitting from the multifunctionality of lignin components for nanopaper matrices, patterned LNPs demonstrate outstanding water and thermal stability, barrier properties, durability and biodegradability, which are of great significance for practical applications. Furthermore, we demonstrate the great applicability of this optically designable and multifunctional LNP as a light-management material for energy efficient buildings by highlighting its attractive sun- and indoor- light managing effects, effective thermal insulation, as well as superior durability for long-term use. In combination with its efficient, ecofriendly and controllable production, this novel high-performing LNP holds great potential in many other applications that require light-management structural materials, such as optoelectronic and sensing devices.
Collapse
Affiliation(s)
- Yan Jiang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zehai Wang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Lin Zhou
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shan Jiang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Xiuyu Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Daxue Road 158, Nanning 530006, PR China; Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, PR China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, PR China.
| | - Hui Zhao
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China
| | - Qin Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Daxue Road 158, Nanning 530006, PR China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, PR China
| | - Lijun Wang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, PR China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Daxue Road 100, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| |
Collapse
|
29
|
Song X, Zhao S, Xu Y, Chen X, Wang S, Zhao P, Pu Y, Ragauskas AJ. Preparation, Properties, and Application of Lignocellulosic-Based Fluorescent Carbon Dots. CHEMSUSCHEM 2022; 15:e202102486. [PMID: 35199466 DOI: 10.1002/cssc.202102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon dots (CDs) are a relatively new type of fluorescent carbon material with excellent performance and widespread application. As the most readily available and widely distributed biomass resource, lignocellulosics are a renewable bioresource with great potential. Research into the preparation of CDs with lignocellulose (LC-CDs) has become the focus of numerous researchers. Compared with other carbon sources, lignocellulose is low cost, rich in structural variety, exhibits excellent biocompatibility,[1] and the structures of CDs prepared by lignin, cellulose, and hemicellulose are similar. This Review summarized research progress in the preparation of CDs from lignocellulosics in recent years and reviewed traditional and new preparation methods, physical and chemical properties, optical properties, and applications of LC-CDs, providing guidance for the formation and improvement of LC-CDs. In addition, the challenges of synthesizing LC-CDs were also highlighted, including the interaction of different lignocellulose components on the formation of LC-CDs and the nucleation and growth mechanism of LC-CDs; from this, current trends and opportunities of LC-CDs were examined, and some research methods for future research were put forward.
Collapse
Affiliation(s)
- Xueping Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Siyu Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Ying Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Xinrui Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Peitao Zhao
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, P. R. China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
30
|
Li Y, Chen Y, Wu Q, Huang J, Zhao Y, Li Q, Wang S. Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers. Polymers (Basel) 2022; 14:polym14091705. [PMID: 35566875 PMCID: PMC9102542 DOI: 10.3390/polym14091705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we reported PVA nanocomposite films enhanced by polyethyleneimine (PEI)-lignin contained cellulose nanofibers (LCNFs) via the solvent casting method. An easy and available method was preformed to prepare LCNFs using a supermasscolloider from unbleached bamboo waste after a mild alkaline pretreatment. The results demonstrate that LCNF–PEI can greatly improve mechanical, hydrophobic, anti-UV shielding and antibacterial properties of the composite films. The tensile strength of LPP1 film was improved to 54.56 MPa, which was higher than 39.37 MPa of PVA film. The water contact angle of films increased from 35° to 104° with an increase in LCNF content from 0 to 6 wt%. Meanwhile, the nanocomposite film demonstrated the effect of full shielding against ultraviolet light when the amount of LCNF–PEI reached 6 wt%. The addition of LCNF–PEI endowed excellent antibacterial activity (against S. aureus and E. coli), which indicated potential applications in the packaging field.
Collapse
Affiliation(s)
- Yujie Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Yifan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Qiang Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Jingda Huang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Qian Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Y.C.); (Q.W.); (J.H.)
- Correspondence: (Q.L.); (S.W.)
| | - Siqun Wang
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (Q.L.); (S.W.)
| |
Collapse
|
31
|
Zhang Y, Qian Y, Liu Y, Lei C, Qiu G, Chen G. Multivalent Metal Ion Cross-Linked Lignocellulosic Nanopaper with Excellent Water Resistance and Optical Performance. Biomacromolecules 2022; 23:1920-1927. [PMID: 35452236 DOI: 10.1021/acs.biomac.1c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose nanopaper is an attractive film material exhibiting huge potential in various fields, while its terrible water stability greatly hinders practical applications. Previous efforts on addressing this issue usually sacrifice the sustainability or material performance of film. In this study, we report a high-performing lignocellulosic nanopaper with superior water resistance and excellent optical properties. The strategy involves preparing a lignin-containing cellulose nanopaper (LCNP) first, and then infiltrating metal ions into the film to build cross-linking interactions within the fiber networks. Owing to the coordination bonds formed between metal ions and lignocellulosic components, the resulting metal ions cross-linked LCNP (M+-LCNP) displays outstanding water resistance, including the highest wet mechanical strength of ∼52 MPa after immersing in water for 24 h, which retains nearly 47% of the dry mechanical strength of the film. The ultralow water uptake ratio of ∼35% also confirms it possesses a superior wet dimensional stability. Moreover, these nanopapers also showcase the desired optical performances, including both high visible transmittance (>85%) and total ultraviolet-blocking efficiency (>91%, only transmitting a little of UVA). Overall, this fully degradable film is a promising alternative to replacing conventional plastics that are applied in multiple areas.
Collapse
Affiliation(s)
- Yazeng Zhang
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangyang Qian
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Chunfa Lei
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ge Qiu
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
32
|
Dias MC, Belgacem MN, de Resende JV, Martins MA, Damásio RAP, Tonoli GHD, Ferreira SR. Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin-cellulose nanofibrils. Int J Biol Macromol 2022; 209:413-425. [PMID: 35413312 DOI: 10.1016/j.ijbiomac.2022.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/16/2022] [Accepted: 04/02/2022] [Indexed: 01/08/2023]
Abstract
Lignin-cellulose nanofibrils (LCNF) are of attracting an increasing interest due to the benefits of maintaining the lignin in the nanomaterial composition. The production of LCNF requires considerable energy consumption, which has been suppressed employing pretreatment of biomass, in which it highlights those that employ enzymes that have the advantage of being more environmentally friendly. Some negative aspects of the presence of lignin in the fiber to obtain cellulose nanofibrils is that it can hinder the delamination of the cell wall and act as a physical barrier to the action of cellulase enzymes. This study aimed to evaluate the impact of a combined enzymatic pretreatment of laccase and endoglucanase for high content lignin LCNF production. The morphological and chemical properties, visual aspect and stability, crystallinity, mechanical properties, rheology, barrier properties and quality index were used to characterize the LCNF. The laccase loading used was efficient in modifying the lignin to facilitate the action of the endoglucanase on cellulose without causing the removal of this macromolecule. This pretreatment improved the quality of LCNF (61 ± 3 to 71 ± 2 points) with an energy saving of 42% and, therefore, this pretreatment could be suitable for industrial production for a variety of applications.
Collapse
Affiliation(s)
- Matheus Cordazzo Dias
- Department of Forest Science, Federal University of Lavras, C.P. 3037, 37200-900, Lavras, MG, Brazil; Université Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, 38000, Grenoble, France.
| | - Mohamed Naceur Belgacem
- Université Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, 38000, Grenoble, France
| | - Jaime Vilela de Resende
- Department of Food Science, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil
| | - Maria Alice Martins
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | | | | | - Saulo Rocha Ferreira
- Department of Engineering, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil
| |
Collapse
|
33
|
Ni S, Bian H, Zhang Y, Fu Y, Liu W, Qin M, Xiao H. Starch-Based Composite Films with Enhanced Hydrophobicity, Thermal Stability, and UV-Shielding Efficacy Induced by Lignin Nanoparticles. Biomacromolecules 2022; 23:829-838. [PMID: 35191679 DOI: 10.1021/acs.biomac.1c01288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thehighly efficient utilization of lignin is of great importance for the development of the biorefinery industry. Herein, a novel "core-shell" lignin nanoparticle (LNP) with a diameter of around 135 nm was prepared, after the lignin was isolated from the effluent of formic acid fractionation via dialysis. In an attempt to endow composite materials with vital functionalities, the LNP was added to the starch film and the starch/polyvinyl alcohol (PVA) or starch/polyethylene oxide (PEO) composite film. The results showed that the hydrophobicity performance of the synthesized films was enhanced significantly. Specifically, the dynamic water contact angle value of the starch/PVA composite film with 1% (wt) addition of LNPs could be maintained as high as 122° for 180 s; the starch/PEO composite film also achieved an excellent water contact angle above 120°. The addition of LNPs promoted the formation of some rough structures on the film surface, as shown by the scanning electron microscopy images, which could repel the water molecules efficiently and are closely related to the enhanced hydrophobicity of the starch film. What is more, the as-prepared LNP conferred strengthened thermal stability and ultraviolet blocking properties on the starch composite film. The structural combination of the polymer film with LNPs holds the promise for providing advanced functionalities to the composite material with wide applications.
Collapse
Affiliation(s)
- Shuzhen Ni
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongchao Zhang
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wenxia Liu
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Menghua Qin
- Organic Chemistry Laboratory, Taishan University, Tai'an 271021, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
34
|
Wang S, Chen W, Wang L, Yao J, Zhu G, Guo B, Militky J, Venkataraman M, Zhang M. Multifunctional nanofiber membrane with anti-ultraviolet and thermal regulation fabricated by coaxial electrospinning. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Sheng Y, Xu Y. Nuclear magnetic resonance analysis of ascorbic acid assisted lignocellulose decomposition in dilute acid pretreatment and its stimulation on enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2022; 343:126147. [PMID: 34673187 DOI: 10.1016/j.biortech.2021.126147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The effect of ascorbic acid addition on lignin decomposition in the dilute acid pretreatment and the corresponding cellulose conversion of pretreated biomass have been studied. This enhancement by ascorbic acid addition was dose dependent. Decomposed and residual bulk lignins from pretreated poplar were analyzed by 2D HSQC and 31P NMR spectra. The promotional effect on lignocellulose decomposition with the assistance of ascorbic acid addition was supported by the NMR analysis. The analysis showed that the addition of ascorbic acid has a more significant stimulation on decomposed lignins compared to residual bulk lignins. The stimulatory effect of ascorbic acid in lignocellulose decomposition benefits the cellulose conversion of the corresponding pretreated materials. Poplar pretreatment assisted with ascorbic acid (2-8% w/w) increased the final hydrolysis yield by 7.5%-32.2%. This promotional effect of ascorbic acid on enzyme digestibility was more obvious with higher enzyme loading.
Collapse
Affiliation(s)
- Yequan Sheng
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
36
|
Xiao X, Chen J, Ling Z, Guo J, Huang J, Ma J, Jin Z. Chiral Nematic Cellulose Nanocrystal Films Cooperated with Amino Acids for Tunable Optical Properties. Polymers (Basel) 2021; 13:polym13244389. [PMID: 34960940 PMCID: PMC8708874 DOI: 10.3390/polym13244389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
The exploration of functional materials relies greatly on the understanding of material structures and nanotechnologies. In the present work, chiral nematic cellulose nanocrystal (CNC) films were prepared by incorporation with four types of amino acids (AAs, glycine, histidine, phenylalanine, and serine) via evaporation-induced self-assembly. The films present ideal iridescence and birefringence that can be tuned by the amount of AAs added. The intercalation of AAs enlarged the pitch values, contributing to the red-shift trend of the reflective wavelength. Among the AAs, serine presented the most compatible intercalation into cellulose crystals. Interestingly, histidine and phenylalanine composite films showed high shielding capabilities of UV light in diverse wavelength regions, exhibiting multi-optical functions. The sustainable preparation of chiral nematic CNC films may provide new strategies for materials production from biocompatible lignocellulose.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (X.X.); (J.M.)
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Jie Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.C.); (J.G.)
| | - Zhe Ling
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (X.X.); (J.M.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.C.); (J.G.)
- Correspondence: (Z.L.); (Z.J.)
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.C.); (J.G.)
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Jianfeng Ma
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (X.X.); (J.M.)
| | - Zhi Jin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (Z.L.); (Z.J.)
| |
Collapse
|
37
|
Liu N, Ni S, Gao H, Chang Y, Fu Y, Liu W, Qin M. Laccase-Catalyzed Grafting of Lauryl Gallate on Chitosan To Improve Its Antioxidant and Hydrophobic Properties. Biomacromolecules 2021; 22:4501-4509. [PMID: 34601873 DOI: 10.1021/acs.biomac.1c00725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biografting is a promising and ecofriendly approach to meet various application requirements of products. Herein, a popular green enzyme, laccase, was adopted to graft a hydrophobic phenolic compound (lauryl gallate, LG) onto chitosan (CTS). The resultant chitosan derivate (Lac/LG-CTS) was systematically analyzed by Fourier transform infrared (FTIR), grafting efficiency, scanning probe microscopy (SPM), and X-ray diffraction (XRD). This grafting technique produced a multifunctional chitosan copolymer with remarkably enhanced antioxidant property, hydrophobicity, and moisture barrier property. Furthermore, the swelling capacity and acid solubility of the copolymer film decreased significantly, although the tensile strength and elongation were slightly weakened as compared to those of native chitosan. These results suggest that the Lac/LG-CTS holds great potential as a food-packaging material, preservative agent, or edible coating material.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Shuzhen Ni
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Hailong Gao
- Marine Biotechnology, Shandong Industrial Technician College, Weifang 261053, P. R. China
| | - Yongjie Chang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Menghua Qin
- Organic Chemistry Laboratory, Taishan University, Tai'an 271021, P. R. China
| |
Collapse
|
38
|
Chen J, Ren Y, Liu W, Wang T, Chen F, Ling Z, Yong Q. All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure. Int J Biol Macromol 2021; 193:1324-1331. [PMID: 34742850 DOI: 10.1016/j.ijbiomac.2021.10.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Herein, nanocomposites films were prepared via the facile casting method by incorporating cellulose nanocrystals (CNCs) with arabinogalactan (AG), galactomannan (GM) or konjac glucomannan (KGM) respectively. The introduced polysaccharides maintained the transparency of CNCs films and promoted the UV blocking properties. In addition, mechanical strength of the nanocomposite films was greatly improved after the combination of polysaccharides. The interactions of hydroxyl-abundant macromolecules, smoother and tighter morphological structures, as well as the disturbed crystal structure were proved to be responsible for the improved properties. Hydrophilic lattice planes of cellulose crystallites were determined to interact with polysaccharides resulting in lower crystallite sizes and crystallinity. The cell culture assay revealed that the films had no cytotoxicity and presented a satisfactory cytocompatibility, because of the polysaccharides from plant cell walls introduced into the films. Therefore, the biocompatible nanocomposites films can be tuned by the addition of polysaccharides, which show great potentials for materials modification in optical, packaging and biomedical fields.
Collapse
Affiliation(s)
- Jie Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanying Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Feier Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Pulp Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
39
|
Dong M, Wu C, Chen L, Zhou X, Yang W, Xiao H, Ji X, Dai H, Hu C, Bian H. Benzenesulfonic acid-based hydrotropic system for achieving lignocellulose separation and utilization under mild conditions. BIORESOURCE TECHNOLOGY 2021; 337:125379. [PMID: 34111629 DOI: 10.1016/j.biortech.2021.125379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Developing low-cost and sustainable fractionation technology is the key to achieve the maximal utilization of lignocellulosic biomass. This study reported benzenesulfonic acid (BA) as a green hydrotrope for efficient lignocellulose conversion into two fractions at atmospheric pressure: (1) a primarily cellulosic solid residue that can be utilized to produce high-value building blocks (lignocellulosic nanomaterials or sugars), and (2) the collected spent acid liquor that can be diluted with anti-solvent to easily obtain lignin nanoparticles. BA hydrotropic method exhibited greater reaction selectivity to solubilize lignin, where approximately 80% lignin were removed at only 80 °C in 20 min. The lower lignin content substrates resulted in relatively higher enzymatic hydrolysis efficiency of 80% and less entangled lignocellulosic nanofibrils (LCNF). Furthermore, the separated lignin particles size can be easily adjusted by the initial acid concentration. Overall, this work presented a promising and simple technology in achieving lignocellulose separation and utilization under mild conditions.
Collapse
Affiliation(s)
- Maolin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Lidong Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Weisheng Yang
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211135, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoquan Hu
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211135, China; State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353.
| |
Collapse
|
40
|
Fardioui M, Mekhzoum MEM, Qaiss AEK, Bouhfid R. Photoluminescent biocomposite films of chitosan based on styrylbenzothiazolium-g-cellulose nanocrystal for anti-counterfeiting applications. Int J Biol Macromol 2021; 184:981-989. [PMID: 34197851 DOI: 10.1016/j.ijbiomac.2021.06.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/11/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
In the present investigation, novel photoluminescent and transparent biocomposite films based on chitosan reinforced with styrylbenzothiazolium-g-cellulose nanocrystal for anti-counterfeiting applications were successfully prepared by casting solvent. Three novel styrylbenzothiazolium derivatives were synthesized by Knoevenagel condensation and characterized by FTIR, 1H, 13C NMR and photoluminescence analysis. These photochromic compounds have been used to functionalize cellulose nanocrystal and the resulting fluorescent photonic materials were characterized by FTIR, 13C-CP/MAS NMR as well as photoluminescent analysis to confirm the successful grafting. It can be concluded that the addition of 5 wt% of fluorescent modified CNC to chitosan matrix increase the photoluminescent properties as well as improved the mechanical properties of the Cs/CNC-dye biocomposite films. These photoluminescent biocomposite film hold promising applicative value in anti-counterfeiting material in large-scale.
Collapse
Affiliation(s)
- Meriem Fardioui
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Mohamed El Mehdi Mekhzoum
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco.
| |
Collapse
|
41
|
Ribeiro DCM, Rebelo RC, De Bon F, Coelho JFJ, Serra AC. Process Development for Flexible Films of Industrial Cellulose Pulp Using Superbase Ionic Liquids. Polymers (Basel) 2021; 13:polym13111767. [PMID: 34071224 PMCID: PMC8199285 DOI: 10.3390/polym13111767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Due to environmental concerns, more attention has been given to the development of bio-based materials for substitution of fossil-based ones. Moreover, paper use is essential in daily routine and several applications of industrial pulp can be developed. In this study, transparent films were produced by industrial cellulose pulp solubilization in tetramethylguanidine based ionic liquids followed by its regeneration. Films were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV/Vis spectroscopy, proton nuclear magnetic resonance (1H-NMR), dynamic scanning calorimetry (DSC), thermal analysis (TG), and X-ray diffraction (XRD). Mechanical tests showed that films have a good elongation property, up to 50%, depending on ionic liquid incorporation. The influence of the conjugated acid and dissolution temperature on mechanical properties were evaluated. These results revealed the potential of this methodology for the preparation of new biobased films.
Collapse
|
42
|
Haqiqi M, Bankeeree W, Lotrakul P, Pattananuwat P, Punnapayak H, Ramadhan R, Kobayashi T, Amirta R, Prasongsuk S. Antioxidant and UV-Blocking Properties of a Carboxymethyl Cellulose-Lignin Composite Film Produced from Oil Palm Empty Fruit Bunch. ACS OMEGA 2021; 6:9653-9666. [PMID: 33869945 PMCID: PMC8047929 DOI: 10.1021/acsomega.1c00249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/15/2021] [Indexed: 06/01/2023]
Abstract
Oil palm empty fruit bunch (EFB) pulp with the highest cellulose content of 83.42% was obtained from an optimized process of acid pretreatment (0.5% v/v H2SO4), alkaline extraction (15% w/w NaOH), and hydrogen peroxide bleaching (10% w/v H2O2), respectively. The EFB cellulose was carboxymethylated, and the obtained carboxymethyl cellulose (CMC) was readily water-soluble (81.32%). The EFB CMC was blended with glycerol and cast into a composite film. Lignin that precipitated from the EFB black liquor was also incorporated into the film at different concentrations, and its effect on the UV-blocking properties of the film was determined. Interestingly, the EFB CMC film without lignin addition completely blocked UV-B transmittance. The incorporation of lignin at all concentrations significantly enhanced the UV-A blocking and other physical properties of the film, including the surface roughness, thickness, and thermal stability, although the tensile strength and water vapor permeability were not significantly affected. Complete UV-A and UV-B blocking were observed when lignin was added at 0.2% (w/v), and the film also exhibited the highest antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals with an half-maximal inhibitory concentration (IC50) value of 3.87 mg mL-1.
Collapse
Affiliation(s)
- Muhammad
T. Haqiqi
- Program
in Biotechnology, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Plant
Biomass Utilization Research Unit, Department of Botany, Faculty of
Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wichanee Bankeeree
- Plant
Biomass Utilization Research Unit, Department of Botany, Faculty of
Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongtharin Lotrakul
- Plant
Biomass Utilization Research Unit, Department of Botany, Faculty of
Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pattananuwat
- Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hunsa Punnapayak
- Plant
Biomass Utilization Research Unit, Department of Botany, Faculty of
Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Rico Ramadhan
- Department
of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
- Division
of Exploration and Synthesis of Bioactive Compound, Research Center
for Bio-Molecule Engineering, Airlangga
University, Surabaya 60115, Indonesia
| | - Takaomi Kobayashi
- Department
of Materials Science and Technology, Nagaoka
University of Technology, Nagaoka 940-2188, Japan
| | - Rudianto Amirta
- Faculty
of Forestry, Mulawarman University, Samarinda 75124, Indonesia
| | - Sehanat Prasongsuk
- Plant
Biomass Utilization Research Unit, Department of Botany, Faculty of
Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
43
|
Huang C, Zhan Y, Cheng J, Wang J, Meng X, Zhou X, Fang G, Ragauskas AJ. Facilitating enzymatic hydrolysis with a novel guaiacol-based deep eutectic solvent pretreatment. BIORESOURCE TECHNOLOGY 2021; 326:124696. [PMID: 33508646 DOI: 10.1016/j.biortech.2021.124696] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 05/12/2023]
Abstract
Herein, we established a novel deep eutectic solvent (DES) using lignin-derived guaiacol as hydrogen bond donor (HBD). The sole ChCl/guaiacol system was found to be inefficient for the fractionation of wheat straw (WS), while the incorporation of trace AlCl3 significantly facilitated the degradation of hemicellulose and lignin, resulting in a complete enzymatic digestibility of the pretreated WS. Further, this study revealed that the DES-degraded lignin was readily precipitated during the washing process, and thus hindered the enzymatic hydrolysis of poplar and bamboo (with hydrolysis yield of 42.03% and 71.67%, respectively). Alkali washing offers a possible approach to remove the precipitated lignin, after which a near 100% hydrolysis yield was also obtained for poplar and bamboo.
Collapse
Affiliation(s)
- Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Xuelian Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
44
|
Tensile Properties of Natural and Synthetic Rattan Strips Used as Furniture Woven Materials. FORESTS 2020. [DOI: 10.3390/f11121299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated factors on tensile properties of rattan strips commonly used as woven materials for furniture. The factors were rattan type (bast, core, synthetic), gauge length (100, 140 mm), and unit loading speed (0.1, 0.2, 0.3, 0.4, 0.5 mm/min/mm). Experimental results indicated that natural bast and core rattan strips, when subjected to tensile loading, behaved like synthetic rattan strips in terms of their stress-strain curves showing excessive plastic deformation. There was no significant difference in ultimate tensile strain between bast and synthetic rattan strips. Bast rattan strips had the highest ultimate tensile strength and modulus of elasticity among three materials evaluated in this study, followed by core rattan and synthetic strips. The major tensile properties of natural rattan bast strips can be influenced by their gauge length adapted to their evaluation test. Unit loading speeds, in general, had no significant effects on the major tensile properties of natural bast rattan strips but tended to significantly effect the ultimate strength of synthetic rattan strips, while less significantly for strengths at the proportional limit and yield point.
Collapse
|