1
|
Jamwal P, Chauhan S, Kumar K, Chauhan GS. Fabricating pine needles derived spherical nanocellulose with polyaniline and montmorillonite clay for simultaneous removal of cationic and anionic dyes from binary mixtures. Int J Biol Macromol 2025; 301:140340. [PMID: 39880263 DOI: 10.1016/j.ijbiomac.2025.140340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.30 % and 85.50 % removal, respectively, while the cationic dyes, MG and FB followed Elovich model with 95.10 % and 83.10 % removal, respectively. Non-linear isotherm analysis showed all the dyes to follow Langmuir isotherm with maximum adsorption capacity of 282.394 and 298.420 mgg-1 (120 min, 25 °C, 7.0 pH) for MG and CR, respectively, whereas the same for FB and MO were 194.126 and 185.757 mgg-1, respectively. The dyes were adsorbed through electrostatic, π-π, ion-dipole interactions, and hydrogen-bonding. The SNC-PANI-MMT showed regeneration and reusability upto nine cycles with high cumulative adsorption capacity. Thus, the composite has appreciable cost-effectiveness, high sustainability, environmental friendliness, and holistic characteristics for the treatment of real dyes-polluted wastewater.
Collapse
Affiliation(s)
- Pooja Jamwal
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| |
Collapse
|
2
|
Shabestari SM, Jafari SH, Benisi SZ, Khoeini R, Shojaei S, Ghorbani M, Goodarzi V. Role of phosphate-modified cellulose into the scaffold based on poly (glycerol azelaic acid)-co-poly(ε-caprolactone) for using bone regenerative medicine. Int J Biol Macromol 2025; 304:140855. [PMID: 39933675 DOI: 10.1016/j.ijbiomac.2025.140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
Advancements in bone tissue engineering critically depend on the development of specialized scaffolds that promote effective bone regeneration. This study introduces innovative scaffolds composed of poly (glycerol azelaic acid) (PGAz) and poly (caprolactone) (PCL), enhanced with varying concentrations of phosphate modified cellulose (PMC) nanofibers. Utilizing citric acid as a green cross-linker enhances the eco-friendliness and biocompatibility of these scaffolds. The molecular structures were verified using Hydrogen 1H NMR and Carbon 13CNMR spectroscopy. Fourier Transform Infrared (FTIR) Spectroscopy confirmed successful integration of vital phosphate groups for biological functionality. Morphological and compositional analysis through Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray (EDX) mapping revealed homogeneous phosphate distribution and increased porosity across the scaffolds. Thermogravimetric Analysis (TGA) demonstrated that higher PMC concentrations improve thermal stability, enhancing scaffold resilience. Mechanical testing showed that scaffolds with 5 % PMC provide an optimal balance of compressive strength, compressive modulus, and compressive strain, suitable for bone tissue engineering. Dynamic water contact angle studies highlighted significant hydrophilic enhancements, crucial for cell attachment and proliferation. Hydrolytic degradation tests indicated that increased PMC accelerates degradation rates, aligning with tissue regeneration timelines. Hematoxylin and Eosin (H&E) staining and MTT assays, along with FESEM imaging of L929 mouse fibroblast cells cultured on the scaffolds, confirmed biocompatibility and cellular proliferation, particularly with 5 % PMC. These findings underscore the potential of PGAz-co-PCL scaffolds in advancing bone tissue regeneration through superior mechanical, thermal, and biological properties.
Collapse
Affiliation(s)
- Salar Mohammadi Shabestari
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Romina Khoeini
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Shahrohk Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Masoud Ghorbani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahabodin Goodarzi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wang Z, Li S, Zhao X, Liu Z, Shi R, Hao M. Applications of bacterial cellulose in the food industry and its health-promoting potential. Food Chem 2025; 464:141763. [PMID: 39467502 DOI: 10.1016/j.foodchem.2024.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Bacterial cellulose (BC) is a naturally occurring biomaterial with a wide range of potential applications in the food industry because of its exceptional mechanical qualities, unique nanofiber structure, high purity, and outstanding biocompatibility. Beyond its physical attributes, BC has gained interest recently due to research demonstrating its potential health benefits as a functional food ingredient. This article examines the many uses of BC in the food business, with a focus on how it may enhance food texture, operate as a bioactive carrier, and have promise in the packaging sector. Further research was done on the health-promoting properties of BC in functional foods, particularly with regard to its functions as a blood glucose regulator, and gastrointestinal health. This review seeks to bring fresh ideas for the study of bioactive components in the food industry by providing a summary of the existing research and demonstrating the possible role of BC in food. It also suggests future paths for research.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Shuangjun Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, PR China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, PR China.
| | - Zhicun Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Aulin Collage, Northeast Forestry University, Harbin 150040, PR China
| | - Ruyue Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Mengyuan Hao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| |
Collapse
|
4
|
Zhou B, Yang Y, Yu L, Song G, Ge J, Du R. Characterization of nanosilver antibacterial bacterial cellulose composite membranes coated with montmorillonite and their potential application in food packaging. Int J Biol Macromol 2025; 289:138685. [PMID: 39672416 DOI: 10.1016/j.ijbiomac.2024.138685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Bacterial cellulose (BC) is a natural, renewable polymer material with an ultrafine nanonetwork structure. However, BC has limited applications in food packaging and medical materials because of its lack of antibacterial properties. To expand the applications of BC, a new BC composite membrane was synthesized via an ex situ method. The BC membrane was first immersed in 100 mL of deionized water containing 3 mg of AgNO₃ for 24 h to incorporate silver nanoparticles (AgNPs). The BC-Ag composite was immersed in a 2 wt% montmorillonite (MMT) solution for 24 h to prepare the BC-Ag-MMT composite membrane. The structure and antibacterial properties of the composite were then examined. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the successful synthesis of the BC-Ag-MMT composite membrane. The results revealed that the addition of AgNPs and MMT resulted in a significant decrease in porosity (13.23 ± 1.12 %), water vapor transmission rate (735.12 ± 12.55 g/(m2·day)), and oxygen permeability (2.28 ± 0.29 g/(s·m2Pa)) while increasing the membrane thickness (0.89 ± 0.08 mm). The incorporation of MMT into BC notably improved the thermal stability of the membrane and further influenced its porosity. The antibacterial activity was evaluated via the inhibition zone method. The BC-Ag-MMT composite membrane exhibited antibacterial activity against Salmonella paratyphi A, Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella enterica. These findings demonstrated that the BC-Ag-MMT composite membrane possesses exceptional physical and chemical properties, mechanical strength, and antibacterial efficacy. The composite membrane holds significant potential for applications in food packaging.
Collapse
Affiliation(s)
- Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Liansheng Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
5
|
Tavakoli Z, Ansari M, Poursamar SA, Rafienia M, Eslami H, Zare F, Shirani S, Alizadeh MH. Synergetic effect of bioglass and nano montmorillonite on 3D printed nanocomposite of polycaprolactone/gelatin in the fabrication of bone scaffolds. Int J Biol Macromol 2024; 281:136384. [PMID: 39383920 DOI: 10.1016/j.ijbiomac.2024.136384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Nowadays, bone injuries and disorders have increased all over the world and can reduce the quality of human life. Bone tissue engineering repair approaches require new biomaterials and methods to construct scaffolds with the required structural properties as well as improved performance. As potential therapeutic strategies in bone tissue engineering, 3D printed scaffolds have been developed. Polycaprolactone/Ceramic composites have attracted considerable attention due to their cytocompatibility, biodegradability, and physical properties. In this study, a 3D printing process was used to create polycaprolactone (PCL)-Gelatin (GEL) scaffolds containing varying concentrations of Bioglass (BG) and Nano Montmorillonite (MMT). This mixture was then loaded into a 3D printer, and the scaffolds were printed layer by layer. After constructing the scaffolds, they were then examined for their physical, chemical, and biological characteristics. Surface appearance was analyzed with a scanning electron microscope (SEM), which revealed that NC increased the diameter of pores from 465 to 480 μm. The elements in the scaffolds were evaluated by EDX analysis, and a uniform dispersion of nano montmorillonite particles was observed. The compressive strength reached 76.43 MPa for PCL/G/35 %MMT/15 %BG scaffold. Also, the rate of water absorption, biodegradability and bioactivity of PCL-GEL scaffolds increased significantly in the presence of NC. According to the MTT cell test results, adding BG and NC increased cell proliferation, adhesion and cell viability to 127.7 %. These findings indicated that the 3D printed PCL/G/35 %MMT/15 %BG scaffold has promising strategies for bone repair applications. Also, polynomial curve fitting shows that scaffold degradability after soaking in PBS can be predicted using the initial weight and soaking time. Adding more variables and data could improve prediction accuracy, reducing the need for experiments and conserving resources.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Seyyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Eslami
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Shahin Shirani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
6
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
7
|
Qian W, Yang Y. Cellulose-Templated Nanomaterials for Nanogenerators and Self-Powered Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412858. [PMID: 39428909 DOI: 10.1002/adma.202412858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Energy crisis inspires the development of renewable and clean energy sources, along with related applications such as nanogenerators and self-powered devices. Balancing high performance and environmental sustainability in advanced material innovation is a challenging task. Addressing the global challenges of sustainable development and carbon neutrality lead to increased interest in biopolymer research. Nanocellulose materials, derived from biopolymers, demonstrate potential as template candidates for advanced materials, due to their unique properties, including high strength, high surface area, controllable pore structures and high-water retention. In recent years, cellulose-templated nanomaterials enable delicate nano-/microscale structural construction, thus promoting developments in the field of nanogenerators and self-powered sensors. However, there is still a limited number of reviews focused on cellulose-templated nanomaterials for applications in nanogenerators and self-powered sensors. This review aims to fill this research gap by introducing various cellulose-templated nanomaterials and providing a detailed analysis of their fashionable applications in nanogenerators and self-powered sensors. The goal is to present cellulose-templated nanomaterials as highly promising template and guest materials for templating technologies, offering sustainable nano-/microscale control over advanced materials for the foreseeable future. This potential is promising for new applications in the fields of nanogenerators and self-powered sensors.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Chemical Engineering Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
8
|
Vahidi M, Rizkalla AS, Mequanint K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv Healthc Mater 2024; 13:e2401218. [PMID: 39036851 DOI: 10.1002/adhm.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Native tissues, comprising multiple cell types and extracellular matrix components, are inherently composites. Mimicking the intricate structure, functionality, and dynamic properties of native composite tissues represents a significant frontier in biomaterials science and tissue engineering research. Biomimetic composite biomaterials combine the benefits of different components, such as polymers, ceramics, metals, and biomolecules, to create tissue-template materials that closely simulate the structure and functionality of native tissues. While the design of composite biomaterials and their in vitro testing are frequently reviewed, there is a considerable gap in whole animal studies that provides insight into the progress toward clinical translation. Herein, we provide an insightful critical review of advanced composite biomaterials applicable in several tissues. The incorporation of bioactive cues and signaling molecules into composite biomaterials to mimic the native microenvironment is discussed. Strategies for the spatiotemporal release of growth factors, cytokines, and extracellular matrix proteins are elucidated, highlighting their role in guiding cellular behavior, promoting tissue regeneration, and modulating immune responses. Advanced composite biomaterials design challenges, such as achieving optimal mechanical properties, improving long-term stability, and integrating multifunctionality into composite biomaterials and future directions, are discussed. We believe that this manuscript provides the reader with a timely perspective on composite biomaterials.
Collapse
Affiliation(s)
- Milad Vahidi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Amin S Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| |
Collapse
|
9
|
Zhao J, Wang T, Zhu Y, Qin H, Qian J, Wang Q, Zhang P, Liu P, Xiong A, Li N, Udduttula A, Ye SH, Wang D, Zeng H, Chen Y. Enhanced osteogenic and ROS-scavenging MXene nanosheets incorporated gelatin-based nanocomposite hydrogels for critical-sized calvarial defect repair. Int J Biol Macromol 2024; 269:131914. [PMID: 38703527 DOI: 10.1016/j.ijbiomac.2024.131914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatin-related hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Tiehua Wang
- Internal Medicine, Shenzhen New Frontier United Family Hospital, Shenzhen 518031, PR China
| | - Yuanchao Zhu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China; Shenzhen University Medical School, Shenzhen, Guangdong 518055, PR China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Junyu Qian
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Qichang Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Peng Zhang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Ao Xiong
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Nan Li
- Department of Stomatology, Shenzhen People's Hospital, Second Clinical Medical School of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, PR China.
| | - Anjaneyulu Udduttula
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China.
| |
Collapse
|
10
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Chang Z, Liang D, Sun S, Zheng S, Sun K, Wang H, Chen Y, Guo D, Zhao H, Sha L, Jiang W. Innovative modification of cellulose fibers for paper-based electrode materials using metal-organic coordination polymers. Int J Biol Macromol 2024; 264:130599. [PMID: 38442834 DOI: 10.1016/j.ijbiomac.2024.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Cellulosic paper-based electrode materials have attracted increasing attention in the field of flexible supercapacitor. As a conductive polymer, polyaniline exhibits high theoretical pseudocapacitive capacitance and has been applied in paper-based electrode materials along with cellulose fibers. However, the stacking of polyaniline usually leads to poor performance of electrodes. In this study, metal-organic coordination polymers of zirconium-alizarin red S and zirconium-phytic acid are applied to modulate the polyaniline layer to obtain high-performance cellulosic paper-based electrode materials. Zirconium hydroxide is firstly loaded on cellulose fibers while alizarin red S and phytic acid are introduced to regulate the morphology of polyaniline through doping and coordination processes. The results show that the introduction of dual coordination polymers is effective to regulate the morphology of polyaniline on cellulose fibers. The performances of the paper-based electrode materials, including electrical conductivity and electrochemistry, are apparently improved. It provides a promising strategy for the potential development of economical and green electrode materials in the conventional paper-making process.
Collapse
Affiliation(s)
- Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shirong Sun
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shuo Zheng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Kexin Sun
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haiping Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wenyan Jiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
12
|
Tamjid E, Najafi P, Khalili MA, Shokouhnejad N, Karimi M, Sepahdoost N. Review of sustainable, eco-friendly, and conductive polymer nanocomposites for electronic and thermal applications: current status and future prospects. DISCOVER NANO 2024; 19:29. [PMID: 38372876 PMCID: PMC10876511 DOI: 10.1186/s11671-024-03965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Biodegradable polymer nanocomposites (BPNCs) are advanced materials that have gained significant attention over the past 20 years due to their advantages over conventional polymers. BPNCs are eco-friendly, cost-effective, contamination-resistant, and tailorable for specific applications. Nevertheless, their usage is limited due to their unsatisfactory physical and mechanical properties. To improve these properties, nanofillers are incorporated into natural polymer matrices, to enhance mechanical durability, biodegradability, electrical conductivity, dielectric, and thermal properties. Despite the significant advances in the development of BPNCs over the last decades, our understanding of their dielectric, thermal, and electrical conductivity is still far from complete. This review paper aims to provide comprehensive insights into the fundamental principles behind these properties, the main synthesis, and characterization methods, and their functionality and performance. Moreover, the role of nanofillers in strength, permeability, thermal stability, biodegradability, heat transport, and electrical conductivity is discussed. Additionally, the paper explores the applications, challenges, and opportunities of BPNCs for electronic devices, thermal management, and food packaging. Finally, this paper highlights the benefits of BPNCs as biodegradable and biodecomposable functional materials to replace traditional plastics. Finally, the contemporary industrial advances based on an overview of the main stakeholders and recently commercialized products are addressed.
Collapse
Affiliation(s)
- Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
| | - Parvin Najafi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Faculty of Engineering and Natural Sciences, Tampere University, 33720, Tampere, Finland
| | - Mohammad Amin Khalili
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Department of Biomaterials, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Negar Shokouhnejad
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Mahsa Karimi
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| |
Collapse
|
13
|
Flores León J, Quiroz Castillo JM, Rodríguez Félix DE, Castillo Ortega MM, Cabrera-González AD, Ramirez-Mendoza CG, Santacruz-Ortega H, Suárez-Campos G, Valenzuela-García JL, Herrera-Franco PJ. Preparation and Characterization of Extruded PLA Films Coated with Polyaniline or Polypyrrole by In Situ Chemical Polymerization. ACS OMEGA 2023; 8:43243-43253. [PMID: 38024776 PMCID: PMC10653065 DOI: 10.1021/acsomega.3c07201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Conductive polymers, such as polypyrrole and polyaniline, have been extensively studied for their notable intrinsic electronic and ionic conductivities, rendering them suitable for a range of diverse applications. In this study, in situ chemical polymerization was employed to coat extruded PLA films with PPy and PANi. Morphological analysis reveals a uniform and compact deposition of both polyaniline and polypyrrole after polymerization periods of 3 and 1 h, respectively. Furthermore, the PLA-PANi-3h and PLA-PPy-1h composites exhibited the highest electrical conductivity, with values of 0.042 and 0.022 S cm-1, respectively. These findings were in agreement with the XPS results, as the polyaniline-coated film showed a higher proportion of charge carriers compared to the polypyrrole composite. The elastic modulus of the coated films showed an increase compared with that of pure PLA films. Additionally, the inflection temperatures for the PLA-PANi-3h and PLA-PPy-1h composites were 368.7 and 367.2 °C, respectively, while for pure PLA, it reached 341.47 °C. This improvement in mechanical and thermal properties revealed the effective interfacial adhesion between the PLA matrix and the conducting polymer. Therefore, this work demonstrates that coating biopolymeric matrices with PANi or PPy enables the production of functional and environmentally friendly conductive materials suitable for potential use in the removal of heavy metals in water treatment.
Collapse
Affiliation(s)
- José
Ramón Flores León
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Jesús Manuel Quiroz Castillo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Dora E. Rodríguez Félix
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - María Mónica Castillo Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Ana Daymi Cabrera-González
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | | | - Hisila Santacruz-Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Guillermo Suárez-Campos
- Departamento
de Investigación en Física, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | | | | |
Collapse
|
14
|
Zhang FW, Trackey PD, Verma V, Mandes GT, Calabro RL, Presot AW, Tsay CK, Lawton TJ, Zammit AS, Tang EM, Nguyen AQ, Munz KV, Nagelli EA, Bartolucci SF, Maurer JA, Burpo FJ. Cellulose Nanofiber-Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels 2023; 9:893. [PMID: 37998983 PMCID: PMC10671317 DOI: 10.3390/gels9110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions. The CNF-alginate mixture forms a physically entangled, interpenetrating hydrogel, combining the properties of both biopolymers for monolith shape and pore size control and abundant carboxyl groups that bind metal ions to facilitate biotemplating. The CNF-alginate hydrogels were equilibrated in CaCl2 and CoCl2 salt solutions for hydrogel ionic crosslinking and the prepositioning of transition metal ions, respectively. The salt equilibrated hydrogels were chemically reduced with NaBH4, rinsed, solvent exchanged in ethanol, and supercritically dried with CO2 to form aerogels with a specific surface area of 228 m2/g. The resulting aerogels were pyrolyzed in N2 gas and thermally annealed in air to form Co and Co3O4 porous composite electrodes, respectively. The multifunctional composite aerogel's mechanical, magnetic, and electrochemical functionality was characterized. The coercivity and specific magnetic saturation of the pyrolyzed aerogels were 312 Oe and 114 emu/gCo, respectively. The elastic moduli of the supercritically dried, pyrolyzed, and thermally oxidized aerogels were 0.58, 1.1, and 14.3 MPa, respectively. The electrochemical testing of the pyrolyzed and thermally oxidized aerogels in 1 M KOH resulted in specific capacitances of 650 F/g and 349 F/g, respectively. The rapidly synthesized, low-cost, hydrogel-based synthesis for tunable transition metal multifunctional composite aerogels is envisioned for a wide range of porous metal electrodes to address energy storage, catalysis, and sensing applications.
Collapse
Affiliation(s)
- Felita W. Zhang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Paul D. Trackey
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Vani Verma
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Galen T. Mandes
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Rosemary L. Calabro
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Anthony W. Presot
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Claire K. Tsay
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Timothy J. Lawton
- U.S. Army Combat Capabilities Development Command-Soldier Center, Natick, MA 01760, USA;
| | - Alexa S. Zammit
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Edward M. Tang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Andrew Q. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Kennedy V. Munz
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Enoch A. Nagelli
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| | - Stephen F. Bartolucci
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Joshua A. Maurer
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - F. John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
15
|
Dong J, Zeng J, Li J, Li P, Wang B, Xu J, Gao W, Chen K. Sustainable and Scalable Synthesis of 2D Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301353. [PMID: 37282825 DOI: 10.1002/smll.202301353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Indexed: 06/08/2023]
Abstract
2D carbon nanomaterials such as graphene, carbon nanosheets, and their derivatives, representing the emerging class of advanced multifunctional materials, have gained great research interest because of their extensive applications ranging from electrochemistry to catalysis. However, sustainable and scalable synthesis of 2D carbon nanosheets (CNs) with hierarchical architecture and irregular structure via a green and low-cost strategy remains a great challenge. Herein, prehydrolysis liquor (PHL), an industrial byproduct of the pulping industry, is first employed to synthesize CNs via a simple hydrothermal carbonization technique. After mild activation with NH4 Cl and FeCl3 , the as-prepared activated CNs (A-CN@NFe) display an ultrathin structure (≈3 nm) and a desirable specific surface area (1021 m2 g-1 ) with hierarchical porous structure, which enables it to be both electroactive materials and structural support materials in nanofibrillated cellulose/A-CN@NFe/polypyrrole (NCP) nanocomposite, and thus endowing nanocomposite with impressive capacitance properties of 2546.3 mF cm-2 at 1 mA cm-2 . Furthermore, the resultant all-solid-state symmetric supercapacitor delivers a satisfactory energy storage ability of 90.1 µWh cm-2 at 250.0 µW cm-2 . Thus, this work not only opens a new window for sustainable and scalable synthesis of CNs, but also offers a double profits strategy for energy storage and biorefinery industry.
Collapse
Affiliation(s)
- Jiran Dong
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| | - Pengfei Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China
| |
Collapse
|
16
|
Liang D, Chang Z, Chen Y, Chen J, Zhao H, Sha L, Guo D. High mass loading paper-based electrode material with cellulose fibers under coordination of zirconium oxyhydroxide nanoparticles and sulfosalicylic acid. Int J Biol Macromol 2023; 244:125414. [PMID: 37327930 DOI: 10.1016/j.ijbiomac.2023.125414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
With the rapid expansion of the flexible electronics market, it is critical to develop high-performance flexible energy storage electrode materials. Cellulose fibers, which are sustainable, low cost, and flexible, fully meet the requirements of flexible electrode materials, but they are electrically insulating and cause a decrease in energy density. In this study, high-performance paper-based flexible electrode materials (PANI:SSA/Zr-CFs) were prepared with cellulose fibers and polyaniline. A high mass loading of polyaniline was wrapped on zirconia hydroxide-modified cellulose fibers under metal-organic acid coordination through a facile in situ chemical polymerization process. The increase in mass loading of PANI on cellulose fibers not only improves the electrical conductivity but also enhances the area-specific capacitance of the flexible electrodes. The results of electrochemical tests show that the area specific capacitance of the PANI:SSA/Zr-CFs electrode is 4181 mF/cm2 at 1 mA/cm2, which is more than two times higher than that of the electrode with PANI on pristine CFs. This work provides a new strategy for the design and manufacture of high-performance flexible electronic electrodes based on cellulose fibers.
Collapse
Affiliation(s)
- Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Jianbin Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China; Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
17
|
Mirmoeini SS, Moradi M, Tajik H, Almasi H, Gama FM. Cellulose/Salep-based intelligent aerogel with red grape anthocyanins: Preparation, characterization and application in beef packaging. Food Chem 2023; 425:136493. [PMID: 37285628 DOI: 10.1016/j.foodchem.2023.136493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to prepare a porous intelligent aerogel for food packaging applications, in particular for monitoring minced beef freshness, using cellulose extracted from grape stalk, Salep as a copolymer, and red grape anthocyanins as a pH-sensitive pigment. Aerogels based on cellulose 1% (w/v) and Salep 1% (w/v) at ratios of 1:3, 3:1, and 1:1 were prepared by lyophilization. Aerogel with high porosity, low density, and higher mean pore size was chosen for preparing intelligent colorimetric aerogel (ICA) with the addition of 0.44 mg/100 mL of anthocyanins. Based on the color parameters, the stability of ICA was satisfactory when exposed to both light and dark conditions, as well as when stored at either 4 or 25 °C. Additionally, X-ray diffraction and thermogravimetric analyses indicated that an amorphous aerogel was formed, with a thermal decomposition temperature of 320 °C. The color of the ICA changed from purple on the first and 3rd days of packaging to blue-gray on the 6th day. As the spoilage process continued, the color of the indicator became dark brown. Taken together, ICA showed a quick response to minced beef spoilage with the ability to differentiate between fresh and spoiled meat during storage at 4 °C.
Collapse
Affiliation(s)
- Seyedeh Sahar Mirmoeini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, 1177 Urmia, Iran.
| | - Francisco Miguel Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
18
|
Bakhori NM, Ismail Z, Hassan MZ, Dolah R. Emerging Trends in Nanotechnology: Aerogel-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1063. [PMID: 36985957 PMCID: PMC10058649 DOI: 10.3390/nano13061063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic, organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nanofillers. Herein, this review critically discusses the basic preparation of aerogel from the sol-gel reaction with derivation and modification of a standard method to produce various aerogels for diverse functionalities. In addition, the biocompatibility of various types of aerogels were elaborated. Then, biomedical applications of aerogel were focused on this review as a drug delivery carrier, wound healing agent, antioxidant, anti-toxicity, bone regenerative, cartilage tissue activities and in dental fields. The clinical status of aerogel in the biomedical sector is shown to be similarly far from adequate. Moreover, due to their remarkable properties, aerogels are found to be preferably used as tissue scaffolds and drug delivery systems. The advanced studies in areas including self-healing, additive manufacturing (AM) technology, toxicity, and fluorescent-based aerogel are crucially important and are further addressed.
Collapse
Affiliation(s)
- Noremylia Mohd Bakhori
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Mohamad Zaki Hassan
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| | - Rozzeta Dolah
- Department of Chemical Engineering, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| |
Collapse
|
19
|
Wang Y, Zhu L, Wei L, Zhou Y, Yang Y, Zhang L. A bio-orthogonally functionalized chitosan scaffold with esterase-activatable release for nerve regeneration. Int J Biol Macromol 2023; 229:146-157. [PMID: 36528149 DOI: 10.1016/j.ijbiomac.2022.12.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Developing nerve conduits with biological cues is a promising approach for repairing peripheral nerve injuries. Although most biological cues incorporated into conduits generally exert their biological functions at the surface, they could not be released into the on-demand regeneration sites under physiological conditions. Herein, we firstly report a bio-orthogonally functionalized chitosan scaffold with esterase-activatable release for peripheral nerve regeneration. In this study, biological cues are not only selectively conjugated into nerve conduits by bio-orthogonal reaction, but also precisely released in on-demand regeneration sites via esterase-activatable cleavage for peripheral nerve repair. Moreover, this nerve scaffold with esterase-activatable release could promote Schwann cells proliferation. In a rat sciatic nerve defect model, the bio-orthogonally functionalized scaffold with esterase-activatable release significantly increased sciatic nerve function recovery and improved target muscles weight. This strategy of incorporating esterase-activatable bioactive cues into peripheral nerve conduits offers great potential in preclinical studies.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Linglin Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Le Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|
20
|
Raut MP, Asare E, Syed Mohamed SMD, Amadi EN, Roy I. Bacterial Cellulose-Based Blends and Composites: Versatile Biomaterials for Tissue Engineering Applications. Int J Mol Sci 2023; 24:986. [PMID: 36674505 PMCID: PMC9865793 DOI: 10.3390/ijms24020986] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cellulose of bacterial origin, known as bacterial cellulose (BC), is one of the most versatile biomaterials that has a huge potential in tissue engineering due to its favourable mechanical properties, high hydrophilicity, crystallinity, and purity. Additional properties such as porous nano-fibrillar 3D structure and a high degree of polymerisation of BC mimic the properties of the native extracellular matrix (ECM), making it an excellent material for the fabrication of composite scaffolds suitable for cell growth and tissue development. Recently, the fabrication of BC-based scaffolds, including composites and blends with nanomaterials, and other biocompatible polymers has received particular attention owing to their desirable properties for tissue engineering. These have proven to be promising advanced materials in hard and soft tissue engineering. This review presents the latest state-of-the-art modified/functionalised BC-based composites and blends as advanced materials in tissue engineering. Their applicability as an ideal biomaterial in targeted tissue repair including bone, cartilage, vascular, skin, nerve, and cardiac tissue has been discussed. Additionally, this review briefly summarises the latest updates on the production strategies and characterisation of BC and its composites and blends. Finally, the challenges in the future development and the direction of future research are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| |
Collapse
|
21
|
Asgharnejad-Laskoukalayeh M, Golbaten-Mofrad H, Jafari SH, Seyfikar S, Yousefi Talouki P, Jafari A, Goodarzi V, Zamanlui S. Preparation and characterization of a new sustainable bio-based elastomer nanocomposites containing poly(glycerol sebacate citrate)/chitosan/n-hydroxyapatite for promising tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2385-2405. [PMID: 35876727 DOI: 10.1080/09205063.2022.2104600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poly (glycerol sebacate citrate) (PGSC) has potential applications in tissue engineering due to its biodegradability and suitable elasticity. However, its applications are restricted owing to its acidity and high degradation rate. In this study, a new bio-nanocomposite based on PGSC has been synthesized by incorporating chitosan (CS) and various concentrations of hydroxyapatite nanoparticles (n-HA). It is assumed that the basicity of a CS and hydroxyl groups of n-HA will reduce the acidity of PGSC and control the rate of degradation. Also, the biocompatibility of n-HA and inherent hydrophilicity of CS can improve cell adhesion and proliferation of PGSC-based scaffolds. FTIR, XRD, FESEM, and EDX tests confirmed the synthesis of these nanocomposites and the interaction between each of the components. The results of the DMTA test also indicated the elastic behavior of the samples embedded with n-HA. The hydrophilicity assay demonstrated that the water contact angle of the scaffolds decreased as the concentration of n-HA augmented, and it reached the value of 44 ± 0.9° for nanocomposite containing 5 wt.% n-HA. The degradation rate of all PGSC nanocomposites was reduced due to the anionic groups of n-HA and CS. TGA assay indicated that the incorporation of n-HA led to the enhancement of scaffolds' thermal stability. Furthermore, the synergistic effect of CS and n-HA on the enhancement of protein adsorption and cell proliferation was confirmed through protein adhesion and MTT assay, respectively. Consequently, the addition of n-HA and CS perform the new bio-nanocomposites scaffolds based on PGSC with sufficient hydrophilicity, flexibility, and thermal stability in tissue engineering applications.
Collapse
Affiliation(s)
| | - Hooman Golbaten-Mofrad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saba Seyfikar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Aliakbar Jafari
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheila Zamanlui
- Department of Biomedical Engineering, Islamic Azad University, Tehran, Iran.,Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Seyfikar S, Asgharnejad-laskoukalayeha M, Hassan Jafari S, Goodarzi V, Hadi Salehi M, Zamanlui S. Introducing a New Approach to Preparing Bionanocomposite Sponges Based on Poly (glycerol sebacate urethane) (PGSU) with Great Interconnectivity and High Hydrophilicity Properties for Application in Tissue Engineering. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydr Polym 2022; 283:119160. [DOI: 10.1016/j.carbpol.2022.119160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
|
24
|
Golbaten-Mofrad H, Salehi MH, Jafari SH, Goodarzi V, Entezari M, Hashemi M. Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J Biomed Mater Res B Appl Biomater 2022; 110:2241-2257. [PMID: 35467798 DOI: 10.1002/jbm.b.35073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Abstract
This study has attempted to systematically investigate the influence of nanoclay and graphene oxide (GO) on thermal, mechanical, hydrophobic, and, most importantly, biological properties of poly(glycerol sebacate)/gelatin (PGS/gel) nanocomposites. The PGS/gel copolymer nanocomposites were successfully synthesized via in situ polymerization, approved by rudimentary characterization methods. The nanofillers were appropriately dispersed within the elastomeric matrix according to morphological studies. Also, the fillers posed as a hydrophobic entity that slightly decreased the hydrophilic properties of PGS/gel. This could be sensed clearly in hybrid composite due to the robust network of GO and clay. Water contact angle values for gelatin-contained nanocomposites were reported in the range of 38.42° to 66.7°, indicating the hydrophilic nature of the prepared samples. Thermal and mechanical studies of nanocomposites displayed rather contradicting results as the former improved while a slight decrease in the latter was noticed compared to the pristine specimens. In dry conditions, their storage modulus was in the range of 0.94-6.4 MPa, making them suitable for mimicking some soft tissues. The swelling ratio for nanocomposites containing nanoparticles was associated with an ascending trend so that GO improved the swelling rate by up to 45%. Biological analyses, such as Ames and in vitro cell viability tests, exhibited promising outcomes. As for the mutagenesis effect, the PGS and hybrid samples showed negative results. The presence of functional groups on the nanofillers' surface positively influenced the cells' metabolic activity as well as its attachment to the matrix. After 7 days, the cell proliferation rate resulted in an 82% improvement for the GO-containing nanocomposite, significantly higher than its neat counterpart (65%). This study has shown the feasibility of the prepared bio-elastomer nanocomposites for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Hooman Golbaten-Mofrad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Hadi Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Recent Advances in Development of Natural Cellulosic Non-Woven Scaffolds for Tissue Engineering. Polymers (Basel) 2022; 14:polym14081531. [PMID: 35458282 PMCID: PMC9030052 DOI: 10.3390/polym14081531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, tissue engineering researchers have exploited a variety of biomaterials that can potentially mimic the extracellular matrix (ECM) for tissue regeneration. Natural cellulose, mainly obtained from bacterial (BC) and plant-based (PC) sources, can serve as a high-potential scaffold material for different regenerative purposes. Natural cellulose has drawn the attention of researchers due to its advantages over synthetic cellulose including its availability, cost effectiveness, perfusability, biocompatibility, negligible toxicity, mild immune response, and imitation of native tissues. In this article, we review recent in vivo and in vitro studies which aimed to assess the potential of natural cellulose for the purpose of soft (skin, heart, vein, nerve, etc.) and hard (bone and tooth) tissue engineering. Based on the current research progress report, it is sensible to conclude that this emerging field of study is yet to satisfy the clinical translation criteria, though reaching that level of application does not seem far-fetched.
Collapse
|
26
|
Liu H, Tian X, Xiang X, Chen S. Preparation of carboxymethyl cellulose/graphene composite aerogel beads and their adsorption for methylene blue. Int J Biol Macromol 2022; 202:632-643. [PMID: 35065136 DOI: 10.1016/j.ijbiomac.2022.01.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Carboxymethyl cellulose/ graphene composite aerogel beads (CMC/GAs) were prepared by the easily scaling-up method, i.e., wet spinning- environmental pressure drying method. The influences of the type and concentration of coagulating bath on the formation of aerogel beads were discussed, and the forming mechanism was analyzed. The CMC/GAs was characterized through SEM, XRD, FI-IR, Raman, XPS, electronic universal testing machine and other methods. The CMC/GAs-30 has an average particle size and a mean pore diameter of 3.83 mm and 82 μm, respectively. The analysis results indicated that the adsorption mechanisms of CMC/GAs on methylene blue (MB) are mainly through the electrostatic interaction. The adsorption process conforms to the Langmuir model (R2 = 0.9964) and pseudo-second-order kinetic model (R2 is higher than 0.99). When the particle size of CMC/GAs-30 decreases, the equilibrium adsorption capacity for MB increases. Under the experimental conditions explored, the Langmuir maximum adsorption capacity of CMC/GAs-30 for MB is 222.72 mg.g-1. The CMC/GAs-30 show good recycle performance in MB adsorption. The removal rate of MB from water by CMC/GAs-30 remained at about 90% after 30-times adsorption- regeneration cycles.
Collapse
Affiliation(s)
- Huie Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, PR China.
| | - Xiaowen Tian
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, PR China
| | - Xiaoxiao Xiang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, PR China
| | - Shuang Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, PR China
| |
Collapse
|
27
|
Kamal T, Khalil A, Bakhsh EM, Khan SB, Chani MTS, Ul-Islam M. Efficient fabrication, antibacterial and catalytic performance of Ag-NiO loaded bacterial cellulose paper. Int J Biol Macromol 2022; 206:917-926. [PMID: 35304202 DOI: 10.1016/j.ijbiomac.2022.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
This study reports the synthesis of bacterial cellulose (BC) hydrogel sheets and their utilization as a support for silver‑nickel oxide nanocomposites (Ag/NiO). A two-step facile hydrothermal method was employed for the preparation of Ag/NiO, followed by impregnation into BC hydrogel sheets. A 20% Ag/NiO composition was revealed by dry weight analysis. The stability of nanocomposites-Hydrogel was confirmed by Ag+ and Ni2+ ion release study. The catalytic activity of the BC-Ag/NiO was evaluated against chemical reduction of congo red, methyl orange and methylene blue. The reduction reaction followed pseudo first order kinetics and kapp values of 0.1147 min-1, 0.1323 min-1 and 0.12989 min-1 were obtained for CR, MO, and MB dyes, respectively. The BC-Ag/NiO catalyst could be easily recovered and re-used in another reaction without centrifugation. The synthesized nanocomposites hydrogel was also tested for its antibacterial activity against Gram-negative bacteria, Escherichia coli (E.coli) and Gram-positive bacteria, Staphylococcus aureus (S.aureus).
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia..
| | - Ashi Khalil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
28
|
Laabd M, Imgharn A, Hsini A, Naciri Y, Mobarak M, Szunerits S, Boukherroub R, Albourine A. Efficient detoxification of Cr(VI)-containing effluents by sequential adsorption and reduction using a novel cysteine-doped PANi@faujasite composite: Experimental study supported by advanced statistical physics prediction. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126857. [PMID: 34399223 DOI: 10.1016/j.jhazmat.2021.126857] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, the global spreading of hazardous heavy metals becomes a top-priority environmental challenge, owing to its serious detrimental health outcomes. Herein, a novel cysteine-doped polyaniline@faujasite hybrid composite (Cys-PANi@FAU-50) was synthesized via a facile in-situ polymerization route for the effective detoxification of Cr(VI)-bearing wastewaters. The Cys-PANi@FAU-50 composite displayed an open mesoporous structure richly decorated with nitrogen/oxygen-containing functional groups, which consequently boosted the diffusion, adsorption and reduction of Cr(VI) oxyanions. The Cr(VI) adsorption behavior was satisfactorily tailored via pseudo-second-order law and Langmuir model with a maximum uptake capacity of 384.6 mg/g. Based on the advanced statistical physics theory, the monolayer model with two distinct receptor sites provided a reliable microscopic and macroscopic prediction of the Cr(VI) adsorption process. Stereographically, the Cr(VI) ions were adsorbed through horizontal multi-anchorage and vertical multi-molecular mechanisms on the amine and hydroxyl groups of Cys-PANi@FAU-50, respectively. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. XPS analysis proved that Cr(VI) ions were electrostatically adsorbed, and subsequently reduced to Cr(III), which were in turn immobilized by chelation with imine/sulfonate groups and electrostatic interactions with carboxylate groups. The Cys-PANi@FAU-50 featured an effortless regenerability and good reusability. Overall, the Cys-PANi@FAU-50 composite owns outstanding potentiality for detoxifying Cr(VI)-laden effluents.
Collapse
Affiliation(s)
- Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
29
|
Cellulose nanofibers aerogels functionalized with AgO: Preparation, characterization and antibacterial activity. Int J Biol Macromol 2022; 194:58-65. [PMID: 34863833 DOI: 10.1016/j.ijbiomac.2021.11.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
In the experiment, a chemical oxidation method was used to prepare nano-divalent silver oxide powder with a particle size of about 10 nm. Compared with silver nanoparticles and monovalent silver compounds, nano‑silver oxide has better antibacterial properties. The cellulose antibacterial aerogel was prepared by combining it with cellulose nanofibrils and using freeze-thaw cycles and freeze-drying methods. The microscopic morphology, mechanical properties, in vitro release of silver ions, antibacterial properties and biodegradability of composite aerogels were studied. The porosity of the cellulose antibacterial aerogel can reach 94%, the swelling rate was greater than 1000%, and the pore size was between 13 and 15 nm, which showed a larger storage space and attachment site for the aerogel. The diameter of the inhibition zone of the aerogel against Escherichia coli and Staphylococcus aureus was 23 mm and 20 mm respectively, and the aerogels still exhibited significant antibacterial activities with more than 99.5% reductions in Escherichia coli and Staphylococcus aureus, which shows highly effective antibacterial properties. This research proposes an economical and novel preparation method of antibacterial cellulose aerogel, making it a candidate material with high efficiency, broad-spectrum antibacterial and more suitable for life needs.
Collapse
|
30
|
Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S, Salehi MH, Goodarzi V, Wurm FR, Jafari SH. Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Anisimov YA, Evitts RW, Cree DE, Wilson LD. Polyaniline/Biopolymer Composite Systems for Humidity Sensor Applications: A Review. Polymers (Basel) 2021; 13:2722. [PMID: 34451261 PMCID: PMC8400915 DOI: 10.3390/polym13162722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022] Open
Abstract
The development of polyaniline (PANI)/biomaterial composites as humidity sensor materials represents an emerging area of advanced materials with promising applications. The increasing attention to biopolymer materials as desiccants for humidity sensor components can be explained by their sustainability and propensity to absorb water. This review represents a literature survey, covering the last decade, which is focused on the interrelationship between the core properties and moisture responsiveness of multicomponent polymer/biomaterial composites. This contribution provides an overview of humidity-sensing materials and the corresponding sensors that emphasize the resistive (impedance) type of PANI devices. The key physicochemical properties that affect moisture sensitivity include the following: swelling, water vapor adsorption capacity, porosity, electrical conductivity, and enthalpies of adsorption and vaporization. Some key features of humidity-sensing materials involve the response time, recovery time, and hysteresis error. This work presents a discussion on various types of humidity-responsive composite materials that contain PANI and biopolymers, such as cellulose, chitosan and structurally related systems, along with a brief overview of carbonaceous and ceramic materials. The effect of additive components, such as polyvinyl alcohol (PVA), for film fabrication and their adsorption properties are also discussed. The mechanisms of hydration and proton transfer, as well as the relationship with conductivity is discussed. The literature survey on hydration reveals that the textural properties (surface area and pore structure) of a material, along with the hydrophile-lipophile balance (HLB) play a crucial role. The role of HLB is important in PANI/biopolymer materials for understanding hydration phenomena and hydrophobic effects. Fundamental aspects of hydration studies that are relevant to humidity sensor materials are reviewed. The experimental design of humidity sensor materials is described, and their relevant physicochemical characterization methods are covered, along with some perspectives on future directions in research on PANI-based humidity sensors.
Collapse
Affiliation(s)
- Yuriy A. Anisimov
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| | - Richard W. Evitts
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Duncan E. Cree
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place (Room 156 Thorvaldson Building), Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
32
|
Meneguin A, Pacheco G, Silva J, de Araujo FP, Silva-Filho EC, Bertolino LC, da Silva Barud H. Nanocellulose/palygorskite biocomposite membranes for controlled release of metronidazole. Int J Biol Macromol 2021; 188:689-695. [PMID: 34371050 DOI: 10.1016/j.ijbiomac.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
The incorporation of drugs in nanocomposites can be considered a potential strategy for controlled drug release. In this study, a nanocomposite based on bacterial cellulose and the palygorskite clay (BC/PLG) was produced and loaded with metronidazole (MTZ). The samples were characterized using X-ray diffraction (XRD) Spectroscopy, thermal analysis (TG/DTG) and Scanning Electron Microscopy (SEM). The barrier properties were determined to water vapor permeability (WVP). Adsorption tests with PLG were performed using MTZ and drug release profile of the membranes was investigated. The results indicated that PLG increased the crystallinity of the nanocomposites, and greater thermal stability when PLG concentration was 15.0% (BC/PLG15) was observed. WVP of the samples also varied, according to the clay content. Adsorption equilibrium was achieved from 400 mg/L of the PLG and a plateau in the MTZ release rates from BC/PLG was observed after 30 min. Therefore, the results of this study show the potential of these nanocomposite membranes as a platform for controlled drug release.
Collapse
Affiliation(s)
- Andréia Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campus Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Guilherme Pacheco
- Research Center on Biotechnology, Uniara, Araraquara, 14801-340, São Paulo, Brazil
| | - Jhonatan Silva
- Research Center on Biotechnology, Uniara, Araraquara, 14801-340, São Paulo, Brazil
| | - Francisca Pereira de Araujo
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550, Piaui, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550, Piaui, Brazil
| | | | | |
Collapse
|