1
|
Wang P, Peng C, Li M, Cheng M, Fang X, Deng Z, Weng M, Deng X, Xie X. Response surface methodology to optimize the Bacillus subtilis var. sojae semen praeparatum liquid fermentation process for the production of fibrinolytic enzyme. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:654-666. [PMID: 40109679 PMCID: PMC11914540 DOI: 10.1007/s13197-024-06051-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 03/22/2025]
Abstract
Previously, during the Sojae Semen Praeparatum (SSP, Dandouchi in China) concoction process, three types of fibrinolytic enzyme-producing bacteria were screened and identified: Bacillus subtilis, Stenotrophomonas maltophilia and Micrococcus. The fibrin plate approach was used to measure the fibrinolytic enzyme activity of pure fermentation broth, it was found that fibrinolytic enzyme produced by Stenotrophomonas maltophilia has the highest enzyme activity, followed by Bacillus subtilis and Micrococcus is the lowest. In this study, in order to improve enzyme activity and yield, the response surface method was used to optimize the fermentation conditions, including 6 factors such as nitrogen source, carbon source, initial pH, inoculum amount, loading volume and fermentation temperature. Then, the results showed that: the optional fermentation temperature was determined as 28 ℃, 6% inoculum amount, 30.42 h fermentation time and 20 mL of loading volume in 100 mL erlenmeyer flask. Ultimately, under optimal fermentation conditions, enzyme activity produced by Bacillus subtilis var. SSP was 360.82 IU/mL, which was an increase of 109.68% (1.10 folds) compared to before optimization. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06051-8.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| | - Cuiying Peng
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| | - Mei Li
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| | - Mengxue Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| | - Xuhui Fang
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| | - Zhilang Deng
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| | - Meizhi Weng
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| | - Xiongwei Deng
- Nanchang Hongdu Hospital of TCM Affiliated to Jiangxi University of Chinese Medicine, Nanchang, 330008 Jiangxi People's Republic of China
| | - Xiaomei Xie
- Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi People's Republic of China
| |
Collapse
|
2
|
Suresh KN, C SD. Exploring the fibrinolytic potential of marine Actinoalloteichus caeruleus isolated from Bay of Bengal coast. BMC Microbiol 2025; 25:113. [PMID: 40033189 PMCID: PMC11874669 DOI: 10.1186/s12866-025-03815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND One of the main causes of several cardiovascular diseases that have an elevated mortality rate globally is intravascular thrombosis. The current fibrinolytic enzymes, are quite expensive and have a lot of side effects, thus it is necessary to develop alternate, economical techniques for the low-cost manufacture of these vital enzymes. Microbial fibrinolytic enzymes have the capacity to break up these clots and are relatively cheaper with minimal side effects and quick growth rate. Marine actinomycetota are the most prolific prokaryotes, which are capable of synthesizing novel secondary metabolites and are of industrial importance in pharmaceutical and various other industries. Thus, the objective of the research is to isolate, screen and characterize fibrinolytic protease producing actinomycetota from marine samples. RESULTS In this study, 35 actinomycetota have been successfully isolated from marine water and sediment samples. Among them, 12 isolates were protease positive and on secondary screening 5 isolates showed fibrinolytic activity. Out of the 5 isolates, one potent isolate's clot lysis activity was found out to be 93.12 ± 0.18% and its fibrinolytic potential was determined on fibrin agar plates. Based on the morphological, physiological, biochemical, and molecular analysis, the potent strain (NK60) was identified as Actinoalloteichus caeruleus. CONCLUSIONS In this present study, a rare actinomycetota has been isolated from the Bay of Bengal coast. This is the first study reporting the potent fibrinolytic activity of A. caeruleus, isolated from marine water. This clot-busting enzyme has significant pharmacological value in the management of coronary artery diseases. In the near future, A. caeruleus can serve as an explicit source for commercial production of fibrinolytic enzymes.
Collapse
Affiliation(s)
- Kothari Neeti Suresh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Subathra Devi C
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Teng R, Zhang J, Tu Z, He Q, Li Y. Computer-Aided Design to Improve the Thermal Stability of Rhizomucor miehei Lipase. Foods 2024; 13:4023. [PMID: 39766966 PMCID: PMC11727178 DOI: 10.3390/foods13244023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/15/2025] Open
Abstract
Lipase, a green biocatalyst, finds extensive application in the food sector. Enhancing the thermal stability of lipase presents both challenges and opportunities within the food industry. This research employed multiple rounds of cross-screening using tools like FoldX and I-Mutant 3.0 to strategically design mutations for Rhizomucor miehei lipase (RML), resulting in eight unique single-point mutation designs. E230I, N120M, and N264M have been confirmed experimentally to be potential combination mutation candidates. The resulting triple mutant N120M/E230I/N264M showed a higher thermal stability, with an optimum temperature of 55 °C, 10 °C higher than that of the wild-type RML. The half-life was extended from 46 to 462 min at 50 °C. Furthermore, the catalytic activity of N120M/E230I/N264M on camphor tree seed oil increased by 140% to 600 U/mg, which aids in the production of novel structured lipids. Using molecular docking and molecular dynamics simulations, we analyzed the molecular mechanism of enhanced thermal stability. This study validated the efficacy and dependability of computer-aided design to generate heat-resistant RML mutants and indicated that RML N120M/E230I/N264M lipase can be used as an effective biocatalyst for fat processing in the food industry.
Collapse
Affiliation(s)
- Rong Teng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (R.T.); (J.Z.); (Z.T.); (Q.H.)
| | - Jin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (R.T.); (J.Z.); (Z.T.); (Q.H.)
| | - Zhui Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (R.T.); (J.Z.); (Z.T.); (Q.H.)
| | - Qinghua He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (R.T.); (J.Z.); (Z.T.); (Q.H.)
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
- Jiangxi Provincial Key Laboratory of Agrofood Safety and Quality, Nanchang University, Nanchang 330047, China
| | - Yanping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (R.T.); (J.Z.); (Z.T.); (Q.H.)
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
- Jiangxi Provincial Key Laboratory of Agrofood Safety and Quality, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Liu C, Sun H, Zhang S, Li X, Ma L. Maggot kinase: A novel and cost-effective fibrinolytic enzyme from maggots. Int J Biol Macromol 2024; 282:137350. [PMID: 39521217 DOI: 10.1016/j.ijbiomac.2024.137350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Maggot kinase, a novel fibrinolytic enzyme source, has been isolated from fly maggots and comprehensively characterized. Using CM-52 ion exchange chromatography and affinity chromatography, we obtained a highly purified and active form of the enzyme. In particular, the fibrinolytic activity of maggot kinase, evaluated using the fibrin plate method, was found to be 8.98 ± 0.08 × 105 U/mg, demonstrating significant efficacy. Further structural analysis using mass spectrometry revealed that maggot kinase consists of a primary sequence of 226 amino acid residues with a molecular weight of 22.91 kDa. In vitro thrombolytic assays demonstrated the enzyme's remarkable ability to degrade the essential fibrinogen subunits (α, β, and γ), thereby facilitating clot lysis. Notably, our studies in a mouse model underscored the significant in vivo thrombolytic activity of maggot kinase, demonstrating its potential to inhibit thrombosis. The finding is particularly significant considering the widespread use of fly maggots in agriculture and animal husbandry due to their rapid growth cycle and minimal nutritional requirements. Our research highlights the untapped potential of fly maggots as a source for maggot kinase development for antithrombotic drug and functional food applications.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Huiting Sun
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs of China, Beijing University of Agriculture, Beijing 102206, PR China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China.
| |
Collapse
|
5
|
Cai X, Shi X, Wang JY, Hu CH, Shen JD, Zhang B, Liu ZQ, Zheng YG. Enhancing the Thermal Stability and Enzyme Activity of Ketopantoate Hydroxymethyltransferase through Interface Modification Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13186-13195. [PMID: 38814711 DOI: 10.1021/acs.jafc.3c09589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.
Collapse
Affiliation(s)
- Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue Shi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Ying Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng-Hao Hu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ji-Dong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Ma Z, Elango J, Hao J, Wu W. Purification and Characterization of a Novel Fibrinolytic Enzyme from Marine Bacterium Bacillus sp. S-3685 Isolated from the South China Sea. Mar Drugs 2024; 22:267. [PMID: 38921578 PMCID: PMC11204972 DOI: 10.3390/md22060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
A novel fibrinolytic enzyme, BSFE1, was isolated from the marine bacterium Bacillus sp. S-3685 (GenBank No.: KJ023685) found in the South China Sea. This enzyme, with a molecular weight of approximately 42 kDa and a specific activity of 736.4 U/mg, exhibited its highest activity at 37 °C in a phosphate buffer at pH 8.0. The fibrinolytic enzyme remained stable over a pH range of 7.5 to 10.0 and retained about 76% of its activity after being incubated at 37 °C for 2 h. The Km and Vmax values of the enzyme at 37 °C were determined to be 2.1 μM and 49.0 μmol min-1 mg-1, respectively. The fibrinolytic activity of BSFE1 was enhanced by Na+, Ba2+, K+, Co2+, Mn2+, Al3+, and Cu2+, while it was inhibited by Fe3+, Ca2+, Mg2+, Zn2+, and Fe2+. These findings indicate that the fibrinolytic enzyme isolated in this study exhibits a strong affinity for fibrin. Moreover, the enzyme we have purified demonstrates thrombolytic enzymatic activity. These characteristics make BSFE1 a promising candidate for thrombolytic therapy. In conclusion, the results obtained from this study suggest that our work holds potential in the development of agents for thrombolytic treatment.
Collapse
Affiliation(s)
- Zibin Ma
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science & Technology, Taizhou 318020, China;
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
7
|
Hazare C, Bhagwat P, Singh S, Pillai S. Diverse origins of fibrinolytic enzymes: A comprehensive review. Heliyon 2024; 10:e26668. [PMID: 38434287 PMCID: PMC10907686 DOI: 10.1016/j.heliyon.2024.e26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Fibrinolytic enzymes cleave fibrin which plays a crucial role in thrombus formation which otherwise leads to cardiovascular diseases. While different fibrinolytic enzymes have been purified, only a few have been utilized as clinical and therapeutic agents; hence, the search continues for a fibrinolytic enzyme with high specificity, fewer side effects, and one that can be mass-produced at a lower cost with a higher yield. In this context, this review discusses the physiological mechanism of thrombus formation and fibrinolysis, and current thrombolytic drugs in use. Additionally, an overview of the optimization, production, and purification of fibrinolytic enzymes and the role of Artificial Intelligence (AI) in optimization and the patents granted is provided. This review classifies microbial as well as non-microbial fibrinolytic enzymes isolated from food sources, including fermented foods and non-food sources, highlighting their advantages and disadvantages. Despite holding immense potential for the discovery of novel fibrinolytic enzymes, only a few fermented food sources limited to Asian countries have been studied, necessitating the research on fibrinolytic enzymes from fermented foods of other regions. This review will aid researchers in selecting optimal sources for screening fibrinolytic enzymes and is the first one to provide insights and draw a link between the implication of source selection and in vivo application.
Collapse
Affiliation(s)
- Chinmay Hazare
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| |
Collapse
|
8
|
Chio C, Shrestha S, Carr G, Khatiwada JR, Zhu Y, Li O, Chen X, Hu J, Qin W. Optimization and purification of bioproducts from Bacillus velezensis PhCL fermentation and their potential on industrial application and bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166428. [PMID: 37619727 DOI: 10.1016/j.scitotenv.2023.166428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bioproduction is considered a promising alternative way of obtaining useful and green chemicals. However, the downstream process of biomolecules has been one of the major difficulties in upscaling the application of bioproducts due to the high purification cost. Acid precipitation is the most common method for purifying biosurfactants from the fermentation broth with high purity. However, the use of strong acids and organic solvents in solvent extraction has limited its application. Hence, in this study, a new strain of Bacillus velezensis PhCL was isolated from phenolic waste, and its production of amylase had been optimized via response surface methodology. After that, amylase and biosurfactant were purified by sequential ammonium sulfate precipitation and the result suggested that even though the purified crude biosurfactant had a lower purification fold compared to the acid precipitation, the yield was higher and both enzymes and biosurfactant also could be recovered for lowering the purification cost. Moreover, the purified amylase and crude biosurfactant were characterized and the results suggested that the purified crude biosurfactant would have a higher emulsion activity and petroleum hydrocarbon removal rate compared to traditional surfactants. This study provided another approach for purifying bioactive compounds including enzymes and biosurfactants from the same fermentation broth and further explored the potential of the crude purified biosurfactant in the bioremediation of polycyclic aromatic hydrocarbons and petroleum hydrocarbons.
Collapse
Affiliation(s)
- Chonlong Chio
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Sarita Shrestha
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Griffin Carr
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Janak Raj Khatiwada
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Yuen Zhu
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Ou Li
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuantong Chen
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Jing Hu
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
9
|
Yang Q, Liu S, Zhao Y, Han X, Chang R, Mao J. Enzymatic properties and inhibition tolerance analysis of key enzymes in β-phenylethanol anabolic pathway of Saccharomyces cerevisiae HJ. Synth Syst Biotechnol 2023; 8:772-783. [PMID: 38161995 PMCID: PMC10755794 DOI: 10.1016/j.synbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Huangjiu is known for its unique aroma, primarily attributed to its high concentration of β-phenylethanol (ranging from 40 to 130 mg/L). Phenylalanine aminotransferase Aro9p and phenylpyruvate decarboxylase Aro10p are key enzymes in the β-phenylethanol synthetic pathway of Saccharomyces cerevisiae HJ. This study examined the enzymatic properties of these two enzymes derived from S. cerevisiae HJ and S288C. After substrate docking, Aro9pHJ (-24.05 kJ/mol) and Aro10pHJ (-14.33 kJ/mol) exhibited lower binding free energies compared to Aro9pS288C (-21.93 kJ/mol) and Aro10pS288C (-12.84 kJ/mol). ARO9 and ARO10 genes were heterologously expressed in E. coli BL21. Aro9p, which was purified via affinity chromatography, showed inhibition by l-phenylalanine (L-PHE), but the reaction rate Vmax(Aro9pHJ: 23.89 μmol·(min∙g)-1) > Aro9pS288C: 21.3 μmol·(min∙g)-1) and inhibition constant Ki values (Aro9pHJ: 0.28 mol L-1>Aro9pS288C 0.26 mol L-1) indicated that Aro9p from S. cerevisiae HJ was more tolerant to substrate stress during Huangjiu fermentation. In the presence of the same substrate phenylpyruvate (PPY), Aro10pHJ exhibited a stronger affinity than Aro10pS288C. Furthermore, Aro9pHJ and Aro10pHJ were slightly more tolerant to the final metabolites β-phenylethanol and ethanol, respectively, compared to those from S288C. The study suggests that the mutations in Aro9pHJ and Aro10pHJ may contribute to the increased β-phenylethanol concentration in Huangjiu. This is the first study investigating enzyme tolerance mechanisms in terms of substrate and product, providing a theoretical basis for the regulation of the β-phenylethanol metabolic pathway.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuzong Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
10
|
Li X, Zhai W, Duan X, Gou C, Li M, Wang L, Basang W, Zhu Y, Gao Y. Extraction, Purification, Characterization and Application in Livestock Wastewater of S Sulfur Convertase. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16368. [PMID: 36498440 PMCID: PMC9740322 DOI: 10.3390/ijerph192316368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Sulfide is a toxic pollutant in the farming environment. Microbial removal of sulfide always faces various biochemical challenges, and the application of enzymes for agricultural environmental remediation has promising prospects. In this study, a strain of Cellulosimicrobium sp. was isolated: numbered strain L1. Strain L1 can transform S2-, extracellular enzymes play a major role in this process. Next, the extracellular enzyme was purified, and the molecular weight of the purified sulfur convertase was about 70 kDa. The sulfur convertase is an oxidase with thermal and storage stability, and the inhibitor and organic solvent have little effect on its activity. In livestock wastewater, the sulfur convertase can completely remove S2-. In summary, this study developed a sulfur convertase and provides a basis for the application in environmental remediation.
Collapse
Affiliation(s)
- Xintian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Wei Zhai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Xinran Duan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| |
Collapse
|
11
|
Effect of Adding Bifidobacterium animalis BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by Bacillus subtilis GUTU09. Foods 2022; 11:foods11172674. [PMID: 36076859 PMCID: PMC9455604 DOI: 10.3390/foods11172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Natto is a high-value fermented soybean produced by B. subtilis. However, B. subtilis produces a pungent amine odor. This study compared the volatile organic compounds (VOCs), free amino acids (FAAs) and biogenic amines (BAs), nattokinase (NK) of natto made by two-strain fermentation with Bifidobacterium animalis BZ25 and Bacillus subtilis GUTU09 (NMBB) and that of natto made by single-strain fermentation with Bacillus subtilis GUTU09 (NMB). Compared with NMB, volatile amine substances disappeared, ketones and aldehydes of NMBB were reduced, and alcohols increased. Besides that, the taste activity value of other bitter amino acids was lowered, and BA content was decreased from 255.88 mg/kg to 238.35 mg/kg but increased NK activity from 143.89 FU/g to 151.05 FU/g. Correlation analysis showed that the addition of BZ25 reduced the correlation between GUTU09 and BAs from 0.878 to 0.808, and pH was changed from a positive correlation to a negative one. All these results showed that the quality of natto was improved by two-strain co-fermentation, which laid a foundation for its potential industrial application.
Collapse
|
12
|
Purification, biochemical characterization and fibrinolytic potential of proteases produced by bacteria of the genus Bacillus: a systematic literature review. Arch Microbiol 2022; 204:503. [PMID: 35852634 DOI: 10.1007/s00203-022-03134-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Thrombosis is a hematological disorder characterized by the formation of intravascular thrombi, which contributes to the development of cardiovascular diseases. Fibrinolytic enzymes are proteases that promote the hydrolysis of fibrin, promoting the dissolution of thrombi, contributing to the maintenance of adequate blood flow. The characterization of new effective, safe and low-cost fibrinolytic agents is an important strategy for the prevention and treatment of thrombosis. However, the development of new fibrinolytics requires the use of complex methodologies for purification, physicochemical characterization and evaluation of the action potential and toxicity of these enzymes. In this context, microbial enzymes produced by bacteria of the Bacillus genus are promising and widely researched sources to produce new fibrinolytics, with high thrombolytic potential and reduced toxicity. Thus, this review aims to provide a current and comprehensive understanding of the different Bacillus species used for the production of fibrinolytic proteases, highlighting the purification techniques, biochemical characteristics, enzymatic activity and toxicological evaluations used.
Collapse
|
13
|
Couto MTTD, Silva AVD, Sobral RVDS, Rodrigues CH, Cunha MNCD, Leite ACL, Figueiredo MDVB, de Paula Oliveira J, Costa RMPB, Conniff AES, Porto ALF, Nascimento TP. Production, extraction and characterization of a serine protease with fibrinolytic, fibrinogenolytic and thrombolytic activity obtained by Paenibacillus graminis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zhao L, Lin X, Fu J, Zhang J, Tang W, He Z. A Novel Bi-Functional Fibrinolytic Enzyme with Anticoagulant and Thrombolytic Activities from a Marine-Derived Fungus Aspergillus versicolor ZLH-1. Mar Drugs 2022; 20:md20060356. [PMID: 35736159 PMCID: PMC9229710 DOI: 10.3390/md20060356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrinolytic enzymes are important components in the treatment of thrombosis-associated disorders. A new bi-functional fibrinolytic enzyme, versiase, was identified from a marine-derived fungus Aspergillus versicolor ZLH-1. The enzyme was isolated from the fungal culture through precipitation with ammonium sulfate at 90% saturation. Additionally, it was further purified by DEAE-based ion-exchange chromatography, with a recovery of 20.4%. The fibrinolytic enzyme presented as one band on both SDS-PAGE and fibrin-zymogram, with a molecular mass of 37.3 kDa. It was elucidated as a member of metalloprotease in M35 family by proteomic approaches. The homology-modeling analysis revealed that versiase shares significant structural homology wuth the zinc metalloendopeptidase. The enzyme displayed maximum activity at 40 °C and pH 5.0. The activity of versiase was strongly inhibited by the metalloprotease inhibitors EDTA and BGTA. Furthermore, versiase hydrolyzed fibrin directly and indirectly via the activation of plasminogen, and it was able to hydrolyze the three chains (α, β, γ) of fibrin(ogen). Additionally, versiase demonstrated promising thrombolytic and anticoagulant activities, without many side-effects noticed. In conclusion, versiase appears to be a potent fibrinolytic enzyme deserving further investigation.
Collapse
Affiliation(s)
- Lihong Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Jingyun Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Jun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Wei Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Zengguo He
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
- Correspondence: ; Tel./Fax: +86-186-1113-7588
| |
Collapse
|
15
|
Purification and Characterization of a Fibrinolytic Enzyme from Marine Bacillus velezensis Z01 and Assessment of Its Therapeutic Efficacy In Vivo. Microorganisms 2022; 10:microorganisms10050843. [PMID: 35630289 PMCID: PMC9145925 DOI: 10.3390/microorganisms10050843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrinolytic enzymes are the most effective agents for the treatment of thrombotic diseases. In the present study, we purified and characterized an extracellular fibrinolytic serine metalloprotease (named Velefibrinase) that is produced by marine Bacillus velezensis Z01 and assessed its thrombolysis in vivo. SDS-PAGE and MALDI-TOF-MS analyses showed that the molecular mass of Velefibrinase was 32.3 KDa and belonged to the peptidase S8 family. The optimal fibrinolytic activity conditions of Velefibrinase were 40 °C and pH 7.0. Moreover, Velefibrinase exhibited high substrate specificity to fibrin, and a higher ratio of fibrinolytic/caseinolytic (1.48) values, which indicated that Velefibrinase had excellent fibrinolytic properties. Based on the degradation pattern of fibrin and fibrinogen, Velefibrinase could be classified as α/β-fibrinogenase. In vitro, Velefibrinase demonstrated efficient thrombolytic ability, anti-platelet aggregation, and amelioration of blood coagulation (APTT, PT, TT, and FIB), which were superior to those of commercial anticoagulant urokinase. Velefibrinase showed no hemolysis for erythrocyte in vitro and no hemorrhagic activity in vivo. Finally, Velefibrinase effectively prevented mouse tail thrombosis in a dose-dependent (0.22–0.88 mg/kg) manner. These findings suggested that Velefibrinase has the potential to becoming a new thrombolytic agent.
Collapse
|
16
|
Duan Y, Katrolia P, Zhong A, Kopparapu NK. Production, purification and characterization of a novel antithrombotic and anticoagulant serine protease from food grade microorganism Neurospora crassa. Prep Biochem Biotechnol 2022; 52:1008-1018. [PMID: 35000560 DOI: 10.1080/10826068.2021.2023824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel thrombolytic enzyme was produced by food grade microorganism Neurospora crassa using agro-industrial by-products as substrates. Process parameters were optimized using Plackett-Berman and Box-Benhken design. Under the optimized fermentation conditions, high fibrinolytic activity of 403.59 U/mL was obtained. It was purified with a specific activity of 3572.4 U/mg by ammonium sulfate precipitation and SP Sepharose chromatography. The molecular weight of the enzyme was approximately 32 kDa. It exhibited maximum activity at 40 °C and pH 7.4. Its activity was enhanced by Cu2+, Na+, Zn2+, and completely inhibited by phenylmethanesulfonyl fluoride, soybean trypsin inhibitor, aprotinin, which indicates it could be a serine protease. The enzyme could degrade fibrin clot directly without the need of plasminogen activator, and effectively cleaved Aα, Bβ, γ chains of fibrinogen. It could inhibit the formation of blood clots in vitro and acts as an anticoagulant. Compared to heparin the purified enzyme showed extended anticoagulant activity. Blood clots were dissolved effectively and dissolution rate was increased with time. Based on these results, this novel enzyme has the potential to be developed as a thrombolytic agent.
Collapse
Affiliation(s)
- Yajie Duan
- College of Food Science, Southwest University, Chongqing, China
| | - Priti Katrolia
- College of Food Science, Southwest University, Chongqing, China
| | - Ailing Zhong
- College of Food Science, Southwest University, Chongqing, China
| | | |
Collapse
|