1
|
Ni X, Xiao W, Liu X, Peng S, Wu Y, Gao Z. Enhancement of konjac glucomannan/carrageenan blend films by incorporating cellulose nanocrystals/tannic acid stabilized Litsea cubeba essential oil Pickering emulsion and their application to pork preservation. Int J Biol Macromol 2025; 307:142198. [PMID: 40112980 DOI: 10.1016/j.ijbiomac.2025.142198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
With increasing demands for environmental protection and food safety, biodegradable active food packaging is gaining attention. Hereby, konjac glucomannan/carrageenan blend films (KCNTO) incorporating Litsea cubeba essential oil (LCEO) Pickering emulsion stabilized by cellulose nanocrystals/tannic acid were developed and evaluated for their preservation effect on pork. The formation, structure, physical properties, antioxidant and antimicrobial activities of KCNTO, as well as the release of LCEO were investigated. The results showed that the viscosity and pseudoplasticity of KCNTO film-forming solutions decreased due to LCEO Pickering emulsion interfering with the molecular entanglement network of konjac glucomannan/carrageenan. LCEO droplets were homogeneously distributed in KCNTO to make its structure loose. Hydrogen bonding interactions occurred between LCEO Pickering emulsion and the film matrix. The addition of LCEO Pickering emulsion improved KCNTO's elongation at break, water contact angle, water vapor barrier and UV shielding, while giving it excellent antioxidant and antimicrobial activities. LCEO was slowly and sustainably released from KCNTO at 25 °C in air. KCNTO-8 maintained the quality of pork by slowing down the increase in pH, aerobic plate count and thiobarbituric acid reactive substances during storage at 4 °C. The findings suggested that KCNTO was a promising active packaging material for pork preservation.
Collapse
Affiliation(s)
- Xuewen Ni
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, PR China.
| | - Weilu Xiao
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaohan Liu
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, PR China
| | - Shuangyang Peng
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, PR China
| | - Yuehan Wu
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
2
|
Shen L, Chen C, Xie J. Development and characterization of starch/polyvinyl alcohol active films with slow-release property by utilizing Mucorracemosus Fresenius mycelium to load with clove essential oil. Int J Biol Macromol 2025; 295:139610. [PMID: 39793829 DOI: 10.1016/j.ijbiomac.2025.139610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The controlled release active packaging film represents a novel technology that always can effectively slow down the release of active agents, extending their efficacy. Mucorracemosus Fresenius (MF) mycelium was prepared and used as an adsorption carrier to load clove essential oil (CEO). The CEO/MF complexes were incorporated into the starch/polyvinyl alcohol (Starch/PVA) matrix to develop active films. The effects of MF content on the films' properties were investigated. MF exhibited the internal hollow structure with diaphragm inside and showed antioxidant activity. The adsorption rate of MF on CEO was 238.09 %. As MF increased, the tensile strength, water contact angle and gas barrier properties (water vapor and oxygen) of the films containing CEO enhanced. The release rate of CEO from the films into food simulant (10 % ethanol) slowed down significantly with increasing of MF. Compared to the film without MF, the film with highest MF delayed 33 h to reach equilibrium. The films with different content of MF showed different antioxidant and antibacterial activities, and different preservation effects on shrimp. It showed a great prospect to develop controlled release active films by utilizing MF mycelium as an adsorption material, which enriched the technical solutions for developing controlled release active packaging films.
Collapse
Affiliation(s)
- Lan Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
3
|
Faramarzi H, Fazeli F, Shariatifar N, Ghorbani-HasanSaraei A, Shahidi SA. Investigating the inhibitory effect of nettle (Urtica dioica L.) essential oil and Pickering nanoemulsion on some pathogenic bacteria inoculated into pizza cheese. Int J Food Microbiol 2025; 430:111060. [PMID: 39798382 DOI: 10.1016/j.ijfoodmicro.2025.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The aim of the present research was to evaluate the effect of Urtica dioica L. (nettle) essential oil (in the forms of Pickering nanoemulsion (NEO) and free (EO)) on microbial, chemical and sensory changes of pizza cheese stored at 4 °C for 12 days. For this purpose, Escherichia coli and Listeria monocytogenes were inoculated into pizza cheese. In all tests, the control group had the lowest score after 12 days of storage. In the antimicrobial assay test in different treatments, NEO4% treatment decreased the growth of E.coli from 4 (0th day) to 3.3 log CFU/g (12th day) and the growth of L. monocytogenes from 3.8 (0th day) to 3.1 log CFU/g (12th day). The minimum inhibitory concentration (MIC) of NEO and EO for E.coli and L. monocytogenes was 0.62 ± 0.01 mg/mL. Additionally, the minimum bactericidal concentration (MBC) of EO and NEO for E. coli was 25 ± 0.1 mg/mL, and for L. monocytogenes was 1.25 ± 0.1 mg/mL. At day 12, almost all treatments (free form and nano) had relatively similar pH. In our study, the minimum and maximum value of DPPH was detected in the treatment of NEO1% (31.25 ± 1.50 %) and BHT200 (96.40 ± 2.5 %), respectively. Also, on the 12th day of the test, the NEO treatment obtained the highest score in all sensory tests (appearance & color, body & texture, odor and overall acceptability). According to the findings of the present study, Pickering emulsion form of nettle EO increases the storage period of pizza cheese.
Collapse
Affiliation(s)
- Hossein Faramarzi
- Department of Food Science and Technology, Ayatollah Amoi Branch, Islamic Azad University, Amol, Iran
| | - Fatemeh Fazeli
- Department of Food Science and Technology, Ayatollah Amoi Branch, Islamic Azad University, Amol, Iran.
| | - Nabi Shariatifar
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoi Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
4
|
Omidian H, Cubeddu LX, Gill EJ. Harnessing Nanotechnology to Enhance Essential Oil Applications. Molecules 2025; 30:520. [PMID: 39942625 PMCID: PMC11821119 DOI: 10.3390/molecules30030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Essential oils (EOs) are versatile natural compounds with significant antimicrobial, antioxidant, antifungal, and therapeutic properties, making them valuable in industries such as food preservation, agriculture, and healthcare. However, their inherent volatility, low water solubility, and susceptibility to environmental degradation limit their direct applications. Nanotechnology offers transformative solutions to these challenges, enhancing the stability, bioavailability, and efficacy of EOs through innovative nano systems such as nano emulsions, encapsulations, and nanocomposites. This study explores the integration of nanotechnology with essential oils, emphasizing advanced preparation techniques, physicochemical properties, and diverse applications. It highlights sustainable approaches, including eco-friendly synthesis and biodegradable carriers, which align with global trends toward green chemistry. By addressing key challenges and proposing future directions, this research underscores the potential of EO nano systems to deliver multifunctional and environmentally conscious solutions for global challenges such as food security, antimicrobial resistance, and sustainable agriculture.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
5
|
Babaei Z, Moghimi R, Tajbakhsh M, Taleghani A. Enhancing black mulberry storage with sodium caseinate and gum tragacanth edible films. Sci Rep 2025; 15:2564. [PMID: 39833442 PMCID: PMC11747432 DOI: 10.1038/s41598-025-86909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
A bright future lies ahead for the application of natural biocomposites in the food industry. In this research, edible biocomposite films were created using sodium caseinate (SC)-gum tragacanth (GT) and incorporating carum carvi seed essential oil (EO) as a nanoemulsion. Different ratios of oil were used as variables. The physical properties, structural morphology, mechanical characteristics, and thermal behavior of the films were evaluated. Furthermore, the preservative effects of these edible films were studied to prolong the shelf life of black mulberries over a period of 10 days at 4 °C. The findings indicated that the increase of EO content to the edible films resulted in a significant increase in thickness, tensile strength, opacity and water vapor permeability. Conversely, the elongation at break, water solubility and moisture content decreased with the rise in oil content up to 3.9%. Also the visual appearance and sensory evaluation of the fruits revealed that black mulberries covered with edible films containing 2.6 and 3.9% oil were more preferred compared to the other groups. The integration of caraway oil into the SC-GT biocomposite has been investigated for the first time, demonstrating that the resulting films are effective in prolonging the shelf life of black mulberries.
Collapse
Affiliation(s)
- Zahra Babaei
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-13534, Iran
| | - Roya Moghimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-13534, Iran.
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-13534, Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| |
Collapse
|
6
|
Srivastava N, Mohan R, Roy Choudhury A. A novel gellan-based nanoemulgel delivery system for co-encapsulation and in vitro digestion of hydrophilic/hydrophobic nutraceuticals. Carbohydr Polym 2025; 348:122855. [PMID: 39562124 DOI: 10.1016/j.carbpol.2024.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Preventive healthcare strategies are gaining attention over traditional approach of treating and managing diseases. The use of food hydrocolloids has garnered interest in developing innovative food formulations promoting healthy eating habits. Among emerging carrier systems, nanoemulgel holds significant potential with its ability to deliver hydrophilic and lipophilic nutraceuticals through a combination of nanoemulsion and hydrogel technology. For the first time, this study utilized gellan as an emulsifier and gelling agent to develop a novel nanoemulgel functional food system. Initially, a nanoemulsion composed of gellan and clove oil was prepared, having an average size of 40.10 ± 9.42 nm, which was stable under different physiological conditions. Further, nanoemulsion was combined with gellan hydrogel fabricated using ʟ-Glutamic acid as bio-linker to formulate nanoemulgel that was characterized thoroughly. We employed this system to co-encapsulate hydrophobic naringenin and hydrophilic vitamin B12. Additionally, encapsulation efficiency and release rate studies revealed high stability of bioactive at acidic pH. Moreover, release mechanism followed Korsmeyer-Peppas model and zero-order kinetics. During simulated in vitro digestion studies, site-directed release of nutraceuticals was observed. Therefore, present study represents a significant effort in developing novel functional food systems that aid in disease prevention and maintaining healthy lifestyle.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshini Mohan
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamil Nadu 641013, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Sultana R, Mohanto S, Bhunia A, Biswas A, Akhtar MS, Mishra V, Modi D, Aljabali AA, Tambuwala M, Faiyazuddin M. Current Progress and Emerging Role of Essential Oils in Drug Delivery Therapeutics. Curr Drug Deliv 2025; 22:332-357. [PMID: 38409707 DOI: 10.2174/0115672018287719240214075810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of essential oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.
Collapse
Affiliation(s)
- Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, P.O. Rahara, Kolkata, 700118, West Bengal, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab), 144411, India
| | - Dimple Modi
- Department of Pharmaceutical Sciences, Saint Josephs University, Philadelphia, Pennsylvania, 19104, United States
| | - Alaa Aa Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School - Universities of Nottingham and Lincoln, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, Lincolnshire, UK
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, 854106, Bihar, India
| |
Collapse
|
8
|
Rao SQ, Gao XR, Liu H, Wang ZR, Yang ZQ. Contribution of Phosphorylation Modification to Stability and Antibacterial Activity of Egg White Protein Nanogels Loaded with Cinnamon Bark Essential Oil. Gels 2024; 11:12. [PMID: 39851982 PMCID: PMC11765320 DOI: 10.3390/gels11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
This study evaluated the potential usage of phosphorylated egg white protein (P-EWP) nanogels fabricated via microwave-induced phosphorylation modification and gel process and further ultrasonic nanometrization as novel delivery systems for cinnamon bark essential oil (CBEO). Compared to EWP-CBEO nanogels without chemical phosphorylation, the obtained P-EWP-CBEO nanogels have shown smaller average hydrodynamic diameter (133.6 nm), relatively uniform size distribution (polydispersity index around 0.265), enhanced negative surface charge (-35.4 mV), and improved stability under the conditions of high temperature (up to 90 °C) and ionic strength (up to 200 mM NaCl). Moreover, P-EWP-CBEO nanogels, with hydrophobic interactions and disulfide bonds as the main intermolecular forces, exhibited a remarkable conformational change in microstructures. In addition, the results of the antibacterial experiments on Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes showed that the MIC values of P-EWP-CBEO nanogels were two times lower than those of EWP-CBEO nanogels and could completely inhibit the growth of pathogenic bacteria within 108 h. Hence, we have suggested that P-EWP-CBEO nanogels are successfully fabricated with improved physicochemical properties as novel potential natural preservatives in the food industry.
Collapse
Affiliation(s)
- Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Xin-Ru Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Hui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Zhi-Rong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.-Q.R.); (H.L.)
- Key Laboratory of Catering Food Processing and Safety Control (Yangzhou University), China General Chamber of Commerce, Beijing 100711, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
9
|
Luo G, Li J, Qin X, Wang Q, Zhong J. Improved moisture barrier and mechanical properties of rice protein/sodium alginate films for banana and oil preservation: Effect of the type and addition form of fatty acid. Food Chem 2024; 460:140764. [PMID: 39121763 DOI: 10.1016/j.foodchem.2024.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Attenuating the moisture sensitivity of hydrophilic protein/polysaccharide-based films without impairing other properties remains a challenge. Fatty acid dispersed in Pickering emulsion was proposed to overcome such issue. An increase in fatty acid chain length slightly reduced the water vapor permeability (WVP) of emulsion films. As the number of fatty acid double bonds increased from 0 to 1, the WVP of emulsion films was significantly decreased by 14.02% while mechanical properties were significantly enhanced. More hydrogen bonds and stronger electrostatic interactions in the presence of fatty acids were observed by molecular dynamics simulation. The weight loss of bananas coated with oleic acid-incorporated film-forming emulsion was 6.81% lower than that of uncoated group after 4 days, and the corresponding film was more effective to delay oil oxidation than the commercial polypropylene film, indicating that the film is a promising alternative to food coating and packaging material.
Collapse
Affiliation(s)
- Guoliu Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinsong Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qiang Wang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
10
|
Kurek M, Pišonić P, Ščetar M, Janči T, Čanak I, Vidaček Filipec S, Benbettaieb N, Debeaufort F, Galić K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance-A Review. Antioxidants (Basel) 2024; 13:1417. [PMID: 39594558 PMCID: PMC11591116 DOI: 10.3390/antiox13111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh fish is among the most nutritive foodstuffs, but it is also the most perishable one. Therefore, huge efforts have been made to find the most suitable tools to deliver fish of the highest quality to exigent consumers. Scientific studies help the industry to exploit the newest findings to scale up emerging industrial technologies. In this review article, the focus is on the latest scientific findings on edible films used for fish coatings and storage. Since today's packaging processing and economy are governed by sustainability, naturality underpins packaging science. The synthesis of edible coatings, their components, processing advantages, and disadvantages are outlined with respect to the preservation requirements for sensitive fish. The requirements of coating properties are underlined for specific scenarios distinguishing cold and freezing conditions. This review raises the importance of antioxidants and their role in fish storage and preservation. A summary of their impact on physical, chemical, microbiological, and sensory alterations upon application in real fish is given. Studies on their influence on product stability, including pro-oxidant activity and the prevention of the autolysis of fish muscle, are given. Examples of lipid oxidation and its inhibition by the antioxidants embedded in edible coatings are given together with the relationship to the development of off-odors and other unwanted impacts. This review selects the most significant and valuable work performed in the past decade in the field of edible coatings whose development is on the global rise and adheres to food waste and sustainable development goals 2 (zero hunger), 3 (good health and well-being), and 12 (responsible consumption and production).
Collapse
Affiliation(s)
- Mia Kurek
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Petra Pišonić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Mario Ščetar
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Tibor Janči
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Iva Čanak
- Laboratory for General Microbiology and Food Microbiology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sanja Vidaček Filipec
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Nasreddine Benbettaieb
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Frédéric Debeaufort
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Kata Galić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| |
Collapse
|
11
|
Arul Raj J, Kasi M, Karuppiah P, Hirad AH. Green Packaging Solutions for Extending the Shelf Life of Fish Fillet: Development and Evaluation of Cinnamon Essential Oil-Infused Cassava Starch and Fish Gelatin Edible Films. ACS OMEGA 2024; 9:45898-45910. [PMID: 39583670 PMCID: PMC11579729 DOI: 10.1021/acsomega.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Edible, eco-friendly films made from cassava starch, cinnamon essential oil (CEO), and fish gelatin have been shown to extend the shelf life of fish fillets. These biodegradable films offer an environmentally friendly alternative to conventional plastic packaging. This study explores the production of edible films using cassava starch, fish gelatin from processing waste, and CEO nanoemulsion (CEON), focusing on their physical, mechanical, antioxidant, and antibacterial properties. The optimal film blend, consisting of 5% cassava starch and a 1:3 ratio of fish gelatin with 10% CEON (SGCEON3), demonstrated excellent antioxidant and antibacterial properties, extending the fish fillet shelf life to 10 days. These films were light brown with increased thickness (0.19 ± 0.001 mm), tensile strength (20.15 MPa), and elongation at break (270.50%). The TGA analysis showed a consistent mass loss from 30 to 600 °C, and AFM results indicated an average height deviation of 39.925 nm, a roughness of 54.439 nm, a surface symmetry skewness of 0.860, and a kurtosis of 1.77. The FE-SEM images and FTIR spectra confirmed compatibility between fish gelatin and CEON. The migration assay observed a more gradual and constant release of the CEO from the SG films, and the SGCEON3 film is suitable as an antimicrobial packaging material. This study highlights the potential of biopolymer packaging infused with essential oils to extend the shelf life of perishable foods effectively.
Collapse
Affiliation(s)
- Jasmin
Suriya Arul Raj
- Department
of Biotechnology, Manonmaniam Sundaranar
University, Tirunelveli, Tamilnadu 627 012, India
| | - Murugan Kasi
- Department
of Biotechnology, Manonmaniam Sundaranar
University, Tirunelveli, Tamilnadu 627 012, India
| | - Ponmurugan Karuppiah
- Department
of Botany and Microbiology, College of Science,
King Saud University, P.O. Box- 2455, Riyadh 11451, Saudi Arabia
| | - Abdurahman Hajinur Hirad
- Department
of Botany and Microbiology, College of Science,
King Saud University, P.O. Box- 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Thungphotrakul N, Prapainainar P. Development of polyvinyl alcohol/carboxymethylcellulose-based bio-packaging film with citric acid crosslinking and clove essential oil encapsulated chitosan nanoparticle pickering emulsion. Int J Biol Macromol 2024; 282:137223. [PMID: 39505190 DOI: 10.1016/j.ijbiomac.2024.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
This study developed polyvinyl alcohol (PVA)/carboxymethylcellulose (CMC)-based films, using citric acid (CA) as a non-toxic crosslinking agent, to enhance the shelf life of water-soluble packaging films. Clove essential oil (CEO)-loaded chitosan nanoparticles (CSNPs) were prepared via Pickering emulsion and incorporated into PVA/CMC/CA composite films. The encapsulation of CEO was confirmed by FTIR and optical microscopy. Thermal properties were analyzed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), revealing improved thermal stability and a decrease in glass transition temperature (Tg) upon crosslinking. The formation of ester bonds was confirmed by ATR-FTIR and 13CNMR. Water contact angle (WCA) measurements showed a decrease in hydrophilicity, enhancing the barrier properties of the films. SEM images demonstrated good dispersion of CSNP/CEO within the matrix, improving mechanical and barrier properties. The films exhibited a 30 % reduction in water vapor permeability and water solubility. Controlled release studies indicated that the composite films sustained CEO release, extending the shelf life of cherry tomatoes. Thus, these PVA/CMC/CA-CSNP/CEO composite films offer strong potential for food preservation applications.
Collapse
Affiliation(s)
- Numporn Thungphotrakul
- National Center of Excellence for Petroleum, Petrochemicals, and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Paweena Prapainainar
- National Center of Excellence for Petroleum, Petrochemicals, and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
13
|
Scarcella JV, Lopes MS, Silva EK, Andrade GSS. Valorization of okara by-product for obtaining soluble dietary fibers and their use in biodegradable carboxymethyl cellulose-based film. Int J Biol Macromol 2024; 280:136032. [PMID: 39332560 DOI: 10.1016/j.ijbiomac.2024.136032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
In the face of mounting environmental concerns and the need for sustainable innovation, the use of agro-industrial wastes as raw materials offers a promising pathway. In this context, this study investigated the okara, a by-product of soy processing, as a novel source of soluble dietary fiber for the enrichment of carboxymethyl cellulose (CMC) biodegradable films based on environmental benefits of waste reduction with the creation of renewable packaging alternatives. Okara soluble dietary fiber (OSDF)-enriched CMC film was compared with films made from traditional and innovative soluble dietary fibers, such as pectin, inulin, and β-glucan. OSDF was obtained through acid hydrolysis at 121 °C, achieving a yield of 5.31 % relative to its initial dry weight. All the produced films exhibited a maximum crystallinity of 5 %, as revealed by X-ray diffraction (XRD), indicative of their largely amorphous structure, while scanning electron microscopy (SEM) ensured their uniformity and flawlessness. The CMC film enriched with okara soluble dietary fiber exhibited key properties, such as thickness, water vapor permeability, and thermal stability, comparable to other soluble fibers studied. These characteristics are essential for effective packaging applications. A notable distinction of the OSDF-enriched film was its capacity to block UV light, offering protection for light-sensitive items. The solubility tests showed that okara and β-glucan contributed to films with a higher solubility percentage. Mechanical testing underscored the influence of fiber on tensile strength, with the film enriched with β-glucan outperforming others at 27.5 MPa. All films showed rapid biodegradation within one week, emphasizing their eco-friendliness and the study alignment with sustainable development objectives in packaging.
Collapse
Affiliation(s)
- Jose Vitor Scarcella
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Melina S Lopes
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| | - Grazielle S S Andrade
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| |
Collapse
|
14
|
Cheng M, Shu Y, Li M, Li C, Liang T, Zhang Z. Characterisation of an edible active film prepared from bacterial nanocellulose/forsythia essential oil Pickering emulsions with funoran and its application in fresh meat. Int J Biol Macromol 2024; 280:136141. [PMID: 39349084 DOI: 10.1016/j.ijbiomac.2024.136141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This study sought to develop an edible active film by integrating Pickering emulsions of forsythia essential oil and bacterial nanofibers at various concentrations into a film-forming matrix composed of funoran (F). The stability of the emulsions was evaluated through examination of the micro-morphology, particle size and distribution, 7-day emulsification index, and embedding rate of the Pickering emulsions. Subsequently, selected Pickering emulsions were incorporated into F to generate the edible active film. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy revealed that the Pickering emulsion was uniformly distributed throughout the F film, interconnected by hydrogen bonds. X-ray Diffraction spectra exhibited changes in peak intensity and shifts in position attributable to the edible active film. Pickering emulsion had a minimal impact on thermal stability. The film's tensile strength significantly increased, while elongation at break decreased. The heightened concentration of hydroxyl groups in the film led to increased thickness, reduced moisture content, and enhanced hygroscopicity. The edible active film exhibited superior antioxidant and antibacterial properties, thereby more efficiently shielding against oxygen and water vapour. In preservation tests involving chicken and lamb, the Pickering emulsion led to elevations in pH, total volatile basic nitrogen, and thiobarbituric acid reactive substance levels in the meat.
Collapse
Affiliation(s)
- Ming Cheng
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China; Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan, Hebei 545000, PR China
| | - Mengli Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Chaoyu Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Tieqiang Liang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, PR China.
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China.
| |
Collapse
|
15
|
Li X, Song Y, Yang X, Xu J, Zhang X, Sun H. Multi-functional reinforced food packaging using delivery carriers: A comprehensive review of preparation, properties, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70050. [PMID: 39495570 DOI: 10.1111/1541-4337.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
With the rapid development of globalization, food packaging takes on more responsibility, while guaranteeing product quality and safety. In this context, the health risks associated with chemically synthesized additives and inorganic nanoparticles have opened a new chapter in the reinforcement of food packaging with natural active ingredients. Various delivery carriers have been developed to overcome the limitations of poor stability, uneven dispersion, and low bioavailability of natural active ingredients. The combination of encapsulation technologies can increase the biocompatibility of the active ingredient with the packaging material. Moreover, the protective and slow-release effects of the carrier matrix on the active ingredients are desirable for the reinforcement of food packaging. This review presents the latest advances in the application of delivery systems in food packaging, including the types of delivery systems used in food packaging, reinforced properties of food packaging, and potential applications in the food industry. Previous scientific studies found that active ingredient-loaded delivery carriers increased the effectiveness of food packaging in preventing food spoilage. Furthermore, the integration of active packaging with smart food packaging exhibits the synergistic effects of freshness monitoring and quality preservation. This review also discusses the challenges and trends in reinforcing food packaging with delivery carriers under a synergistic strategy that will provide new ideas and insights for the development and application of innovative food packaging.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Yao Song
- Department of Dairy Chemical Engineering, Beijing Technology and Business University, Beijing, P. R. China
| | - Xiyue Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Jian Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Hui Sun
- Huanan Nongshengyuan Food Co., Ltd., Huanan County, Heilongjiang, P. R. China
| |
Collapse
|
16
|
Liu J, Fauconnier ML, Richel A, Jin Y. Preparation of active films with antioxidant and antimicrobial properties by combining ginger essential oil nanoemulsion with xylan and polyvinyl alcohol. Int J Biol Macromol 2024; 281:135780. [PMID: 39419679 DOI: 10.1016/j.ijbiomac.2024.135780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Due to the environmental challenges of petroleum-based packaging, new biodegradable and active food packaging has garnered significant attention. In this work, active films were generated with xylan/polyvinyl alcohol (PVA) as the film-forming matrix, combined with ginger essential oil nanoemulsions (GEO-NEs) at varying concentrations (2.0 %, 4.0 %, 6.0 %, and 8.0 % w/w). The GEO-NEs, produced via ultrasound, had a mean particle size measuring 176.4 ± 1.2 nm and demonstrated excellent stability for up to 28 d. FTIR and XRD analyses revealed that interactions between GEO-NEs and the film matrix occurred through hydrogen bonding, indicating good compatibility between the components. Incorporating GEO-NEs significantly enhanced the UV shielding performance and mechanical characteristics of the composite films, achieving mechanical characteristics comparable to those of commercial packaging materials such as high-density polyethylene (HDPE). Additionally, composite films with 2 % and 4 % GEO-NEs exhibited lower water vapor permeability (WVP) than the control film, indicating improved water barrier performance. GEO-NEs also significantly improved the antioxidant activity of the composite films and imparted certain antimicrobial properties. As a result, these films hold promise for applications in active food packaging.
Collapse
Affiliation(s)
- Junhan Liu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Yuhong Jin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
17
|
Alanazi AA, Saber WIA, AlDamen MA, Elattar KM. Green synthesis, characterization, and multifunctional applications of Ag@CeO 2 and Ag@CeO 2-pullulan nanocomposites for dye degradation, antioxidant, and antifungal activities. Int J Biol Macromol 2024; 280:135862. [PMID: 39322159 DOI: 10.1016/j.ijbiomac.2024.135862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The synthesis and characterization of novel nanocomposites with unique properties have garnered significant interest. Ag@CeO2 nanocomposite and its pullulan counterparts were prepared using a green approach involving rosemary extract. Characterization techniques, including Fourier Transform Infrared Spectroscopy, UV-visible spectroscopy, zeta potential, Dynamic Light Scattering, High-Resolution Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, Scanning Electron Microscopy, and X-ray Diffraction, confirmed the formation of Ag@CeO2 nanoparticles (NPs). Pullulan led to increased particle size and improved homogeneity. Employing the Artificial Neural Networks (ANN) model to optimize methylene blue removal by Ag@CeO2 NPs and Ag@CeO2-pullulan NPs demonstrated predictive capabilities up to 97.53 % of MB removal (R2 = 0.9991). The antioxidant test demonstrated that rosemary extract exhibited the highest activity (IC50 = 0.011 mg/mL), then Ag@CeO2 NPs (IC50 = 0.039 mg/mL), and Ag@CeO2-pullulan NPs (IC50 = 0.041 mg/mL). Both Ag@CeO2 NPs and Ag@CeO2-pullulan NPs inhibited Candida albicans growth, with the latter exhibiting enhanced efficacy (MIC = 468.27, MFC = 936.53, and IC50 = 129.60 μg/mL). The study successfully synthesized novel Ag@CeO2-based nanocomposites coupled with pullulan with promising applications in dye removal, and antimicrobial therapy. The incorporation of pullulan improved the properties of the nanocomposites, enhancing their potential for practical use in environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdulaziz A Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| | - Murad A AlDamen
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| |
Collapse
|
18
|
Wang X, Xue Z, Sun Y, Peng B, Wu C, Kou X. Chitosan-ginger essential oil nanoemulsions loaded gelatin films: A biodegradable material for food preservation. Int J Biol Macromol 2024; 280:135791. [PMID: 39306174 DOI: 10.1016/j.ijbiomac.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The alarming issue of food waste, coupled with the potential risks posed by petroleum-based plastic preservation materials to both the environment and human health necessitate innovative solutions. In this study, we prepared nanoemulsions (NEs) of chitosan (CS) and ginger essential oil (GEO) and systematically evaluated the effects of varying NEs concentrations (0, 10 %, 30 %, 50 %) on the physicochemical properties and biological activities of gelatin films. These films were subsequently applied to blueberry preservation. The scanning electron microscopy confirmed that the NEs were well-integrated with the Gel matrix, significantly enhancing the performance of the Gel films, including improvements of mechanical properties (tensile strength from 7.71 to 19.92 MPa; elongation at break from 38.55 to 113.65 %), thermal, and barrier properties (water vapor permeability from 1.52 × 10-9 to 6.54 × 10-10 g·m/Pa·s·m2). The films exhibited notable antibacterial and antioxidant activities due to the gradual release of GEO, thereby extending the storage life of blueberries. Moreover, the prepared composite films demonstrated excellent biodegradability and environmental friendliness, with the majority of the material decomposing within 30 days under soil microbial action. In conclusion, the active films loaded with NEs exhibit superior performance and hold significant potential for developing biodegradable materials for food preservation.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yijie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bo Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
19
|
Wei HN, Liu XY, Wang CC, Feng R, Zhang B. Characteristics of corn starch/polyvinyl alcohol composite film with improved flexibility and UV shielding ability by novel approach combining chemical cross-linking and physical blending. Food Chem 2024; 456:140051. [PMID: 38901078 DOI: 10.1016/j.foodchem.2024.140051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
With the aim of effectively improving the performance of bio-friendly food packaging and circumventing the hazards associated with petroleum-based plastic food packaging, composite films of corn starch and polyvinyl alcohol were prepared using a new method that involved chemical cross-linking of glutaraldehyde and blending with cinnamon essential oil nanoemulsion (CNE). Glutaraldehyde and CNE enhance the film's network structure by chemical bonding and hydrogen bonding, respectively. This results in improved surface smoothness, mechanical properties, and UV shielding ability of the film. However, the films' surface hydrophilicity increased as a result of CNE, which is harmful for food preservation in high humidity. Overall, glutaraldehyde and CNE have a synergistic effect on some of the properties of the film which is mainly attributed to the films' structure improvement. The films have great potential for preparing flexible and UV-shielding films and offer new ideas for developing biodegradable films.
Collapse
Affiliation(s)
- Hao-Nan Wei
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Xin-Yue Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Chen-Chen Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
20
|
Almeida MF, Silva GL, Gondim GD, Alves CEF, Silva MC, de Andrade Braga Mendes B, Dos Anjos DA, São José AR, Veloso CM. Maintenance of postharvest quality of 'Palmer' mango coated with biodegradable coatings based on cassava starch and emulsion of lemongrass essential oil. Int J Biol Macromol 2024; 277:134323. [PMID: 39094871 DOI: 10.1016/j.ijbiomac.2024.134323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
This study aimed to evaluate the effect of applying oxidized cassava starch-based edible coatings with addition of lemongrass essential oil emulsion on 'Palmer' mangoes stored under refrigeration. A completely randomized design was used, arranged in a 5 × 3 factorial scheme, with five types of coatings and three evaluation times. The evaluated postharvest quality parameters consisted of weight loss, pulp and peel firmness, biochemical transformations related to pigments, and pulp and peel coloration of mango. The application of edible coatings with a 0.9 % EO concentration resulted in delayed fruit ripening, evidenced mainly by a 7.25 % reduction in weight loss, a 29.23 % increase in soluble solids content, and a 24.15 % decrease in total chlorophyll, when compared to uncoated fruits, which showed 19.8 %, 48.66 %, and 82.00 %, respectively, over the storage period. This effect was also evident in the angle Hue (°h) measurement, with uncoated fruits showing a decrease of 32.2 %. The antimicrobial effect and absence of anthracnose symptoms were observed in the fruits in which the coating with 0.9 % EO was applied. Therefore, biodegradable coating with the addition of 0.9 % emulsion EO, can be used as postharvest treatments for maintenance quality of 'Palmer' mangoes during refrigerated storage.
Collapse
Affiliation(s)
- Matheus Ferreira Almeida
- State University of Southwest Bahia (UESB), Chemistry Laboratory III, 45031-300 Vitória da Conquista, BA, Brazil
| | - Gabriela Leite Silva
- State University of Southwest Bahia (UESB), Chemistry Laboratory III, 45031-300 Vitória da Conquista, BA, Brazil
| | - Gabriel Duarte Gondim
- State University of Southwest Bahia (UESB), Chemistry Laboratory III, 45031-300 Vitória da Conquista, BA, Brazil
| | - Carlos Eduardo Ferraz Alves
- State University of Southwest Bahia (UESB), Chemistry Laboratory III, 45031-300 Vitória da Conquista, BA, Brazil
| | - Maiara Costa Silva
- State University of Southwest Bahia (UESB), Chemistry Laboratory III, 45031-300 Vitória da Conquista, BA, Brazil
| | | | - Dioneire Amparo Dos Anjos
- State University of Southwest Bahia (UESB), Engineering and Processes Laboratory, 45700-000 Itapetinga, BA, Brazil
| | - Alcebíades Rebouças São José
- State University of Southwest Bahia (UESB), Department of Crop Science and Animal Science (DFZ), 45031-300 Vitória da Conquista, BA, Brazil
| | - Cristiane Martins Veloso
- State University of Southwest Bahia (UESB), Department of Natural Sciences (DCN), 45031-300 Vitória da Conquista, BA, Brazil.
| |
Collapse
|
21
|
Hu F, Song YZ, Thakur K, Zhang JG, Khan MR, Ma YL, Wei ZJ. Blueberry anthocyanin based active intelligent wheat gluten protein films: Preparation, characterization, and applications for shrimp freshness monitoring. Food Chem 2024; 453:139676. [PMID: 38776795 DOI: 10.1016/j.foodchem.2024.139676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The aim of this study was to prepare active intelligent gluten protein films using wheat gluten protein (WG) and apple pectin (AP) as film-forming matrices, and blueberry anthocyanin extract (BAE) as a natural indicator. SEM and FT-IR analyses demonstrated the successful immobilization of BAE in the film matrix by hydrogen bonding interactions and its compatibility with WG and AP. The resultant WG-AP/BAE indicator films demonstrated notable antioxidant activity, color stability, barrier qualities, pH and ammonia response sensitivity, and mechanical properties. Among them, WG-AP/BAE5 exhibited the best mechanical properties (TS: 0.83 MPa and EB: 242.23%) as well as the lowest WVP (3.92 × 10-8 g.m/m2.Pa.s), and displayed high sensitivity to volatile ammonia. In addition, WG-AP/BAE5 showed a color shift from purplish red to green to yellowish green, demonstrating the monitoring of shrimp freshness in real time. Consequently, this study offers a firm scientific foundation for the development of active intelligent gluten protein films and their use in food freshness assessments.
Collapse
Affiliation(s)
- Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Yu-Zhu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
22
|
Khan S, Li M, Cheng M, Shu Y, Liang T, Shah H, Zhu H, Khan S, Zhang Z. Fabrication and characterization of Karaya gum-based films reinforced with bacterial nanocellulose stabilized valerian root extract Pickering emulsion for lamb meat preservation. Int J Biol Macromol 2024; 276:133875. [PMID: 39019366 DOI: 10.1016/j.ijbiomac.2024.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
A novel biodegradable film was fabricated by incorporating bacterial nanocellulose stabilized valerian root extract (VRE) Pickering emulsion into karaya gum with better antioxidant and antibacterial properties for lamb meat preservation. The valerian root extract Pickering emulsion (VPE) exhibited 98 ± 1.84 % encapsulating efficiency and excellent physical stability with an average particle size of 274.6 nm. The incorporation of VPE-5 into the film matrix increased its elongation at break (EAB), and improved water resistance and barrier properties against oxygen, water vapor, and UV light. Moreover, the antioxidant and anti-bacterial properties against S.aerous and E. coli were also improved based on VPE-5 concentration. The SEM images showed a uniform distribution of VPE-5 while FTIR and XRD revealed its compatibility with karaya gum, which improved its thermal stability. The active films showed a significant preservative effect by reducing the pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), and total viable count (TVC) value of lamb meat and maintained its texture and color during the storage period of 9 days at 4 °C. These results demonstrated the inclusion of VPE-5 into Karaya gum was a promising technique and offers a great potential application as a bioactive material in food packaging.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Mengli Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ming Cheng
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China; Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan, Hebei 545000, PR China
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Haroon Shah
- Advanced innovation Center for Food Nutrition and human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Hanyu Zhu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Salman Khan
- Lab of brewing microbiology and applied enzymology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, College of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China.
| |
Collapse
|
23
|
Lim HJ, Tang SY, Chan KW, Manickam S, Yu LJ, Tan KW. A starch/gelatin-based Halochromic film with black currant anthocyanin and Nanocellulose-stabilized cinnamon essential oil Pickering emulsion: Towards real-time Salmon freshness assessment. Int J Biol Macromol 2024; 274:133329. [PMID: 38908640 DOI: 10.1016/j.ijbiomac.2024.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Neoterically, food packaging systems designed solely for prolonging shelf life or monitoring freshness could not fulfil the dynamic demands of consumers. In this current investigation, using the solvent casting method, a versatile halochromic indicator was created by integrating black currant anthocyanin and cinnamon essential oil-loaded Pickering emulsion into a starch/gelatin matrix. The resulting indicator film underwent scrutiny for its structural, pH-sensitive, antioxidant, and antimicrobial attributes. Unexpectedly, the amalgamation of anthocyanin and essential oil led to decreased antioxidant activity, dropping from 73.23 ± 2.17 to 28.87 ± 2.50 mg Trolox equivalent/g sample. Additionally, no discernible antimicrobial properties were detected in the composite film sample against both Staphylococcus aureus and Escherichia coli. Fourier transform infrared analyses unveiled robust intermolecular interactions among the film-forming components, providing insights into the observed antagonistic effect. The indicator film displayed distinctive colour changes corresponding to the fresh (greyish-brown), onset of decomposition (khaki), and spoiled (dark green) stages of the stored fish sample. This highlights its promising potential for providing real-time indications of food spoilage. These findings are important for the efficient design of composite films incorporating anthocyanins and essential oils. They serve as a guide towards their potential use as multifunctional packaging materials in the food industry.
Collapse
Affiliation(s)
- Hong Jun Lim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Lih Jiun Yu
- Faculty of Engineering, Technology, and Built Environment, UCSI University Kuala Lumpur, Campus, No. 1, Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras 56000, Kuala Lumpur, Malaysia
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
24
|
Tavassoli M, Bahramian B, Abedi-Firoozjah R, Ehsani A, Phimolsiripol Y, Bangar SP. Application of lactoferrin in food packaging: A comprehensive review on opportunities, advances, and horizons. Int J Biol Macromol 2024; 273:132969. [PMID: 38857733 DOI: 10.1016/j.ijbiomac.2024.132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Lactoferrin (LAC) is an iron-binding glycoprotein found in mammalian secretion, such as milk and colostrum, which has several advantageous biological characteristics, such as antioxidant and antimicrobial activity, intestinal iron absorption and regulation, growth factor activity, and immune response. LAC is an active GRAS food ingredient and can be included in the food packaging/film matrix in both free and encapsulated forms to increase the microbial, mechanical, barrier, and thermal properties of biopolymer films. Additionally, LAC-containing films maintain the quality of fresh food and extend the shelf life of food products. This paper primarily focuses on examining how LAC affects the antimicrobial, antioxidant, physical, mechanical, thermal, and optical properties of packaging films. Moreover, the paper explains the attributes of films incorporating LAC within different matrices, exploring the interaction between LAC and polymers. The potential of LAC-enhanced food packaging technologies is highlighted, showcasing their promising applications in sustainable food packaging.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Bahramian
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Sneh Punia Bangar
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Food, Nutrition and Packaging Sciences, Clemson University, SC, 29634, USA.
| |
Collapse
|
25
|
Yan ZH, Dou RR, Wei F, Yang JH, Cui S, Sun MJ, Kang CY, Zhao CQ. Effects of eugenol on physicochemical properties of sturgeon skin collagen-chitosan composite membrane. J Food Sci 2024; 89:4032-4046. [PMID: 38778552 DOI: 10.1111/1750-3841.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.
Collapse
Affiliation(s)
- Zi-Heng Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Rong-Rong Dou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Fang Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Jia-Hua Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Shan Cui
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Mei-Jun Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Yu Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Qing Zhao
- Department of Continuing Education, Baoding Open University, Baoding, P. R. China
| |
Collapse
|
26
|
Ma Y, Cao Y, Zhang L, Yu Q. Preservation of chilled beef using active films based on bacterial cellulose and polyvinyl alcohol with the incorporation of Perilla essential oil Pickering emulsion. Int J Biol Macromol 2024; 271:132118. [PMID: 38811316 DOI: 10.1016/j.ijbiomac.2024.132118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
In this study, Perilla essential oil (PEO) Pickering emulsions, prepared using soybean protein isolate-chitosan nanoparticles (SPI-CSNPs) as emulsifiers (SCEO), were used to improve the performance of bacterial cellulose/polyvinyl alcohol (BC/PVA) films for application in chilled beef preservation. The SCEO has a smaller particle size (185 nm), higher viscosity, a more uniform dispersion and was more stable at an oil phase volume fraction of 80 %. An increase in the films' surface roughness and in the hydrogen bonding between SCEO and the films' matrix was also observed, resulting in a lower tensile strength (TS, 94.75-62.02 MPa) and higher elongation at break (EAB, 26.78-55.62 %). Moreover, the thermal stability, water vapor permeability, antioxidant and antibacterial properties of the composite films improved as the SCEO content increased. Furthermore, the Pickering emulsion method was effective in preventing the loss of PEO during storage. Overall, one particular composite film, BP/SCEO3, could prolong the shelf life of chilled beef by up to 14 days, and hence was promising for food preservation.
Collapse
Affiliation(s)
- Yuying Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
27
|
Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol 2024; 269:132067. [PMID: 38710257 DOI: 10.1016/j.ijbiomac.2024.132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Nowadays food safety and protection are a growing concern for food producers and food industry. The stability of food-grade materials is key in food processing and shelf life. Pickering emulsions (PEs) have gained significant attention in food regimes owing to their stability enhancement of food specimens. PE can be developed by high and low-energy methods. The use of PE in the food sector is completely safe as it uses solid biodegradable particles to stabilize the oil in water and it also acts as an excellent carrier of essential oils (EOs). EOs are useful functional ingredients, the inclusion of EOs in the packaging film or coating formulation significantly helps in the improvement of the shelf life of the packed food item. The highly volatile nature, limited solubility and ease of oxidation in light of EOs restricts their direct use in packaging. In this context, the use of PEs of EOs is suitable to overcome most of the challenges, Therefore, recently there have been many papers published on PEs of EOs including active packaging film and coatings and the obtained results are promising. The current review amalgamates these studies to inform about the chemistry of PEs followed by types of stabilizers, factors affecting the stability and different high and low-energy manufacturing methods. Finally, the review summarizes the recent advancement in PEs-added packaging film and their application in the enhancement of shelf life of food.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | | | | | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
28
|
Yang S, Ban Z, Jin L, Chen C, Li L, Yi G, Abdollahi M, Liu L. Polyvinyl alcohol films incorporated with clove essential oil emulsions stabilized by soy protein isolate-derived amyloid fibrils: Fabrication, characterization, and its application for active packaging. Food Chem 2024; 440:138245. [PMID: 38159320 DOI: 10.1016/j.foodchem.2023.138245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.
Collapse
Affiliation(s)
- Suhua Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Linxuan Jin
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Product), Tianjin Academy of Agricultural Sciences, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of the People's Republic of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guohui Yi
- Public Research Center, Hainan Medical University, Haikou 571199, China
| | - Mehdi Abdollahi
- Department of Life Sciences-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Lingling Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China.
| |
Collapse
|
29
|
Liu M, Shen R, Wang L, Yang X, Zhang L, Ma X, He L, Li A, Kong X, Shi H. Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol. Foods 2024; 13:1506. [PMID: 38790806 PMCID: PMC11120539 DOI: 10.3390/foods13101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study is to produce a biodegradable food packaging material that reduces environmental pollution and protects food safety. The effects of total solids content, substrate ratio, polyphenol content, and magnetic stirring time on bovine bone gelatin/sodium carboxymethylcellulose nanoemulsion (BBG/SCMC-NE) were investigated using particle size, PDI, turbidity, rheological properties, and zeta potential as evaluation indexes. The micro, structural, antioxidant, encapsulation, and release properties were characterized after deriving its optimal preparation process. The results showed that the nanoemulsion was optimally prepared with a total solids content of 2%, a substrate ratio of 9:1, a polyphenol content of 0.2%, and a magnetic stirring time of 60 min. SEM showed that the nanoemulsion showed a dense and uniform reticulated structure. FTIR and XRD results showed that covalent cross-linking of proteins and polysaccharides altered the structure of gelatin molecular chains to a more compact form but did not change its semi-crystalline structure. DSC showed that the 9:1 BBG/SCMC-NE had a higher thermal denaturation temperature and greater thermal stability, and its DPPH scavenging rate could reach 79.25% and encapsulation rate up to 90.88%, with excellent slow-release performance. The results of the study provide basic guidance for the preparation of stable active food packaging with excellent properties.
Collapse
Affiliation(s)
- Mengying Liu
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Liyuan Wang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Long He
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Aixia Li
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 810200, China;
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Hezuo 746300, China;
| |
Collapse
|
30
|
Abedi E, Sayadi M, Oliyaei N. Fabrication and characterization of emulsion-based edible film containing cinnamon essential oil using chia seed mucilage. Int J Biol Macromol 2024; 266:131173. [PMID: 38554904 DOI: 10.1016/j.ijbiomac.2024.131173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chia seed mucilage (CSM) film incorporated with 2, 4, and 6 % (w/w) nanoemulsion of cinnamon essential oil (CSM-2, CSM-4, CSM-6) were developed, and their physicochemical, mechanical, antioxidant, and antimicrobial properties were determined. According to the results, cinnamon EO nanoemulsion (CEN) had droplet size 196.07 ± 1.39 nm with PDI 0.47 ± 0.04. Moreover, CSM film had higher water solubility (99.37 ± 0.05 %) and WVP (8.55 ± 1.10 g/kPa h m2) than reinforced CSM films with CENCEN. The lowest water solubility (98.02 ± 0.01 %) and WVP (3.75 ± 0.80 g/kPa h m2) was observed in CSM-6 film. Moreover, the addition of CEN improved the homogeneity and density of films and the smoothness of the surface, being observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy also confirmed the incorporation of CEN within the film matrix. The CSM films' antioxidant (DPPH radical scavenging power) and antimicrobial (against Escherichia coli and Staphylococcus aureus) properties of CSM films were notably enhanced with the inclusion of CEN in a dose-dependent manner. The mechanical (tensile strength and elongation at break) of CSM films also was affected by the addition of CEN, TS decreased, and EAB increased (p < 0.05). The lowest TS (20.63 ± 1.39 MPa) and highest EAB (3.36 ± 0.61 %) was observed in CSM-4 film. However, CSM film was relatively dark with low opacity, and adding CEN slightly increased lightness (L*) and yellowness (b*) parameters. The superior antioxidant and barrier characteristics of the CSM edible film incorporated with CEN make it a potential candidate for product packaging and shelf-life extension.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Mehran Sayadi
- Department of Food Safety and Hygiene, Faculty of Health, Fasa University of Medical Sciences, Fasa, Iran.
| | - Najmeh Oliyaei
- Department of Food Science and Technology, and Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
31
|
Chen C, Zhang S, Cheng X, Ren Y, Qian Y, Zhang C, Chen M, Sun N, Liu H. Reducing cherry rain-cracking: Enhanced wetting and barrier properties of chitosan hydrochloride-based coating with dual nanoparticles. Int J Biol Macromol 2024; 268:131660. [PMID: 38636766 DOI: 10.1016/j.ijbiomac.2024.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.
Collapse
Affiliation(s)
- Chengwang Chen
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Shuangling Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China.
| | - Xiaofang Cheng
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yuhang Ren
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yaru Qian
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Cheng Zhang
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Min Chen
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Nan Sun
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Heping Liu
- College of Food Science & Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| |
Collapse
|
32
|
Wang H, Yuan D, Meng Q, Zhang Y, Kou X, Ke Q. Pickering nanoemulsion loaded with eugenol contributed to the improvement of konjac glucomannan film performance. Int J Biol Macromol 2024; 267:131495. [PMID: 38614180 DOI: 10.1016/j.ijbiomac.2024.131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the β-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.
Collapse
Affiliation(s)
- Hui Wang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Dan Yuan
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| |
Collapse
|
33
|
Rui L, Li Y, Wu X, Wang Y, Xia X. Effect of clove essential oil nanoemulsion on physicochemical and antioxidant properties of chitosan film. Int J Biol Macromol 2024; 263:130286. [PMID: 38382795 DOI: 10.1016/j.ijbiomac.2024.130286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
This study evaluated the physicochemical and antioxidant properties of clove essential oil (0, 0.2, 0.4, 0.6, 0.8, 1.0 % v/v) nanoemulsion (CEON) loaded chitosan-based films. With the increasing concentrations of the CEON, the thickness, b* and ΔE values of the films increased significantly (P < 0.05), while L* and light transmission dropped noticeably (P < 0.05). The hydrogen bonds formed between the CEON and chitosan could be demonstrated through Fourier-transform infrared spectra, indicating their good compatibility and intermolecular interactions. Furthermore, the added CEON considerably reduced the crystallinity and resulted in a porous structure of the films, as observed through X-ray diffraction plots and scanning electron microscopy images, respectively. This eventually led to a drop in both tensile strength and moisture content of the films. Moreover, the antioxidant properties were significantly enhanced (P < 0.05) with the increase in the amount of clove essential oil (CEO) due to the encapsulation of CEO by the nanoemulsion. Films containing 0.6 % CEO had higher elongation at break, higher water contact angle, lower water solubility, lower water vapor permeability, and lower oxygen permeability than the other films; therefore, such films are promising for application in meat preservation.
Collapse
Affiliation(s)
- Litong Rui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., LTD., Daqing, Heilongjiang 163000, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., LTD., Daqing, Heilongjiang 163000, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
34
|
Guo X, Wang X, Wei Y, Liu P, Deng X, Lei Y, Zhang J. Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol. Food Chem 2024; 435:137597. [PMID: 37797451 DOI: 10.1016/j.foodchem.2023.137597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Pickering emulsions were prepared by stabilizing thymus vulgaris essential oil (TEVO) with cellulose nanocrystals (CNCs), which formed composite films by loading the emulsions into modified tapioca/polyvinyl alcohol (PVA)-based films. The results showed that the 1.0 % CNCs-15 % TEVO emulsion had optimal stability and smaller particle size. The emulsion increased the thickness of the composite film in the form of solid material additions (thickness, 0.062-0.099 mm), which opacity given the laminating film's superior UV-blocking ability compared to blank film. The emulsion plasticizing effect enhanced the film's elongation at break (EAB, 123-159 %). In addition, due to the hydrophobicity and influencing the diffusion path of water molecules in the emulsion, the denser microstructure composite film had a lower water vapor transmission coefficient (WVP, 6.22 × 10-11-5.35 × 10-11g∙cm/cm2∙s∙Pa) to impede moisture penetration. Meanwhile, the composite film can effectively maintain the color and inhibit the growth of microorganisms to extend the storage time of fish fillets.
Collapse
Affiliation(s)
- Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and ministerial cooperation), Shihezi University, Shihezi 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xiaorui Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and ministerial cooperation), Shihezi University, Shihezi 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and ministerial cooperation), Shihezi University, Shihezi 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and ministerial cooperation), Shihezi University, Shihezi 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and ministerial cooperation), Shihezi University, Shihezi 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and ministerial cooperation), Shihezi University, Shihezi 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs (Provincial and ministerial cooperation), Shihezi University, Shihezi 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
35
|
Hosseiniyeh N, Mohtarami F, Almasi H, Azizi S. Soy protein isolate film activated by black seed oil nanoemulsion as a novel packaging for shelf-life extension of bulk bread. Food Sci Nutr 2024; 12:1706-1723. [PMID: 38455173 PMCID: PMC10916664 DOI: 10.1002/fsn3.3864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024] Open
Abstract
This paper investigates the addition of lecithin-emulsified black seed oil (BSO) nanoemulsions (LNEO) and whey protein isolate-stabilized Pickering emulsions (WPEO) to soy protein isolate (SPI)-based films and their effect on improving the shelf life of bread slices. The half-life of antioxidant activity, water vapor permeability, biodegradability, density, color difference, and film thickness significantly increased (p < .05) when BSO was added. However, the incorporation of BSO significantly reduced the solubility, tensile strength, strain to break (except for WPEO), and transparency (p < .05) of the samples. The interaction between SPI film and BSO-loaded nanocarriers, as well as the morphological properties of films, was evaluated using FT-IR and FE-SEM. SPI-based films containing LNEO-5% and WPEO-5% were selected based on their mechanical and barrier properties. The effect of films on the shelf life of bread slices was investigated for 17 days of storage. LNEO samples obtained the most acceptable results in the bread in terms of sensory evaluation and color properties. According to the results, bread slices packed in SPI film containing LNEO-5% showed no signs of mold growth until the 17th day of storage, whereas the sample packed in a low-density polyethylene bag began to corrupt on the 6th day. This study highlights the potential of BSO-loaded SPI films as a novel active packaging for the bakery industry.
Collapse
Affiliation(s)
- Negin Hosseiniyeh
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Forogh Mohtarami
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Saeedeh Azizi
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| |
Collapse
|
36
|
Zhang Y, Pu Y, Jiang H, Chen L, Shen C, Zhang W, Cao J, Jiang W. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chem 2024; 435:137534. [PMID: 37769562 DOI: 10.1016/j.foodchem.2023.137534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
The insufficient water vapor barrier and mechanical capacity of sodium alginate (SA) film limited its application in fruit preservation. Herein, cellulose nanocrystals (CNCs) were used to stabilize Pickering emulsion. Then, we prepared SA composite films. Ginger essential oil (GEO) was loaded as antimicrobials and antioxidants. Finally, the application on mangos were investigated. Compared to coarse emulsion, Pickering emulsion and its film-formation-solution showed more stable system and larger droplet size. The emulsion significantly changed the properties of SA film. Specifically, CNCs improved the thermal, tensile, and barrier properties of the film and GEO enhanced the ultraviolet-visible light barrier capacity. Additionally, the SA/CNC film possessed a homogeneous micromorphology which had a sustained-release effect on GEO, thus maintaining high postharvest quality and long-term bioavailability for mangos. In conclusion, the film prepared via Pickering emulsion showed satisfactory properties which had great potential in fruit preservation.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chaoyu Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
37
|
Wang K, Wang Y, Cheng M, Wang Y, Zhao P, Xi X, Lu J, Wang X, Han X, Wang J. Preparation and characterization of active films based on oregano essential oil microcapsules/soybean protein isolate/sodium carboxymethyl cellulose. Int J Biol Macromol 2024; 258:128985. [PMID: 38154359 DOI: 10.1016/j.ijbiomac.2023.128985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
This study aimed to prepare oregano essential oil microcapsules (EOMs) by the active coalescence method using gelatin and sodium alginate as wall materials and oregano essential oil (OEO) as the core material. EOMs were added to the soybean protein isolate (SPI)/sodium carboxymethyl cellulose (CMC) matrix to prepare SPI-CMC-EOM active films, and the physical and chemical features of the active films and EOMs were characterized. The results showed that the microencapsulated OEO could protect its active ingredients. Scanning electron microscopy results showed that EOMs were highly compatible with the film matrix. The solubility of active films decreased upon adding EOMs, and their ultraviolet resistance and thermal stability also improved. When the added amount of EOMs was 5 %, the active films had the best mechanical properties and the lowest water vapor permeability. The active films prepared under this condition had excellent comprehensive performance. Also, adding EOMs considerably enhanced the antioxidant of the active films and endowed them with antibacterial properties. The application of the SPI-CMC-EOM films to A. bisporus effectively delayed senescence and maintained the freshness of the postharvest A. bisporus. This study provided a theoretical foundation for the incorporation of EOMs into active films based on biological materials.
Collapse
Affiliation(s)
- Kaiyue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yifan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yirong Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Peixin Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiumei Xi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jinhang Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xin Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
38
|
Yang L, Zhou C, Liu Y, He Z, Zhang M, Wang C, Yang Z, Li P. Enhanced mechanical properties and antibacterial activities of chitosan films through incorporating zein-gallic acid conjugate stabilized cinnamon essential oil Pickering emulsion. Int J Biol Macromol 2024; 258:128933. [PMID: 38143071 DOI: 10.1016/j.ijbiomac.2023.128933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
In this study, zein-gallic acid covalent complex prepared by alkali treatment was utilized as an emulsifier to stabilize cinnamon essential oil (CEO) Pickering emulsion, and the chitosan-based (CZGE) films loaded with CEO Pickering emulsion were prepared by blending. The influences of different contents of CEO Pickering emulsion on the physical properties and biological activities of CZGE films were investigated. The results showed that Pickering emulsion had good compatibility with chitosan matrix and enhanced the interaction between film-forming matrix polymer. In addition, incorporating with CEO Pickering emulsion (15 %, v/v) significantly improved the mechanical and barrier properties of the films, and also enhanced the light transmittance and thermal stability of the films. Furthermore, the loading of emulsion also improved the antioxidant activities of the films and led to the formation of high antimicrobial property against food pathogens, and the slow-release behavior of CEO could effectively extend the biological activity of the films. These results suggested that Pickering emulsion has potential as a loading system and a plasticizer in active packaging, and the feasibility of CZGE film in food packaging.
Collapse
Affiliation(s)
- Linjie Yang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuang Zhou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| | - Yunhao Liu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Zuyu He
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Mengru Zhang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chao Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Ziming Yang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| | - Puwang Li
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| |
Collapse
|
39
|
Felicia WXL, Kobun R, Nur Aqilah NM, Mantihal S, Huda N. Chitosan/aloe vera gel coatings infused with orange peel essential oils for fruits preservation. Curr Res Food Sci 2024; 8:100680. [PMID: 38328465 PMCID: PMC10847790 DOI: 10.1016/j.crfs.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Continuous fruit waste poses significant environmental and economic challenges, necessitating innovative fruit coating technologies. This research focuses on harnessing discarded orange peels to extract essential oil (OPEO), which is then integrated into a chitosan/aloe vera (CTS/AVG) matrix. The study comprehensively characterised the coating in terms of its physicochemical properties, antioxidant capacity, and antimicrobial efficacy. The investigation involved an analysis of particle size and distribution in the coating solutions, highlighting changes induced by the incorporation of orange peel essential oil (1 %, 2 % and 3 % v/w) into the chitosan/aloe vera (4:1 v/v) matrix, including particle size reduction and enhanced Brownian motion. The study quantifies a 33.21 % decrease in water vapour transmission rate and a reduction in diffusion coefficient from 9.26 × 10-11 m2/s to 6.20 × 10-11 m2/s following the addition of OPEO to CTS/AVG. Assessment of antioxidant potential employing DPPH radical scavenging assays, revealed that CTS/AVG/3 %OPEO exhibited notably superior radical scavenging activity compared to CTS/AVG, CTS/AVG/1 %OPEO, and CTS/AVG/2 %OPEO, demonstrated by its IC50 value of 17.01 ± 0.45 mg/mL. The study employs the well diffusion method, demonstrating a higher susceptibility of gram-negative bacteria to the coating solutions than gram-positive counterparts. Remarkably, CTS/AVG/3 %OPEO displayed the most pronounced inhibition against Escherichia coli, generating an inhibitory zone diameter of 14 ± 0.8 mm. The results collectively emphasised the potential of CTS/AVG/3 %OPEO as a viable natural alternative to synthetic preservatives within the fruit industry, attributed to its exceptional antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nasir Md Nur Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Sylvester Mantihal
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Jalan Sg. Batang, Mile 10, UMS Sandakan Campus, 90000, Sandakan, Sabah, Malaysia
| |
Collapse
|
40
|
Acharya DR, Liu S, Lu H, Albashir D, Koirala P, Shi Y, Chen Q. Nanoemulsion-integrated gelatin/bacterial cellulose nanofibril-based multifunctional film: Fabrication, characterization, and application. Int J Biol Macromol 2024; 257:128341. [PMID: 38029904 DOI: 10.1016/j.ijbiomac.2023.128341] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The current requirements of food safety regulations and the environmental impact stemming from plastic packaging can only be addressed by developing suitable bio-nanocomposite films. Therefore, this study is dedicated to the fabrication of multifunctional film composed of gelatin, bacterial cellulose nanofibrils (BCNF), and black pepper essential oil nanoemulsion (BPEONE) and application for duck meat preservation. BCNF was prepared through ultrasonication of cellulose derived from Komagataeibacter xylinus. BPEONE observed spherical morphology with a diameter ranging from 83.7 to 118 nm. A film matrix containing a higher gelatin proportion than BCNF was more effective in trapping BPEONE. However, increasing the BPEONE fraction showed more surface abrasion and voids in the film morphology. A flexible film with good interaction, crystallinity, and greater thermal stability (421 °C) was developed. Nevertheless, film hydrophobicity (118.89°) declined, resulting in a notable effect on water solubility, swelling, and water vapor permeability. Moreover, the film had improved antibacterial and antioxidant activities, coupled with controlled release characteristics. Consequently, the developed film effectively retarded the lipid oxidation, inhibited microbial growth, and extended the shelf life of duck meat at refrigeration (4 °C) by 3 days, and made the film a promising alternative in the realm of bio-active packaging technology.
Collapse
Affiliation(s)
- Dev Raj Acharya
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dafaallah Albashir
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Future Food Laboratory, Innovation Centre of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
41
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
42
|
Zhang Q, Kong B, Liu H, Du X, Sun F, Xia X. Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Compr Rev Food Sci Food Saf 2024; 23:e13279. [PMID: 38284612 DOI: 10.1111/1541-4337.13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Pickering emulsion (PE) technology effectively addresses the issues of poor compatibility and low retention of hydrophobic active ingredients in food packaging. Nonetheless, it is important to recognize that each stage of the preparation process for PE films/coatings (PEFCs) can significantly influence their functional properties. With the fundamental considerations of environmental friendliness and human safety, this review extensively explores the potential of raw materials for PEFC and introduces the preparation methods of nanoparticles, emulsification technology, and film-forming techniques. The critical factors that impact the performance of PEFC during the preparation process are analyzed to enhance food preservation effectiveness. Moreover, the latest advancements in PE packaging across diverse food applications are summarized, along with prospects for innovative food packaging materials. Finally, the preservation mechanism and application safety have been systematically elucidated. The study revealed that the PEFCs provide structural flexibility, where designable nanoparticles offer unique functional properties for intelligent control over active ingredient release. The selection of the dispersed and continuous phases, along with component proportions, can be customized for specific food characteristics and storage conditions. By employing suitable preparation and emulsification techniques, the stability of the emulsion can be improved, thereby enhancing the effectiveness of the films/coatings in preserving food. Including additional substances broadens the functionality of degradable materials. The PE packaging technology provides a safe and innovative solution for extending the shelf life and enhancing the quality of food products by protecting and releasing active components.
Collapse
Affiliation(s)
- Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
43
|
Xin Y, Liu Z, Yang C, Dong C, Chen F, Liu K. Smart antimicrobial system based on enzyme-responsive high methoxyl pectin-whey protein isolate nanocomplex for fresh-cut apple preservation. Int J Biol Macromol 2023; 253:127064. [PMID: 37748593 DOI: 10.1016/j.ijbiomac.2023.127064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The increase in pectin methylesterase (PME) activity on fresh-cut apple surface can smartly trigger the controlled release of bactericidal agents encapsulated within intelligent responsive Pickering emulsions. In this study, we developed a PME-responsive nanocomplex (W-H-II) to stabilize Pickering emulsion containing thyme essential oil (TEO), preserving fresh-cut apples. W-H-II, formed by heat-induced whey protein isolate (WPI) and high methoxyl pectin (HMP) (pH 4.5, 85 °C, 15 min, WPI:HMP ratio 1:2), exhibited good pH stability due to the stabilizing effects of hydrophobic, hydrogen bonding, and electrostatic interactions. The presence of PME triggered the demethylation of HMP within W-H-II, conferring PME response characteristics. Subsequently, a bacteriostasis experiment with pectinase-producing Bacillus subtilis provided evidence of PME-triggered TEO release from W-H-II-stabilized Pickering emulsion. Furthermore, microscopy techniques were employed to verify the demulsification behavior of the emulsion when PME activity ranged from 0.25 to 2.50 U mL-1. Finally, the PME-responsive TEO Pickering emulsion effectively preserved fresh-cut apples. Stored for 6 days at 5 °C and 10 °C, as the PME activity on the apple surface increased, the decay rate of the coated group was 0 %, with a total colony count below 3.0 log CFU g-1. This study introduces a novel intelligent preservation strategy for storing fresh-cut apples.
Collapse
Affiliation(s)
- Ying Xin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhenzhen Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chenhao Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
44
|
Zomorodian N, Javanshir S, Shariatifar N, Rostamnia S. The effect of essential oil of Zataria multiflora incorporated chitosan (free form and Pickering emulsion) on microbial, chemical and sensory characteristics in salmon ( Salmo trutta). Food Chem X 2023; 20:100999. [PMID: 38144780 PMCID: PMC10740042 DOI: 10.1016/j.fochx.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
The objective of current research was to prepare a new biodegradable coating containing chitosan (Ch) and zataria multiflora essential oil (ZMEO) (free and Pickering emulsion (PEO) forms), in order to enhance the Salmo trutta shelf life. Our results showed, the mean of films thickness, mechanical properties (elastic modulus (EM) and tensile strength (TS) analysis) and WVP in different treatments were ranged from 0.103 ± 0.003 (for Ch) to 0.109 ± 0.003 (for Ch-PEO (2.5 %)) µm for thickness, from 3.2 ± 1.6 (for Ch) to 8.15 ± 2.3 (for Ch-EO) MPa for EM, from 1.3 ± 0.5 (for Ch-EO) to 1.6 ± 0.06 (for Ch) Mpa for TS and from 0.1 ± 0.02 (for Ch) to 0.8 ± 0.05 (for Ch-EO) (×10 - 11(g m/m2 s Pa) for WVP. In current research, the lowest and highest total viable counts (TVC) was related to Ch-PEO (1.7 log CFU/g) and control treatments (4.65 log CFU/g). The lowest and highest of pH was related to the Ch-PEO (6.45) and the control (7.1), the lowest and highest of PV (peroxide value) was related to Ch-PEO (0.34 meq/kg) and control treatment (1.37 meq/kg), the lowest and highest of TBARS (thiobarbituric acid reactive substances) was related to Ch-PEO (0.37 mg/kg) and control treatment (2.23 mg/kg) and also the lowest and highest of TVB-N (total volatile base nitrogen) was related to Ch-PEO (17.7 mg) and control (59 mg). Also, Ch-PEO showed the best sensory properties after sixteen days. Among all the treatments in all the tests, the best maintenance property was related to the Ch-PEO, therefore, chitosan coatings containing ZM Pickering emulsion should be considered as a potential active coating in the fish industry.
Collapse
Affiliation(s)
- Nooshin Zomorodian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Shahrzad Javanshir
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Rostamnia
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
45
|
Reis CA, Gomes A, do Amaral Sobral PJ. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications-A Review. Foods 2023; 12:3602. [PMID: 37835255 PMCID: PMC10573032 DOI: 10.3390/foods12193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The rising consumer demand for safer, healthier, and fresher-like food has led to the emergence of new concepts in food packaging. In addition, the growing concern about environmental issues has increased the search for materials derived from non-petroleum sources and biodegradable options. Thus, active films based on biopolymers loaded with natural active compounds have great potential to be used as food packaging. However, several lipophilic active compounds are difficult to incorporate into aqueous film-forming solutions based on polysaccharides or proteins, and the hydrophilic active compounds require protection against oxidation. One way to incorporate these active compounds into film matrices is to encapsulate them in emulsions, such as microemulsions, nanoemulsions, Pickering emulsions, or double emulsions. However, emulsion characteristics can influence the properties of active films, such as mechanical, barrier, and optical properties. This review addresses the advantages of using emulsions to encapsulate active compounds before their incorporation into biopolymeric matrices, the main characteristics of these emulsions (emulsion type, droplet size, and emulsifier nature), and their influence on active film properties. Furthermore, we review the recent applications of the emulsion-charged active films in food systems.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
46
|
Ding ZG, Shen Y, Hu F, Zhang XX, Thakur K, Khan MR, Wei ZJ. Preparation and Characterization of Eugenol Incorporated Pullulan-Gelatin Based Edible Film of Pickering Emulsion and Its Application in Chilled Beef Preservation. Molecules 2023; 28:6833. [PMID: 37836676 PMCID: PMC10574067 DOI: 10.3390/molecules28196833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan-gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical properties of the film, and an analysis of freshness preservation for chilled beef. The emulsion size (296.0 ± 10.2 nm), polydispersity index (0.457 ± 0.039), and potential (20.1 ± 0.9 mV) proved the success of emulsion. At the same time, the films displayed good mechanical and barrier properties. The index of beef preservation also indicated that eugenol was a better active ingredient than clove essence oil, which led to the rise of potential of hydrogen, chroma and water content, and effectively inhibited microbial propagation, protein degradation and lipid oxidation. These results suggest that the prepared composites can be used as promising materials for chilled beef preservation.
Collapse
Affiliation(s)
- Zhi-Gang Ding
- School of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Shen
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Hu
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiu-Xiu Zhang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
47
|
Alarjani KM, Yehia HM, Badr AN, Ali HS, Al-Masoud AH, Alhaqbani SM, Alkhatib SA, Rady AM. Anti-MRSA and Biological Activities of Propolis Concentrations Loaded to Chitosan Nanoemulsion for Pharmaceutics Applications. Pharmaceutics 2023; 15:2386. [PMID: 37896146 PMCID: PMC10610434 DOI: 10.3390/pharmaceutics15102386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Propolis is a naturally occurring substance with beneficial properties; bees produce it from various plant sources, and it is an anti-inflammatory and therapeutic resinous substance. This study aimed to enhance the biological features of propolis extract by loading it onto active film. Firstly, extraction was performed using three solvent systems, and their total phenolic, flavonoid, and antioxidant activity was measured. Propolis ethanol extract (EEP) was evaluated for phenolic fraction content and then chosen to prepare a chitosan-loaded emulsion with several concentrations. The antibacterial, anti-mycotic, and anti-mycotoxigenic properties of the extract and nanoemulsion were assessed. PPE's cytotoxicity and nanoemulsion were evaluated using brine shrimp and cell line assays. Results indicate higher phenolic (322.57 ± 4.28 mg GAE/g DW), flavonoid (257.64 ± 5.27 mg QE/g DW), and antioxidant activity of the EEP. The phenolic fraction is distinguished by 18 phenolic acids with high p-hydroxybenzoic content (171.75 ± 1.64 µg/g) and 12 flavonoid compounds with high pinocembrin and quercetin content (695.91 ± 1.76 and 532.35 ± 1.88 µg/g, respectively). Phenolic acid derivatives (3,4-Dihydroxybenzaldehyde, 3,4-Dihydroxyphenol acetate, and di-methoxy cinnamic) are also found. Concentrations of 50, 100, 150, and 200 ng EEP loaded on chitosan nanoemulsion reflect significant antibacterial activity against pathogenic bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and toxigenic fungi, particularly Fusarium. Among the four EEP-loaded concentrations, the nanoemulsion with 150 ng showed outstanding features. Using a simulated medium, 150 and 200 ng of EEP-loaded chitosan nanoemulsion concentrations can stop zearalenone production in Fusarium media with complete fungi inhibition. Also, it reduced aflatoxins production in Aspergillus media, with fungal inhibition (up to 47.18%). These results recommended the EEP-chitosan application for pharmaceutics and medical use as a comprehensive wound healing agent.
Collapse
Affiliation(s)
- Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Hany Mohamed Yehia
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Hatem Salma Ali
- Food Technology Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Abdulrahman Hamad Al-Masoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Sarah Mubark Alhaqbani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Shahad Ahmed Alkhatib
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Ahmed Moustafa Rady
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| |
Collapse
|
48
|
Shao X, Niu B, Fang X, Wu W, Liu R, Mu H, Gao H, Chen H. Pullulan-stabilized Soybean Phospholipids/Cinnamaldehyde emulsion for Flammulina velutipes preservation. Int J Biol Macromol 2023; 246:125425. [PMID: 37330078 DOI: 10.1016/j.ijbiomac.2023.125425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fresh mushrooms (Flammulina velutipes) are very perishable and easily brown; also they undergo postharvest loss of nutritive constituents. In this study, cinnamaldehyde (CA) emulsion was prepared by using soybean phospholipids (SP) as emulsifier and pullulan (Pul) as stabilizer. The effect of emulsion on the quality of mushroom during storage was also studied. The experimental results indicated that the emulsion obtained by adding 6 % pullulan was found to the most uniform and stable, which is beneficial to its application. Emulsion coating maintained the storage quality of Flammulina velutipes. The incorporation of CA emulsion into the coating system showed a positive effect on inhibiting the accumulation of reactive oxygen species, resulting from improving the effectiveness of delaying active free radical scavenging enzymes. The shelf life of mushrooms coated with emulsion was significantly prolonged, which indicates its potential application in food preservation.
Collapse
Affiliation(s)
- Xue Shao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ben Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Xiangjun Fang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Weijie Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Honglei Mu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| |
Collapse
|
49
|
Lim XY, Li J, Yin HM, He M, Li L, Zhang T. Stabilization of Essential Oil: Polysaccharide-Based Drug Delivery System with Plant-like Structure Based on Biomimetic Concept. Polymers (Basel) 2023; 15:3338. [PMID: 37631395 PMCID: PMC10457915 DOI: 10.3390/polym15163338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils (EOs) have stability problems, including volatility, oxidation, photosensitivity, heat sensitivity, humidity sensitivity, pH sensitivity, and ion sensitivity. A drug delivery system is an effective way to stabilize EOs, especially due to the protective effect of polymeric drug carriers. Polysaccharides are frequently employed as drug carrier materials because they are highly safe, come in a variety of forms, and have plentiful sources. Interestingly, the EO drug delivery system is based on the biomimetic concept since it corresponds to the structure of plant tissue. In this paper, we associate the biomimetic plant-like structures of the EO drug delivery system with the natural forms of EO in plant tissues, and summarize the characteristics of polysaccharide-based drug carriers for EO protection. Thus, we highlight the research progress on polysaccharides and their modified materials, including gum arabic, starch, cellulose, chitosan, sodium alginate, pectin, and pullulan, and their use as biomimetic drug carriers for EO preparations due to their abilities and potential for EO protection.
Collapse
Affiliation(s)
- Xue-Yee Lim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| | - Jing Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| | - Hong-Mei Yin
- Jiangsu Kanion Pharmaceuticals Co., Ltd., Lianyungang 222001, China;
| | - Mu He
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| |
Collapse
|
50
|
Zhao P, Yan X, Cheng M, Wang Y, Wang Y, Wang K, Wang X, Wang J. Effect of Pickering emulsion on the physical properties, microstructure and bioactivity of corn starch/cassia gum composite films. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|