1
|
Fu Z, Qiu H, Xu Y, Tan C, Wang H. Biological effects, properties and tissue engineering applications of polyhydroxyalkanoates: A review. Int J Biol Macromol 2025; 293:139281. [PMID: 39736299 DOI: 10.1016/j.ijbiomac.2024.139281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are a group of polymers with a variety of monomers, which are extracted from microorganisms and plants. Due to its good biocompatibility, biodegradability, tunable mechanical property and piezoelectricity, PHAs have been widely used in biomedical fields, such as bone, cartilage, nerve, vascular and skin tissue engineering. This review focuses on the in vivo synthesis, metabolism and biological functions of PHA, and the applications of PHAs in the field of tissue engineering and commercial were also summarized and discussed. Moreover, this review hints the future perspective and research direction of PHA-based materials in the challenging field of tissue engineering. We hope that this review will catalyze the continued advancement and broadening of PHAs' applications in biomedicine.
Collapse
Affiliation(s)
- Zeyu Fu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China
| | - He Qiu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China; Department of Cosmetic and Plastic Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuan Xu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China
| | - Chang Tan
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China.
| | - Hang Wang
- Department of Cosmetic and Plastic Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Ilhami S, Rahman SNSA, Iqhrammullah M, Hamid Z, Chai YH, Lam MK. Polyhydroxyalkanoates production from microalgae for sustainable bioplastics: A review. Biotechnol Adv 2025; 79:108529. [PMID: 39922510 DOI: 10.1016/j.biotechadv.2025.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Microalgae have emerged as a promising and sustainable source for polyhydroxyalkanoates (PHA), which are increasingly recognized for their potential in bioplastics production. However, the widespread application of microalgae-derived PHA faces challenges related to economic feasibility and scalability. This review provides a comprehensive analysis of recent advancements in the cultivation and optimization of microalgae for PHA production, highlighting the critical role of nutrient limitation, particularly nitrogen and phosphorus, in enhancing PHA accumulation. This review also explores the effectiveness of various cultivation systems, including autotrophic, heterotrophic, and mixotrophic approaches, in maximizing PHA yields. Environmental factors such as light intensity, salinity, and pH are examined for their influence on PHA synthesis pathways. Additionally, it identifies key technical and economic challenges that must be addressed to commercialize microalgae-based bioplastics to fully harness the potential of microalgae in sustainable bioplastic production.
Collapse
Affiliation(s)
- Syarifa Ilhami
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Siti Nur Syaza Abdul Rahman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Muhammad Iqhrammullah
- Research Center for Marine and Land Bioindustry National Research and Innovation Agency, North Lombok, Indonesia; Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, Indonesia
| | - Zhafran Hamid
- Department of Forestry, Faculty of Forestry, Muhammadiyah University of West Sumatera, Padang 25171, West Sumatera, Indonesia
| | - Yee Ho Chai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
3
|
Rosenow P, Fernández-Ayuso C, López-García P, Minguez-Enkovaara LF. Design, New Materials, and Production Challenges of Bioplastics-Based Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2025; 18:673. [PMID: 39942339 PMCID: PMC11819971 DOI: 10.3390/ma18030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
This paper outlines the current design trends in food packaging, its main environmentally friendly material alternatives, and industrial processing technologies. In this respect, this important product has undergone several evolutions throughout history. Initially acting as a containment device, it has later evolved into a source of information and even a marketing platform for food companies, always with a view to extending shelf life. However, these functionalities are highly dependent on the materials used and their properties. In this respect, plastics have conquered the food packaging market due to their affordability and flexibility. Nevertheless, environmental concerns have arisen due to their impact on the environment, in addition to the introduction of stricter industry regulations and increased consumer environmental awareness. Therefore, this work found that the current design trends in food packaging are toward sustainability, reducing packaging complexity, with easier recycling, and material selection that combines both sustainability and functionality. In the case of bioplastics as a sustainable alternative, there is still room for improvement in their production, with careful consideration of their raw materials. In addition, their technical performance is generally lower, with challenges in barrier properties and processability, which could be addressed with the adoption of Industry 4.0.
Collapse
Affiliation(s)
- Phil Rosenow
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany;
| | - Carmen Fernández-Ayuso
- Centro Tecnológico Del Calzado y Del Plástico De La Región De Murcia (CETEC), 30840 Alhama de Murcia, Spain; (C.F.-A.); (P.L.-G.)
| | - Pedro López-García
- Centro Tecnológico Del Calzado y Del Plástico De La Región De Murcia (CETEC), 30840 Alhama de Murcia, Spain; (C.F.-A.); (P.L.-G.)
| | - Luis Francisco Minguez-Enkovaara
- Centro Tecnológico Del Calzado y Del Plástico De La Región De Murcia (CETEC), 30840 Alhama de Murcia, Spain; (C.F.-A.); (P.L.-G.)
| |
Collapse
|
4
|
Pecorini G, Domingos MAN, Richardson SM, Carmassi L, Vecchi DL, Parrini G, Puppi D. 3D printing of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactide-co-glycolide) blend loaded with β-tricalcium phosphate for the development of scaffolds to support human mesenchymal stromal cell proliferation. Int J Biol Macromol 2025; 288:138744. [PMID: 39674454 DOI: 10.1016/j.ijbiomac.2024.138744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are microbially produced aliphatic polyesters investigated for tissue engineering thanks to their biocompatibility, processability, and suitable mechanical properties. Taking advantage of these properties, the present study investigates the development by 3D printing of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds loaded with β-tricalcium phosphate (β-TCP) for bone tissue regeneration. PHBV blending with poly(lactide-co-glycolide) (PLGA) (30 wt%) was exploited to enhance material processability via an optimized computer-aided wet-spinning approach. In particular, PHBV/PLGA blends were loaded with different β-TCP percentages (up to 15 wt%) by suspending the ceramic particles into the polymeric solution. The composite materials were successfully fabricated into 3D scaffolds with a fully interconnected porous architecture, as demonstrated by scanning electron microscopy. The ceramic phase had a significant effect on PHBV crystallization as shown by differential scanning calorimetry, as well as on scaffold mechanical properties with a significant increase of compressive modulus in the case of 5 wt% β-TCP loading. In addition, in vitro cell culture experiments demonstrated that β-TCP loading led to a significant increase of the viability of human mesenchymal stem/stromal cells grown on the scaffolds. Taken together, our data suggest that microbial PHBV processability, biomechanical performance, and bioactivity can be improved through combined PLGA blending and β-TCP loading.
Collapse
Affiliation(s)
- Gianni Pecorini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marco A N Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK.
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Leonardo Carmassi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Diego Li Vecchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | | | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
5
|
Guarda EC, Galinha CF, Duque AF, Reis MAM. Non-invasive and real-time monitoring of polyhydroxyalkanoates production using two-dimensional fluorescence spectroscopy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122545. [PMID: 39305872 DOI: 10.1016/j.jenvman.2024.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
Bioplastics are a sustainable and environmental-friendly alternative to the conventional petroleum-based plastics, namely due to their source (biobased) and due to their biodegradability or both. Polyhydroxyalkanoates (PHA) stand out among the bioplastics group by being intracellular biobased, biodegradable and biocompatible polymers. PHA production has been highly investigated during the last decades. However, to date, PHA production has been monitored through offline and time-consuming tools, involving hazardous solvents, not allowing a timely control of the bioprocesses, which often results in a loss of process productivity and hinders its implementation at full scale. Therefore, two-dimensional (2D) fluorescence spectroscopy was assessed for monitoring the PHA content at real-time, as it is a non-destructive, solvent-free and non-invasive technique. The complex information of the biological broth was captured within fluorescence excitation-emission matrices (EEMs), which were deconvoluted through projection to latent structures (PLS) modelling to estimate PHA production by an enriched PHA microbial culture, using fermented brewer's spent grain as feedstock. A good correlation for PHA prediction was achieved, with an average error of ca. 4.0% gPHA/gTS for new predictions. This work demonstrates the great potential of using 2D fluorescence spectroscopy to assess the intracellular PHA content without requiring staining agents. Moreover, it unlocks the possibility of an online and real-time monitoring of the biopolymer production processes, which will contribute towards the improvement of the PHA process productivity and, consequently, its implementation at full scale.
Collapse
Affiliation(s)
- Eliana C Guarda
- Associate Laboratory I4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Claudia F Galinha
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
| | - Anouk F Duque
- Associate Laboratory I4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria A M Reis
- Associate Laboratory I4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
6
|
Jung HJ, Kim B, Choi TR, Oh SJ, Kim S, Lee Y, Shin Y, Choi S, Oh J, Park SY, Lee YS, Choi YH, Yang YH. Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy. Bioprocess Biosyst Eng 2024; 47:1619-1631. [PMID: 39103701 DOI: 10.1007/s00449-024-03054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 08/07/2024]
Abstract
Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r2 = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with Tm (℃) = 171.5 and ΔH of Tm (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - So Yeon Park
- Innovation Center, Lotte Chemical LTD, Seoul, Republic of Korea
| | - Young Sik Lee
- Innovation Center, Lotte Chemical LTD, Seoul, Republic of Korea
| | - Young Heon Choi
- Innovation Center, Lotte Chemical LTD, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Oh SJ, Shin Y, Oh J, Kim S, Lee Y, Choi S, Lim G, Joo JC, Jeon JM, Yoon JJ, Bhatia SK, Ahn J, Kim HT, Yang YH. Strategic Use of Vegetable Oil for Mass Production of 5-Hydroxyvalerate-Containing Polyhydroxyalkanoate from δ-Valerolactone by Engineered Cupriavidus necator. Polymers (Basel) 2024; 16:2773. [PMID: 39408484 PMCID: PMC11478691 DOI: 10.3390/polym16192773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Although efforts have been undertaken to produce polyhydroxyalkanoates (PHA) with various monomers, the low yield of PHAs because of complex metabolic pathways and inhibitory substrates remains a major hurdle in their analyses and applications. Therefore, we investigated the feasibility of mass production of PHAs containing 5-hydroxyvalerate (5HV) using δ-valerolactone (DVL) without any pretreatment along with the addition of plant oil to achieve enough biomass. We identified that PhaCBP-M-CPF4, a PHA synthase, was capable of incorporating 5HV monomers and that C. necator PHB-4 harboring phaCBP-M-CPF4 synthesized poly(3HB-co-3HHx-co-5HV) in the presence of bean oil and DVL. In fed-batch fermentation, the supply of bean oil resulted in the synthesis of 49 g/L of poly(3HB-co-3.7 mol% 3HHx-co-5.3 mol%5HV) from 66 g/L of biomass. Thermophysical studies showed that 3HHx was effective in increasing the elongation, whereas 5HV was effective in decreasing the melting point. The contact angles of poly(3HB-co-3HHx-co-5HV) and poly(3HB-co-3HHx) were 109 and 98°, respectively. In addition, the analysis of microbial degradation confirmed that poly(3HB-co-3HHx-co-5HV) degraded more slowly (82% over 7 days) compared to poly(3HB-co-3HHx) (100% over 5 days). Overall, the oil-based fermentation strategy helped produce more PHA, and the mass production of novel PHAs could provide more opportunities to study polymer properties.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Gaeun Lim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Jeong-Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Jong-Min Jeon
- Department of Green & Sustainable Materials R&D, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Chungcheongnam-do, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Jeong-Jun Yoon
- Department of Green & Sustainable Materials R&D, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Chungcheongnam-do, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea;
| | - Hee-Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| |
Collapse
|
8
|
González-Rojo S, Paniagua-García AI, Díez-Antolínez R. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. Microorganisms 2024; 12:1668. [PMID: 39203509 PMCID: PMC11357511 DOI: 10.3390/microorganisms12081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The industrial production of polyhydroxyalkanoates (PHAs) faces several limitations that hinder their competitiveness against traditional plastics, mainly due to high production costs and complex recovery processes. Innovations in microbial biotechnology offer promising solutions to overcome these challenges. The modification of the biosynthetic pathways is one of the main tactics; allowing for direct carbon flux toward PHA formation, increasing polymer accumulation and improving polymer properties. Additionally, techniques have been implemented to expand the range of renewable substrates used in PHA production. These feedstocks are inexpensive and plentiful but require costly and energy-intensive pretreatment. By removing the need for pretreatment and enabling the direct use of these raw materials, microbial biotechnology aims to reduce production costs. Furthermore, improving downstream processes to facilitate the separation of biomass from culture broth and the recovery of PHAs is critical. Genetic modifications that alter cell morphology and allow PHA secretion directly into the culture medium simplify the extraction and purification process, significantly reducing operating costs. These advances in microbial biotechnology not only enhance the efficient and sustainable production of PHAs, but also position these biopolymers as a viable and competitive alternative to petroleum-based plastics, contributing to a circular economy and reducing the dependence on fossil resources.
Collapse
Affiliation(s)
- Silvia González-Rojo
- Department of Chemistry and Applied Physics, Chemical Engineering Area, Campus de Vegazana s/n, University of León, 24071 León, Spain
| | - Ana Isabel Paniagua-García
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| | - Rebeca Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| |
Collapse
|
9
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
10
|
Ireddy ATS, Ghorabe FDE, Shishatskaya EI, Ryltseva GA, Dudaev AE, Kozodaev DA, Nosonovsky M, Skorb EV, Zun PS. Benchmarking Unsupervised Clustering Algorithms for Atomic Force Microscopy Data on Polyhydroxyalkanoate Films. ACS OMEGA 2024; 9:21595-21611. [PMID: 38764678 PMCID: PMC11097174 DOI: 10.1021/acsomega.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Surface of polyhydroxyalkanoate (PHA) films of varying monomer compositions are analyzed using atomic force microscopy (AFM) and unsupervised machine learning (ML) algorithms to investigate and classify films based on global attributes such as the scan size, film thickness, and monomer type. The experiment provides benchmarked results for 12 of the most widely used clustering algorithms via a hybrid investigation approach while highlighting the impact of using the Fourier transform (FT) on high-dimensional vectorized data for classification on various pools of data. Our findings indicate that the use of a one-dimensional (1D) FT of vectorized data produces the most accurate outcome. The experiment also provides insights into case-by-case investigations of algorithm performances and the impact of various data pools. Lastly, we show an early version of our tool aimed at investigating surfaces using ML approaches and discuss the results of our current experiment to configure future improvements.
Collapse
Affiliation(s)
- Ashish T. S. Ireddy
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| | - Fares D. E. Ghorabe
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| | | | - Galina A. Ryltseva
- Siberian
Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Alexey E. Dudaev
- Siberian
Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | | | - Michael Nosonovsky
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
- University
of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Ekaterina V. Skorb
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| | - Pavel S. Zun
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| |
Collapse
|
11
|
Hozumi Y, Hachisuka SI, Tomita H, Kikukawa H, Matsumoto K. Engineering of the Long-Main-Chain Monomer-Incorporating Polyhydroxyalkanoate Synthase PhaC AR for the Biosynthesis of Poly[( R)-3-hydroxybutyrate- co-6-hydroxyhexanoate]. Biomacromolecules 2024; 25:2973-2979. [PMID: 38588330 DOI: 10.1021/acs.biomac.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyhydroxyalkanoate (PHA) synthases (PhaCs) are useful and versatile tools for the production of aliphatic polyesters. Here, the chimeric PHA synthase PhaCAR was engineered to increase its capacity to incorporate unusual 6-hydroxyhexanoate (6HHx) units. Mutations at positions 149 and 314 in PhaCAR were previously found to increase the incorporation of an analogous natural monomer, 3-hydroxyhexanoate (3HHx). We attempted to repurpose the mutations to produce 6HHx-containing polymers. Site-directed saturation mutants at these positions were applied for P(3HB-co-6HHx) synthesis in Escherichia coli. As a result, the N149D and F314Y mutants effectively increased the 6HHx fraction. Moreover, the pairwise NDFY mutation further increased the 6HHx fraction, which reached 22 mol %. This increase was presumably caused by altered enzyme activity rather than altered expression levels, as assessed based on immunoblot analysis. The glass transition temperature and crystallinity of P(3HB-co-6HHx) decreased as the 6HHx fraction increased.
Collapse
Affiliation(s)
- Yuka Hozumi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Shin-Ichi Hachisuka
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Hiroya Tomita
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Hiroshi Kikukawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| |
Collapse
|
12
|
Zhila NO, Sapozhnikova KY, Kiselev EG, Shishatskaya EI, Volova TG. Biosynthesis of Polyhydroxyalkanoates in Cupriavidus necator B-10646 on Saturated Fatty Acids. Polymers (Basel) 2024; 16:1294. [PMID: 38732762 PMCID: PMC11085183 DOI: 10.3390/polym16091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
It has been established that the wild-type Cupriavidus necator B-10646 strain uses saturated fatty acids (SFAs) for growth and polyhydroxyalkanoate (PHA) synthesis. It uses lauric (12:0), myristic (14:0), palmitic (16:0) and stearic (18:0) acids as carbon sources; moreover, the elongation of the C-chain negatively affects the biomass and PHA yields. When bacteria grow on C12 and C14 fatty acids, the total biomass and PHA yields are comparable up to 7.5 g/L and 75%, respectively, which twice exceed the values that occur on longer C16 and C18 acids. Regardless of the type of SFAs, bacteria synthesize poly(3-hydroxybutyrate), which have a reduced crystallinity (Cx from 40 to 57%) and a molecular weight typical for poly(3-hydroxybutyrate) (P(3HB)) (Mw from 289 to 465 kDa), and obtained polymer samples demonstrate melting and degradation temperatures with a gap of about 100 °C. The ability of bacteria to assimilate SFAs opens up the possibility of attracting the synthesis of PHAs on complex fat-containing substrates, including waste.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Kristina Yu. Sapozhnikova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| |
Collapse
|
13
|
Chang JY, Syauqi TA, Sudesh K, Ng SL. Insights into biofilm development on polyhydroxyalkanoate biofilm carrier for anoxic azo dye decolourization of acid orange 7. BIORESOURCE TECHNOLOGY 2024; 393:130054. [PMID: 37995876 DOI: 10.1016/j.biortech.2023.130054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are promising alternatives to non-degradable polymers in various applications. This study explored the use of biologically recovered PHA as a biofilm carrier in a moving bed biofilm reactor for acid orange 7 treatment. The PHA was comprised of 86 ± 1 mol% of 3-hydroxybutyrate and 14 ± 1 mol% of 3-hydroxyhexanoate and was melt-fused at 140 °C into pellets. The net positive surface charge of the PHA biocarrier facilitated attachment of negatively charged activated sludge, promoting biofilm formation. A 236-µm mature biofilm developed after 26 days. The high polysaccharides-to-protein ratio (>1) in the biofilm's extracellular polymeric substances indicated a stable biofilm structure. Four main microbial strains in the biofilm were identified as Leclercia adecarboxylata, Leuconostoc citreum, Bacillus cereus, and Rhodotorula mucilaginosa, all of which exhibited decolourization abilities. In conclusion, PHA holds promise as an effective biocarrier for biofilm development, offering a sustainable alternative in wastewater treatment applications.
Collapse
Affiliation(s)
- Jia Yun Chang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Taufiq Ahmad Syauqi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Si Ling Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| |
Collapse
|
14
|
Urtuvia V, Ponce B, Andler R, Díaz-Barrera A. Relation of 3HV fraction and thermomechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Azotobacter vinelandii OP. Int J Biol Macromol 2023; 253:127681. [PMID: 37890746 DOI: 10.1016/j.ijbiomac.2023.127681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has attracted substantial attention as a promising material for industrial applications. In this study, different PHBV films with distinct 3-hydroxyvalerate (3HV) contents produced by Azotobacter vinelandii OP were evaluated. The 3HV fraction ranged from 18.6 to 36.7 mol%, and the number-average molecular weight (Mn) was between 238 and 434 kDa. In the bioreactor, a 3HV fraction (36.7 mol%) and an Mn value of 409 kDa were obtained with an oxygen transfer rate (OTR) of 12.5 mmol L-1 h-1. Thermal analysis measurements showed decreased melting (Tm) and glass transition (Tg) temperatures, and values with relatively high 3HV fractions indicated improved thermomechanical properties. The incorporation of the 3HV fraction in the PHBV chain improved the thermal stability of the films, reduced the polymer Tm, and affected the tensile strength. PHBV film with 36.7 mol% 3HV showed an increase in its tensile strength (51.8 MPa) and a decrease in its Tm (170.61 °C) compared with PHB. Finally, scanning electron microscopy (SEM) results revealed that the PHBV film with 32.8 mol% 3HV showed a degradation upon contact with soil, water, or soil bacteria, showing more porous surfaces after degradation. The latter phenomenon indicated that thermomechanical properties played an important role in biodegradation.
Collapse
Affiliation(s)
- Viviana Urtuvia
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile.
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile
| |
Collapse
|
15
|
Murueva AV, Shershneva AM, Shishatskaya EI, Volova TG. Characteristics of Microparticles Based on Resorbable Polyhydroxyalkanoates Loaded with Antibacterial and Cytostatic Drugs. Int J Mol Sci 2023; 24:14983. [PMID: 37834429 PMCID: PMC10573759 DOI: 10.3390/ijms241914983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The development of controlled drug delivery systems, in the form of microparticles, is an important area of experimental pharmacology. The success of the design and the quality of the obtained microparticles are determined by the method of manufacture and the properties of the material used as a carrier. The goal is to obtain and characterize microparticles depending on their method of preparation, the chemical composition of the polymer and the load of the drugs. To obtain microparticles, four types of degradable PHAs, differing in their chemical compositions, degrees of crystallinity, molecular weights and temperature characteristics, were used (poly-3-hydroxybutyrate and copolymers 3-hydroxybutyric-co-3-hydroxyvaleric acid, 3-hydroxybutyric-co-4-hydroxybutyric acid, and 3-hydroxybutyric-co-3-hydroxyhexanoic acid). The characteristics of microparticles from PHAs were studied. Good-quality particles with an average particle diameter from 0.8 to 65.0 μm, having satisfactory ζ potential values (from -18 to -50 mV), were obtained. The drug loading content, encapsulation efficiency and in vitro release were characterized. Composite microparticles based on PHAs with additives of polyethylene glycol and polylactide-co-glycolide, and loaded with ceftriaxone and 5-fluorouracil, showed antibacterial and antitumor effects in E. coli and HeLa cultures. The results indicate the high potential of PHAs for the design of modern and efficient drug delivery systems.
Collapse
Affiliation(s)
- Anastasiya V. Murueva
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Anna M. Shershneva
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
- Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| |
Collapse
|
16
|
Zhila NO, Kiselev EG, Volkov VV, Mezenova OY, Sapozhnikova KY, Shishatskaya EI, Volova TG. Properties of Degradable Polyhydroxyalkanoates Synthesized from New Waste Fish Oils (WFOs). Int J Mol Sci 2023; 24:14919. [PMID: 37834364 PMCID: PMC10573456 DOI: 10.3390/ijms241914919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesis of PHA was first investigated using WFOs obtained from smoked-sprat heads, substandard fresh sprats, and fresh mackerel heads and backbones. All the WFOs ensured the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of PHA, regardless of the degree of lipid saturation (from 0.52 to 0.65) and the set and ratio of fatty acids (FA), which was represented by acids with chain lengths from C14 to C24. The bacterial biomass concentration and PHA synthesis were comparable (4.1-4.6 g/L and about 70%) when using WFO obtained from smoked-sprat heads and fresh mackerel, and it was twice as high as the bacterial biomass concentration from the fresh sprat waste. This depended on the type of WFO, the bacteria synthesized P(3HB) homopolymer or P(3HB-co-3HV-co-3HHx) copolymer, which had a lower degree of crystallinity (Cx 71%) and a lower molecular weight (Mn 134 kDa) compared to the P(3HB) (Mn 175-209 kDa and Cx 74-78%) at comparable temperatures (Tmelt and Tdegr of 158-168 °C and 261-284 °C, respectively). The new types of WFO, studied for the first time, are suitable as a carbon substrates for PHA synthesis. The WFOs obtained in the production of canned Baltic sprat and Baltic mackerel can be considered a promising and renewable substrate for PHA biosynthesis.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Vladimir V. Volkov
- Centre for Advanced Protein Use Technologies, Kaliningrad State Technical University, Sovetsky Avenue, 1, Kaliningrad 236022, Russia; (V.V.V.); (O.Y.M.)
| | - Olga Ya. Mezenova
- Centre for Advanced Protein Use Technologies, Kaliningrad State Technical University, Sovetsky Avenue, 1, Kaliningrad 236022, Russia; (V.V.V.); (O.Y.M.)
| | - Kristina Yu. Sapozhnikova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| |
Collapse
|
17
|
Skiba EA, Shavyrkina NA, Skiba MA, Mironova GF, Budaeva VV. Biosynthesis of Bacterial Nanocellulose from Low-Cost Cellulosic Feedstocks: Effect of Microbial Producer. Int J Mol Sci 2023; 24:14401. [PMID: 37762703 PMCID: PMC10531556 DOI: 10.3390/ijms241814401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Biodegradable bacterial nanocellulose (BNC) is a highly in-demand but expensive polymer, and the reduction of its production cost is an important task. The present study aimed to biosynthesize BNC on biologically high-quality hydrolyzate media prepared from miscanthus and oat hulls, and to explore the properties of the resultant BNC depending on the microbial producer used. In this study, three microbial producers were utilized for the biosynthesis of BNC: individual strains Komagataeibacter xylinus B-12429 and Komagataeibacter xylinus B-12431, and symbiotic Medusomyces gisevii Sa-12. The use of symbiotic Medusomyces gisevii Sa-12 was found to have technological benefits: nutrient media require no mineral salts or growth factors, and pasteurization is sufficient for the nutrient medium instead of sterilization. The yield of BNCs produced by the symbiotic culture turned out to be 44-65% higher than that for the individual strains. The physicochemical properties of BNC, such as nanofibril width, degree of polymerization, elastic modulus, Iα allomorph content and crystallinity index, are most notably dependent on the microbial producer type rather than the nutrient medium composition. This is the first study in which we investigated the biosynthesis of BNC on hydrolyzate media prepared from miscanthus and oat hulls under the same conditions but using different microbial producers, and showed that it is advisable to use the symbiotic culture. The choice of a microbial producer is grounded on the yield, production process simplification and properties. The BNC production from technical raw materials would cover considerable demands of BNC for technical purposes without competing with food resources.
Collapse
Affiliation(s)
- Ekaterina A. Skiba
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| | - Nadezhda A. Shavyrkina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| | - Maria A. Skiba
- Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Square, 125047 Moscow, Russia;
| | - Galina F. Mironova
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| | - Vera V. Budaeva
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| |
Collapse
|
18
|
Shishatskaya EI, Demidenko AV, Sukovatyi AG, Dudaev AE, Mylnikov AV, Kisterskij KA, Volova TG. Three-Dimensional Printing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] Biodegradable Scaffolds: Properties, In Vitro and In Vivo Evaluation. Int J Mol Sci 2023; 24:12969. [PMID: 37629152 PMCID: PMC10455171 DOI: 10.3390/ijms241612969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young's modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Demidenko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
| | - Alexey E. Dudaev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Mylnikov
- Clinical Hospital “RZD-Medicine”, Lomonosov Street, 47, 660058 Krasnoyarsk, Russia
| | - Konstantin A. Kisterskij
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
19
|
Volova TG, Uspenskaya MV, Kiselev EG, Sukovatyi AG, Zhila NO, Vasiliev AD, Shishatskaya EI. Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate- co 3-Hydroxyhexanoate). Polymers (Basel) 2023; 15:2890. [PMID: 37447536 DOI: 10.3390/polym15132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) copolymers with different ratios of monomers synthesized by the wild-type strain Cupriavidus necator B-10646 on sugars, and an industrial sample from Kaneka synthesized by the recombinant strain C. necator NSDG-ΔfadB1 on soybean oil, were studied in a comparative aspect and in relation to poly(3-hydroxybutyrate) P(3HB). The copolymer samples, regardless of the synthesis conditions or the ratio of monomers, had reduced values of crystallinity degree (50-60%) and weight average molecular weight (415-520 kDa), and increased values of polydispersity (2.8-4.3) compared to P(3HB) (70-76%, 720 kDa, and 2.2). The industrial sample had differences in its thermal behavior, including a lower glass transition temperature (-2.4 °C), two peaks in its crystallization and melting regions, a lower melting point (Tmelt) (112/141 °C), and a more pronounced gap between Tmelt and the temperature of thermal degradation (Tdegr). The process, shape, and size of the spherulites formed during the isothermal crystallization of P(3HB) and P(3HB-co-3HHx) were generally similar, but differed in the maximum growth rate of the spherulites during exothermic crystallization, which was 3.5-3.7 μm/min for P(3HB), and 0.06-1.25 for the P(3HB-co-3HHx) samples. The results from studying the thermal properties and the crystallization mechanism of P(3HB-co-3HHx) copolymers are important for improving the technologies for processing polymer products from melts.
Collapse
Affiliation(s)
- Tatiana G Volova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Mayya V Uspenskaya
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| | - Evgeniy G Kiselev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksey G Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Natalia O Zhila
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksander D Vasiliev
- V. Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, 660036 Krasnoyarsk, Russia
- Basic Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radio Electronics, Siberian Federal University, Kirensky St. 26, 660074 Krasnoyarsk, Russia
| | - Ekaterina I Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| |
Collapse
|
20
|
Dong H, Yang X, Shi J, Xiao C, Zhang Y. Exploring the Feasibility of Cell-Free Synthesis as a Platform for Polyhydroxyalkanoate (PHA) Production: Opportunities and Challenges. Polymers (Basel) 2023; 15:polym15102333. [PMID: 37242908 DOI: 10.3390/polym15102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The extensive utilization of traditional petroleum-based plastics has resulted in significant damage to the natural environment and ecological systems, highlighting the urgent need for sustainable alternatives. Polyhydroxyalkanoates (PHAs) have emerged as promising bioplastics that can compete with petroleum-based plastics. However, their production technology currently faces several challenges, primarily focused on high costs. Cell-free biotechnologies have shown significant potential for PHA production; however, despite recent progress, several challenges still need to be overcome. In this review, we focus on the status of cell-free PHA synthesis and compare it with microbial cell-based PHA synthesis in terms of advantages and drawbacks. Finally, we present prospects for the development of cell-free PHA synthesis.
Collapse
Affiliation(s)
- Huaming Dong
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Chunqiao Xiao
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
21
|
Ali N, Rashid MI, Rehan M, Shah Eqani SAMA, Summan ASA, Ismail IMI, Koller M, Ali AM, Shahzad K. Environmental Evaluation of Polyhydroxyalkanoates from Animal Slaughtering Waste Using Material Input Per Service Unit. N Biotechnol 2023; 75:40-51. [PMID: 36948413 DOI: 10.1016/j.nbt.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
The massive production and extensive use of fossil-based non-biodegradable plastics are leading to their environmental accumulation and ultimately cause health threats to animals, humans, and the biosphere in general. The problem can be overcome by developing eco-friendly ways for producing plastics-like biopolymers from waste residues such as of agricultural origin. This will solve two currently prevailing social issues: waste management and the efficient production of a biopolymer that is environmentally benign, polyhydroxyalkanoates (PHA). The current study assesses the environmental impact of biopolymer (PHA) manufacturing, starting from slaughterhouse waste as raw material. The Material Input Per Service Unit methodology (MIPS) is used to examine the sustainability of the PHA production process. In addition, the impact of shifting from business-as-usual energy provision (i.e., electricity from distribution grid network and heat provision from natural gas) to alternative renewable energy sources is also evaluated. As a major outcome, it is shown that the abiotic material contribution for PHA production process is almost double for using hard coal as an energy source than the petro-plastic low-density-poly(ethene) (LPDE), which PHA shall ultimately replace. Likewise, abiotic material contribution is 43% and 7% higher when using the electricity from the European electricity mix (EU-27 mix) and biogas, respectively, than in the case of LDPE production. However, PHA production based on wind power for energy provision has 12% lower abiotic material input than LDPE. Furthermore, the water input decreases when moving from the EU-27 mix to wind power. The reduction in water consumption for various electricity provision resources amounts to 20% for the EU-27 mix, 25% for hard coal, 71% for wind, and 70% for biogas. As the main conclusion, it is demonstrated that using wind farm electricity to generate PHA is the most environmentally friendly choice. Biogas is the second-best choice, although it requires additional abiotic material input.
Collapse
Affiliation(s)
- Nadeem Ali
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Imtiaz Rashid
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Rehan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Syed Ali Musstjab Akber Shah Eqani
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| | - Ahmed Saleh Ahmed Summan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, A-8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Graz, Austria.
| | - Arshid Mahmood Ali
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurram Shahzad
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
22
|
Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646. Polymers (Basel) 2023; 15:polym15041005. [PMID: 36850288 PMCID: PMC9963769 DOI: 10.3390/polym15041005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of sulfur-containing polyhydroxyalkanoates (PHA) by this strain on media containing fructose and three different precursors (3-mercaptopropionic acid, 3',3'-dithiodipropionic acid and 3',3'-thiodipropionic acid). By varying the concentration and number of doses of the precursors added into the bacterial culture, it was possible to find conditions that ensure the formation of 3-mercaptopropionate (3MP) monomers from the precursors and their incorporation into the C-chain of poly(3-hydroxybutyrate). A series of P(3HB-co-3MP) copolymer samples with different content of 3MP monomers (from 2.04 to 39.0 mol.%) were synthesized and the physicochemical properties were studied. The effect of 3MP monomers is manifested in a certain decrease in the molecular weight of the samples and an increase in polydispersity. Temperature changes are manifested in the appearance of two peaks in the melting region with different intervals regardless of the 3MP content. The studied P(3HB-co-3MP) samples, regardless of the content of 3MP monomers, are characterized by equalization of the ratio of the amorphous and crystalline phases and have a close degree of crystallinity with a minimum of 42%, = and a maximum of 54%.
Collapse
|
23
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
24
|
Modification of Polyhydroxyalkanoates Polymer Films Surface of Various Compositions by Laser Processing. Polymers (Basel) 2023; 15:polym15030531. [PMID: 36771832 PMCID: PMC9920739 DOI: 10.3390/polym15030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The results of surface modification of solvent casting films made from polyhydroxyalkanoates (PHAs) of various compositions are presented: homopolymer poly-3-hydroxybutyrate P(3HB) and copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate(4HB), and 3-hydroxyhexanoate (3HHx) monomers treated with a CO2 laser in continuous and quasi-pulsed radiation modes. The effects of PHAs film surface modification, depending on the composition and ratio of monomers according to the results of the study of SEM and AFM, contact angles of wetting with water, adhesion and growth of fibroblasts have been revealed for the laser radiation regime used. Under continuous irradiation with vector lines, melted regions in the form of grooves are formed on the surface of the films, in which most of the samples have increased values of the contact angle and a decrease in roughness. The quasi-pulse mode by the raster method causes the formation of holes without pronounced melted zones, the total area of which is lower by 20% compared to the area of melted grooves. The number of viable fibroblasts NIH 3T3 on the films after the quasi-pulse mode is 1.5-2.0 times higher compared to the continuous mode, and depends to a greater extent on the laser treatment mode than on the PHAs' composition. The use of various modes of laser modification on the surface of PHAs with different compositions makes it possible to influence the morphology and properties of polymer films in a targeted manner. The results that have been obtained contribute to solving the critical issue of functional biodegradable polymeric materials.
Collapse
|
25
|
Shishatskaya EI, Dudaev AE, Volova TG. Resorbable Nanomatrices from Microbial Polyhydroxyalkanoates: Design Strategy and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3843. [PMID: 36364619 PMCID: PMC9656924 DOI: 10.3390/nano12213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
From a series of biodegradable natural polymers of polyhydroxyalkanoates (PHAs)-poly-3-hydroxybutyrate (P(3HB) and copolymers containing, in addition to 3HB monomers, monomers of 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HHx), and 4-hydroxybutyrate (4HB), with different ratios of monomers poured-solvent casting films and nanomembranes with oriented and non-oriented ultrathin fibers were obtained by electrostatic molding. With the use of SEM, AFM, and measurement of contact angles and energy characteristics, the surface properties and mechanical and biological properties of the polymer products were studied depending on the method of production and the composition of PHAs. It has been shown in cultures of mouse fibroblasts of the NIH 3T3 line and diploid human embryonic cells of the M22 line that elastic films and nanomembranes composed of P(3HB-co-4HB) copolymers have high biocompatibility and provide adhesion, proliferation and preservation of the high physiological activity of cells for up to 7 days. Polymer films, namely oriented and non-oriented nanomembranes coated with type 1 collagen, are positively evaluated as experimental wound dressings in experiments on laboratory animals with model and surgical skin lesions. The results of planimetric measurements of the dynamics of wound healing and analysis of histological sections showed the regeneration of model skin defects in groups of animals using experimental wound dressings from P(3HB-co-4HB) of all types, but most actively when using non-oriented nanomembranes obtained by electrospinning. The study highlights the importance of nonwoven nanomembranes obtained by electrospinning from degradable low-crystalline copolymers P(3HB-co-4HB) in the effectiveness of the skin wound healing process.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| |
Collapse
|
26
|
Biosynthesis and Properties of a P(3HB- co-3HV- co-4HV) Produced by Cupriavidus necator B-10646. Polymers (Basel) 2022; 14:polym14194226. [PMID: 36236173 PMCID: PMC9570873 DOI: 10.3390/polym14194226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthesis of P(3HB-co-3HV-co-4HV) copolymers by the wild-type strain Cupriavidus necator B-10646 on fructose or sodium butyrate as the main C-substrate with the addition of γ-valerolactone as a precursor of 3HV and 4HV monomers was studied. Bacterial cells were cultivated in the modes that enabled production of a series of copolymers with molar fractions of 3HV (from 7.3 to 23.4 mol.%) and 4HV (from 1.9 to 4.7 mol.%) with bacterial biomass concentration (8.2 ± 0.2 g/L) and PHA content (80 ± 2%). Using HPLC, DTA, DSC, X-Ray, SEM, and AFM, the physicochemical properties of copolymers and films prepared from them have been investigated as dependent on proportions of monomers. Copolymers are characterized by a reduced degree of crystallinity (Cx 38-49%) molecular weight characteristics Mn (45-87 kDa), and Mw (201-248 kDa) compared with P(3HB). The properties of the films surface of various composition including the porosity and surface roughness were studied. Most of the samples showed a decrease in the average pore area and an increase in their number with a total increase in 3HV and 4HV monomers. The results allow scaling up the productive synthesis of P(3HB-co-3HV-co-4HV) copolymers using Cupriavidus necator B-10646.
Collapse
|
27
|
Pospisilova A, Vodicka J, Trudicova M, Juglova Z, Smilek J, Mencik P, Masilko J, Slaninova E, Melcova V, Kalina M, Obruca S, Sedlacek P. Effects of Differing Monomer Compositions on Properties of P(3HB-co-4HB) Synthesized by Aneurinibacillus sp. H1 for Various Applications. Polymers (Basel) 2022; 14:polym14102007. [PMID: 35631889 PMCID: PMC9146627 DOI: 10.3390/polym14102007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Films prepared from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers produced by Aneurinibacillus sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD. Structural differences between samples had a major impact on their properties. With increasing 4-hydroxybutyrate content, the ductility and release rate of the model hydrophilic active ingredient increased significantly. Other observed properties, such as the release of the hydrophobic active substance, the contact angle with water and ethylene glycol, or the surface morphology and roughness, were also affected by the composition. The identified properties predetermine these copolymers for wide use in areas such as biomedicine or smart biodegradable packaging for food or cosmetics. The big advantage is the possibility of fine-tuning properties simply by changing the fermentation conditions.
Collapse
|
28
|
Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. CHEMOSPHERE 2022; 294:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
30
|
Sugar Beet Molasses as a Potential C-Substrate for PHA Production by Cupriavidus necator. Bioengineering (Basel) 2022; 9:bioengineering9040154. [PMID: 35447714 PMCID: PMC9031461 DOI: 10.3390/bioengineering9040154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
To increase the availability and expand the raw material base, the production of polyhydroxyalkanoates (PHA) by the wild strain Cupriavidus necator B-10646 on hydrolysates of sugar beet molasses was studied. The hydrolysis of molasses was carried out using β-fructofuranosidase, which provides a high conversion of sucrose (88.9%) to hexoses. We showed the necessity to adjust the chemical composition of molasses hydrolysate to balance with the physiological needs of C. necator B-10646 and reduce excess sugars and nitrogen and eliminate phosphorus deficiency. The modes of cultivation of bacteria on diluted hydrolyzed molasses with the controlled feeding of phosphorus and glucose were implemented. Depending on the ratio of sugars introduced into the bacterial culture due to the molasses hydrolysate and glucose additions, the bacterial biomass concentration was obtained from 20–25 to 80–85 g/L with a polymer content up to 80%. The hydrolysates of molasses containing trace amounts of propionate and valerate were used to synthesize a P(3HB-co-3HV) copolymer with minor inclusions of 3-hydroxyvlaerate monomers. The introduction of precursors into the medium ensured the synthesis of copolymers with reduced values of the degree of crystallinity, containing, in addition to 3HB, monomers 3HB, 4HB, or 3HHx in an amount of 12–16 mol.%.
Collapse
|
31
|
Tarazona NA, Machatschek R, Balcucho J, Castro-Mayorga JL, Saldarriaga JF, Lendlein A. Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept. MRS ENERGY & SUSTAINABILITY : A REVIEW JOURNAL 2022; 9:28-34. [PMID: 37521367 PMCID: PMC9127038 DOI: 10.1557/s43581-021-00015-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022]
Abstract
Highlights The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation. Abstract Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities. Graphic abstract
Collapse
Affiliation(s)
- Natalia A. Tarazona
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| | - Jennifer Balcucho
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Jinneth Lorena Castro-Mayorga
- Department of Bioproducts, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 250047 Mosquera-Cundinamarca, Colombia
| | - Juan F. Saldarriaga
- Civil and Environmental Engineering Department, Universidad de los Andes (UniAndes), 111711 Bogotá, Colombia
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| |
Collapse
|
32
|
Volova TG, Kiselev EG, Demidenko AV, Zhila NO, Nemtsev IV, Lukyanenko AV. Production and Properties of Microbial Polyhydroxyalkanoates Synthesized from Hydrolysates of Jerusalem Artichoke Tubers and Vegetative Biomass. Polymers (Basel) 2021; 14:polym14010132. [PMID: 35012158 PMCID: PMC8747110 DOI: 10.3390/polym14010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major challenges in PHA biotechnology is optimization of biotechnological processes of the entire synthesis, mainly by using new inexpensive carbon substrates. A promising substrate for PHA synthesis may be the sugars extracted from the Jerusalem artichoke. In the present study, hydrolysates of Jerusalem artichoke (JA) tubers and vegetative biomass were produced and used as carbon substrate for PHA synthesis. The hydrolysis procedure (the combination of aqueous extraction and acid hydrolysis, process temperature and duration) influenced the content of reducing substances (RS), monosaccharide contents, and the fructose/glucose ratio. All types of hydrolysates tested as substrates for cultivation of three strains—C. necator B-10646 and R. eutropha B 5786 and B 8562—were suitable for PHA synthesis, producing different biomass concentrations and polymer contents. The most productive process, conducted in 12-L fermenters, was achieved on hydrolysates of JA tubers (X = 66.9 g/L, 82% PHA) and vegetative biomass (55.1 g/L and 62% PHA) produced by aqueous extraction of sugars at 80 °C followed by acid hydrolysis at 60 °C, using the most productive strain, C. necator B-10646. The effects of JA hydrolysates on physicochemical properties of PHAs were studied for the first time. P(3HB) specimens synthesized from the JA hydrolysates, regardless of the source (tubers or vegetative biomass), hydrolysis conditions, and PHA producing strain employed, exhibited the 100–120 °C difference between the Tmelt and Tdegr, prevailing of the crystalline phase over the amorphous one (Cx between 69 and 75%), and variations in weight average molecular weight (409–480) kDa. Supplementation of the culture medium of C. necator B-10646 grown on JA hydrolysates with potassium valerate and ε-caprolactone resulted in the synthesis of P(3HB-co-3HV) and P(3HB-co-4HB) copolymers that had decreased degrees of crystallinity and molecular weights, which influenced the porosity and surface roughness of polymer films prepared from them. The study shows that JA hydrolysates used as carbon source enabled productive synthesis of PHAs, comparable to synthesis from pure sugars. The next step is to scale up PHA synthesis from JA hydrolysates and conduct the feasibility study. The present study contributes to the solution of the critical problem of PHA biotechnology—finding widely available and inexpensive substrates.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Evgeniy G. Kiselev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Alexey V. Demidenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Natalia O. Zhila
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
- Correspondence: ; Tel.: +7-391-290-54-91; Fax: +7-391-243-34-00
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.G.V.); (E.G.K.); (A.V.D.); (I.V.N.); (A.V.L.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| |
Collapse
|
33
|
Sustainability Evaluation of Polyhydroxyalkanoate Production from Slaughterhouse Residues Utilising Emergy Accounting. Polymers (Basel) 2021; 14:polym14010118. [PMID: 35012140 PMCID: PMC8747163 DOI: 10.3390/polym14010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/13/2023] Open
Abstract
High raw material prices and rivalry from the food industry have hampered the adoption of renewable resource-based goods. It has necessitated the investigation of cost-cutting strategies such as locating low-cost raw material supplies and adopting cleaner manufacturing processes. Exploiting waste streams as substitute resources for the operations is one low-cost option. The present study evaluates the environmental burden of biopolymer (polyhydroxyalkanoate) production from slaughtering residues. The sustainability of the PHA production process will be assessed utilising the Emergy Accounting methodology. The effect of changing energy resources from business as usual (i.e., electricity mix from the grid and heat provision utilising natural gas) to different renewable energy resources is also evaluated. The emergy intensity for PHA production (seJ/g) shows a minor improvement ranging from 1.5% to 2% by changing only the electricity provision resources. This impact reaches up to 17% when electricity and heat provision resources are replaced with biomass resources. Similarly, the emergy intensity for PHA production using electricity EU27 mix, coal, hydropower, wind power, and biomass is about 5% to 7% lower than the emergy intensity of polyethylene high density (PE-HD). In comparison, its value is up to 21% lower for electricity and heat provision from biomass.
Collapse
|
34
|
Multifunctional, Robust, and Porous PHBV-GO/MXene Composite Membranes with Good Hydrophilicity, Antibacterial Activity, and Platelet Adsorption Performance. Polymers (Basel) 2021; 13:polym13213748. [PMID: 34771308 PMCID: PMC8588032 DOI: 10.3390/polym13213748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/09/2023] Open
Abstract
The limitations of hydrophilicity, strength, antibacterial activity adsorption performance of the biobased and biocompatible polymer materials, such as polyhydroxyalkanoates (PHAs), significantly restrict their wider applications especially in medical areas. In this paper, a novel composite membrane with high antibacterial activity and platelet adsorption performance was prepared based on graphene oxide (GO), MXene and 3-hydroxybutyrate-co-hydroxyvalerate (PHBV), which are medium-chain-length-copolymers of PHA. The GO/MXene nanosheets can uniformly inset on the surface of PHBV fibre and give the PHBV—GO/MXene composite membranes superior hydrophilicity due to the presence of hydroxyl groups and terminal oxygen on the surface of nanosheets, which further provides the functional site for the free radical polymerization of ester bonds between GO/MXene and PHBV. As a result, the tensile strength, platelet adsorption, and blood coagulation time of the PHBV—GO/MXene composite membranes were remarkably increased compared with those of the pure PHBV membranes. The antibacterial rate of the PHBV—GO/MXene composite membranes against gram-positive and gram-negative bacteria can reach 97% due to the antibacterial nature of MXene. The improved strength, hydrophilicity, antibacterial activity and platelet adsorption performance suggest that PHBV—GO/MXene composite membranes might be ideal candidates for multifunctional materials for haemostatic applications.
Collapse
|
35
|
Zhila NO, Sapozhnikova KY, Kiselev EG, Vasiliev AD, Nemtsev IV, Shishatskaya EI, Volova TG. Properties of Degradable Polyhydroxyalkanoates (PHAs) Synthesized by a New Strain, Cupriavidus necator IBP/SFU-1, from Various Carbon Sources. Polymers (Basel) 2021; 13:polym13183142. [PMID: 34578042 PMCID: PMC8468435 DOI: 10.3390/polym13183142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7–8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 ± 15 kDa) and weight-average (850 ± 25 kDa) molecular weights and the lowest polydispersity (2.9 ± 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: ; Tel.: +7-391-290-54-91; Fax: +7-391-243-34-00
| | - Kristina Yu. Sapozhnikova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Evgeniy G. Kiselev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexander D. Vasiliev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, L.V. Kirensky Institute of Physics SB RAS, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, L.V. Kirensky Institute of Physics SB RAS, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (K.Y.S.); (E.G.K.); (A.D.V.); (I.V.N.); (E.I.S.); (T.G.V.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
36
|
Volova TG, Golubev AI, Nemtsev IV, Lukyanenko AV, Dudaev AE, Shishatskaya EI. Laser Processing of Polymer Films Fabricated from PHAs Differing in Their Monomer Composition. Polymers (Basel) 2021; 13:1553. [PMID: 34066143 PMCID: PMC8151816 DOI: 10.3390/polym13101553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92° and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80-56° and surface energy and roughness increased to 41-57 mN/m and 172-290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76-80°) and reduced roughness parameters (to 40-45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67-76°), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexey I. Golubev
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Special Design and Technological Bureau ‘Nauka’ Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/45 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences” 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Alexey E. Dudaev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
37
|
Kovalcik A, Smilek J, Machovsky M, Kalina M, Enev V, Dugova H, Cernekova N, Kovacova M, Spitalsky Z. Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling. Int J Biol Macromol 2021; 183:880-889. [PMID: 33961880 DOI: 10.1016/j.ijbiomac.2021.04.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Fused deposition modelling (FDM) is a process of additive manufacturing allowing creating of highly precise complex three-dimensional objects for a large range of applications. The principle of FDM is an extrusion of the molten filament and gradual deposition of layers and their solidification. Potential applications in pharmaceutical and medical fields require the development of biodegradable and biocompatible thermoplastics for the processing of filaments. In this work, the potential of production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) filaments for FDM was investigated in respect to its thermal stability. Copolymer P(3HB-co-4HB) was biosynthesised by Cupriavidus malaysiensis. Rheological and mechanical properties of the copolymer were modified by the addition of plasticizers or blending with poly(lactic acid). Thermal stability of mixtures was studied employing thermogravimetric analysis and rheological analyses by monitoring the time-dependent changes in the complex viscosity of melt samples. The plasticization of P(3HB-co-4HB) slightly hindered its thermal degradation but the best stabilization effect was found in case of the copolymer blended with poly(lactic acid). Overall, rheological, thermal and mechanical properties demonstrated that the plasticized P(3HB-co-4HB) is a potential candidate of biodegradable polymer for FDM processes.
Collapse
Affiliation(s)
- Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Jiri Smilek
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Michal Machovsky
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Vojtech Enev
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Hana Dugova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Nicole Cernekova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Maria Kovacova
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava 45, Slovak Republic
| | - Zdenko Spitalsky
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava 45, Slovak Republic
| |
Collapse
|