1
|
Zhang L, Xu W, Zeng Y, Wang L, Luo J, Zhou X, Mei Q, Qin D, Wu A, Wu J, Huang F. Astragaloside IV accelerates hematopoietic reconstruction by improving the AMPK/PGC1α-mediated mitochondrial function in hematopoietic stem cells. Chin Med 2025; 20:44. [PMID: 40170084 PMCID: PMC11963557 DOI: 10.1186/s13020-025-01092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Radiotherapy can damage hematopoietic stem cells (HSC) in bone marrow, leading to impaired hematopoietic function. Current treatments mainly target differentiated hematopoietic progenitor cells, which may accelerate their depletion. Astragaloside IV (AS-IV), derived from Astragalus membranaceus, shows potential in hematopoiesis, but its direct effects on HSC remain unclear. METHODS The study employed both in vitro and in vivo approaches. In vitro experiments utilized K562 cells and mouse bone marrow nucleated cells (BMNCs) to evaluate AS-IV's effects on cell proliferation and mitochondrial function. In vivo studies involved a 4.0 Gy total body irradiation mouse model treated with different doses of AS-IV (50 mg/kg and 100 mg/kg). The mechanism of action was investigated through Western blot, flow cytometry, and metabolomics analyses. The AMPK/PGC1α pathway regulation was verified using AMPK inhibitors and mutant plasmid, with molecular docking confirming AS-IV's direct binding to AMPK. RESULTS In vitro studies demonstrated that AS-IV significantly promoted the proliferation of K562 cells and BMNC while enhancing their mitochondrial membrane potential, mitochondrial mass, and ATP production. In the irradiated mouse model, AS-IV treatment led to significant improvements in peripheral blood cell counts, including white blood cells, red blood cells, and hemoglobin levels. Further investigation revealed that AS-IV increased the proportion of HSC in both bone marrow and spleen while improving their mitochondrial function. Transcriptomic sequencing and Western blot analysis identified the AMPK/PGC1α signaling pathway as the key mechanism underlying AS-IV-mediated mitochondrial enhancement. These findings were validated through pharmacological inhibition of AMPK and AMPKK45R mutation experiments. CONCLUSION AS-IV accelerates hematopoietic reconstruction following radiation injury via activation of the AMPK/PGC1α signaling pathway, which enhances HSC mitochondrial function.
Collapse
Affiliation(s)
- Ling Zhang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wanqi Xu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yueying Zeng
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jiesi Luo
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaogang Zhou
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qibing Mei
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Anguo Wu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| | - Feihong Huang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Long J, Lai H, Huang Y, You F, Jiang Y, Kuang Q. Unraveling the pathogenesis of bone marrow hematopoietic injury and the therapeutic potential of natural products. Pharmacol Res 2025; 212:107589. [PMID: 39778641 DOI: 10.1016/j.phrs.2025.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing. Furthermore, we explored the potential and application prospects of natural products in the treatment of bone marrow hematopoietic injury. Natural products, particularly those derived from Chinese herbal medicines and other natural sources, have emerged as promising therapeutic options due to their distinctive mechanisms and minimal side effects. A deeper understanding of the underlying mechanisms of bone marrow hematopoietic injury could illuminate how natural products exert their effects, thereby optimizing treatment strategies and offering safer, more effective options for patients. Future research should leverage emerging technologies to further elucidate the composition and interactions within the bone marrow microenvironment, as well as the specific pathways through which natural products modulate hematopoietic dysfunction.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hengzhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qixuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
3
|
Zhang J, Zhong C, Chen L, Luo Y, Tang L, Yang J, Jia J, Xie X, Liu P, Yu J, Cui Y. Bletilla striata polysaccharide-mediated trained immunity drives the hematopoietic progenitors' expansion and myelopoiesis. Int Immunopharmacol 2025; 146:113909. [PMID: 39721454 DOI: 10.1016/j.intimp.2024.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Trained immunity represents a functional state of the innate immune response, characterized by enduring epigenetic reprogramming of innate immune cells. This phenomenon facilitates a sustained and advantageous reaction of myeloid cells to subsequent challenges. Bletilla striata polysaccharide (BSP) is the primary active component of Bletilla striata, mainly consisting of mannose and glucose in its chemical structure. Previous studies have demonstrated BSP's immunomodulatory properties, highlighting its effectiveness in enhancing the immune response. In the present study, we demonstrated that BSP administration induced the trained innate immunity, as evidenced by the BSP-induced generation of mature myeloid cells, especially neutrophils in the peripheral circulation in amouse model of chemotherapy-induced myelosuppression. Furthermore, we showed that BSP-induced trained immunity acts at the level of hematopoietic stem and progenitor cells (HSPCs) and induces the expansion of HSPCs. Mechanistically, our study demonstrated that BSP induced the activation of Notch signaling in HSPCs, and Notch signaling is indispensable for the BSP-mediated generation of trained HSPCs. Collectively, our data demonstrated for the first time that BSP induced trained immunity by regulating theexpansion of the myeloid progenitors. Harnessing trained immunity could be a promising strategy for protection from chemotherapy-induced myelosuppression.
Collapse
Affiliation(s)
- Jiangtao Zhang
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Chao Zhong
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Lanying Chen
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yingying Luo
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Le Tang
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jing Yang
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jing Jia
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Xinxu Xie
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Peng Liu
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yaru Cui
- Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
4
|
Shi W, Wang R, Qian J, Wang L, Li Y, Mi Y, Jia Z, Pan M, Zhang X, Ye W, Xiong F, Hu X, Wang H. Discovery of Potent and Selective CDK4/6 Inhibitors for the Treatment of Chemotherapy-Induced Myelosuppression. J Med Chem 2025; 68:1446-1472. [PMID: 39760276 DOI: 10.1021/acs.jmedchem.4c02080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Chemotherapy-induced myelosuppression (CIM) significantly impairs hematopoiesis. Trilaciclib (TC), originally developed for oncology application, is the only FDA-approved CDK4/6 inhibitor for CIM, which effectively protects bone marrow cells by inhibiting their proliferation. In this study, a series of TC derivatives were designed and synthesized as CDK4/6 inhibitors (CDK4/6i) for alleviating CIM. Among these, 42 displayed potent CDK4/6 inhibitory activity (IC50 = 11 nM), lower cytotoxicity (CC50 > 100 μM) and showed high selectivity among 86 kinases. Additionally, 42 possessed strong bone marrow penetration, favorable pharmacokinetic properties, excellent safety profiles, and superior efficacy in mitigating myelosuppression caused by 5-fluorouracil (5-FU) in vivo. In conclusion, as the first oral small-molecule CDK4/6 inhibitor optimized specifically for myelosuppression treatment, 42 expands the therapeutic applications of CDK4/6i, optimizes the mode of administration, and offers significant translational value and clinical potential.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianqiang Qian
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Wang
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - You Li
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yahui Mi
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaotong Jia
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mingshi Pan
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqi Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510000, China
| | - Wencai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510000, China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Departemnt of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Zeng S, Gao L, Wang K, Liu X, Hu Z, Zhao L. Along the gut-bone marrow signaling pathway: use of longan polysaccharides to regenerate blood cells after chemotherapy-induced myelosuppression. Food Funct 2024; 15:11888-11902. [PMID: 39434567 DOI: 10.1039/d4fo03758h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Although it has been established that polysaccharides have an effect on bone marrow haematopoiesis, it remains unclear how polysaccharides regulate bone marrow haematopoiesis during absorption and metabolism in vivo. In this study, the effect of a longan polysaccharide of large molecular weight (TLPL) on the gut microbiota of mice and its implications for the haematopoietic process in bone marrow was discussed. Here, the results show that after 21 days of TLPL consumption, the respective quantities of white blood cells, platelets, hemoglobin and bone marrow nucleated cells were determined to be 3.18 ± 1.71 (109 L-1), 1238.10 ± 164.41 (109 L-1), 135.10 ± 4.95 (g L-1), and 1.70 × 107, which reached 56.98%, 117.28%, and 47.74%, respectively, of the results for NC. TLPL both increased the thymus and spleen indexes by up to 2.08 ± 0.64 (mg g-1) and 6.49 ± 2.45 (mg g-1), respectively. Additionally, TLPL remodeled the gut microbiota with a significant increase in Lactobacillus in particular, and a significant increase in the level of the potential intestinal metabolite lactate was detected in the serum. Most importantly, a similarly significant up-regulation of the gene expression of the lactate receptor, Gpr81, in the myeloid cells was observed. These changes contributed to the activation of the secretion of various cytokines associated with haematopoiesis, with the levels of G-CSF, EPO, SCF and PF4 increased by 2.44 times, 1.14 times, 1.56 times and 1.13 times, respectively, compared to the MC group, which subsequently accelerated production of bone marrow cells and blood cells. The findings of this study reveal the unique mechanism of dried longan polysaccharides in ameliorating myelosuppression and provide a feasible strategy for the treatment of chemotherapy-induced myelosuppression with bioactive polysaccharides.
Collapse
Affiliation(s)
- Shiai Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Lan Gao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
6
|
Chen CH, Ou SC, Wang SH, Chang TT. Alternative therapy for lymphoma with febrile neutropenia using traditional Chinese medicine: A case report. Explore (NY) 2024; 20:103057. [PMID: 39244905 DOI: 10.1016/j.explore.2024.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Febrile neutropenia is a common complication in patients undergoing chemotherapy for hematologic malignancies and is associated with significant morbidity and mortality. Primary granulocyte colony-stimulating factor (G-CSF) prophylaxis is consistently associated with a notable reduction in the risk of febrile neutropenia. However, the use of G-CSF in patients who are already neutropenic from chemotherapy remains controversial. Studies have shown that 12.9 % of cancer patients incorporate traditional Chinese medicine (TCM) to alleviate chemotherapy side effects in Taiwan; thereby providing an alternative management strategy for febrile neutropenia in cancer patients. CASE PRESENTATION This is an 18-year-old female with newly diagnosed precursor T-lymphoblastic lymphoma. After chemotherapy, the patient developed febrile neutropenia. Despite the use of antibiotics and G-CSF, the febrile neutropenia persisted for two months. Approximately ten days after the initiation of traditional Chinese medicine decoction with the strategy of tonifying the spleen and stomach, clearing yin fire, and uplifting yang, her absolute neutrophil count (ANC) had gradually increased. Additionally, after two weeks of treatment, her fever subsided. The patient continued with chemotherapy and was discharged in stable condition. DISCUSSION Antibiotic use aligns with the TCM perspective of an "attack" approach. Conversely, our TCM decoction was designed to raise the ANC by tonifying the spleen and stomach, clearing Yin Fire, and uplifting Yang. Li Dongyuan, one of the four great masters of the Jin Yuan Dynasty, created the formula: Bupiwei Shengyang Sanhuo Decoction that is notable in this regard. The herbs in our decoction have shown hematopoietic and myelosuppression-alleviating effect. For many patients who do not respond adequately to G-CSF alone, integrative treatments involving both TCM and Western medicine can offer additional therapeutic benefits by increasing blood cell counts.
Collapse
Affiliation(s)
- Chi-Hsiang Chen
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City, 404333, Taiwan
| | - Shih-Han Wang
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan
| | - Tung-Ti Chang
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City, 404333, Taiwan.
| |
Collapse
|
7
|
Wubuli A, Chai J, Liu H, Nijat D, Li J, Xia G, Cao Q, Zhang S, Huang W, Aipire A, Li J. In vivo pharmacokinetics of Glycyrrhiza uralensis polysaccharides. Front Pharmacol 2024; 15:1431221. [PMID: 39101144 PMCID: PMC11294697 DOI: 10.3389/fphar.2024.1431221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Glycyrrhiza uralensis polysaccharides (GUPS) are widely applied in biomedicine and functional food due to their multiple pharmacological activities and low toxicity. Despite their widespread use, the in vivo metabolic profile of GUPS remains poorly understood. To address this gap, we developed a quantitative analysis method that involves labeling GUPS with visible fluorescein (5-DTAF) and near-infrared (NIR) fluorescein (Cy7), resulting in stable conjugates with substitution degrees of 0.81% for 5-DTAF and 0.39% for Cy7. The pharmacokinetic studies showed a biphasic elimination pattern in the blood concentration-time curve following both intravenous and oral administration, consistent with a two-compartment model. Using fluorescence quantification and NIR imaging, we observed that GUPS was distributed to various tissues, exhibiting higher concentrations particularly in liver, kidney and lung. Excretion studies indicated that feces were the major excretion pathway of GUPS after oral administration (60.98%), whereas urine was the main pathway after intravenous administration (31.16%). Notably, GUPS could be absorbed rapidly by gut (Tmax 1 ± 0.61 h) and showed a biological half-time t1/2 26.4 ± 7.72 h after oral administration. Furthermore, the Caco-2 cells uptake studies illustrated that macropinocytosis and clathrin-mediated endocytosis were participated in the transport of GUPS in intestine epithelium. This comprehensive analysis of the in vivo pharmacokinetics of GUPS not only enhances our understanding of its metabolic pathways but also establishes a foundational basis for its clinical application, optimizing its therapeutic potential and safety profile.
Collapse
Affiliation(s)
- Abudukahaer Wubuli
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Junwei Chai
- Urumqi Xinze Ziqi Biotechnology Company, Limited, Urumqi, China
| | - Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Dilaram Nijat
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jianmin Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guoyu Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Saidan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | | | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
8
|
Wang W, Zhang K, Dai L, Hou A, Meng P, Ma J. Investigating the protective effects of Astragalus polysaccharides on cyclophosphamide-induced bone marrow suppression in mice and bone mesenchymal stem cells. Mol Immunol 2024; 171:93-104. [PMID: 38805892 DOI: 10.1016/j.molimm.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study determines the role and mechanism of APS in cyclophosphamide-induced myelosuppression in mice and bone mesenchymal stem cells (BMSCs) cell model. METHODS Cy-induced myelosuppression mice and BMSCs cell model were established. Fifty C57BL/6 mice (weighing 20 ± 2 g) were randomly divided into five groups. Femur and tibia samples, bone marrow samples, and blood samples were collected 3 days after the last injection of Cy. Histopathology changes and cell apoptosis were detected. Cell viability, apoptosis, cycle distribution, reactive oxygen species activity, osteogenesis ability, and protein levels were detected. γ-H2AX and senescence-associated β-galactosidase activity expression was detected by immunofluorescence. Cy-induced senescence and Wnt/β-catenin related protein levels were detected using western blotting. RESULTS The results showed that APS effectively induced Cy-induced histological injury and cell apoptosis rate. After treated with APS, ROS and ALP levels were significantly increased. In BMSCs, cell viability, apoptosis, and cell cycle distribution were also influenced by APS treatment. Compared with the control group, cell viability was significantly increased, the cell apoptosis rate was decreased while the number of cells remained in the G0-G1 phase was increased. Meanwhile, ROS levels were significantly increased in APS group. Cell senescence and Wnt/β-catenin related protein (γ-H2AX, SA-β-gal, p21, p16, p-β-catenin/ β-catenin, c-Myc, and AXIN2) levels were also altered both in vivo and in vitro. Interestingly, the effects of APS were reversed by BML-284. CONCLUSION Our results indicate that APS protected Cy-induced myelosuppression through the Wnt/β-catenin pathway and APS is a potential therapeutic drug for Cy-induced myelosuppression.
Collapse
Affiliation(s)
- Wen Wang
- The Third Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Kangle Zhang
- The Third Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Lingling Dai
- The Forth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Peng Meng
- The Forth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Jipeng Ma
- The Forth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China.
| |
Collapse
|
9
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
10
|
Yang B, Li X. Unveiling the Mechanisms of Bone Marrow Toxicity Induced by Lead Acetate Exposure. Biol Trace Elem Res 2024; 202:1041-1066. [PMID: 37378799 DOI: 10.1007/s12011-023-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Lead (Pb), a widespread heavy metal, causes severe toxicity in human and animal organs (e.g., bone marrow), whereas the mechanisms of the bone marrow toxicity induced by Pb exposure are unclear. Hence, this study was designed to reveal the hub genes involved in Pb-induced bone marrow toxicity. GSE59894 dataset obtained from Gene Expression Omnibus (GEO) was composed of lead acetate (PbAc2)-treated and control bone marrow samples. Totally 120 and 85 differentially expressed genes (DEGs) were identified on the 1st day, while 153 and 157 DEGs on the 3rd day in the bone marrow treated with 200 and 600 mg/kg of PbAc2, respectively. Notably, a total of 28 and 32 overlapping DEGs were identified in the bone marrow on the 1st and 3rd day treated with PbAc2, respectively. Biological process analysis suggested that the common DEGs were primarily participated in cell differentiation, the response to drug, xenobiotic stimulus, and organic cyclic compound. Pathway analysis demonstrated that the overlapping DEGs were primarily linked to PI3K-Akt, TGF-β, MAPK, and osteoclast differentiation signaling pathways. Moreover, the hub genes, including PLD2, DAPK1, ALB, TNF, FOS, CDKN1A, and TGFB3, might contribute to PbAc2-induced bone marrow toxicity. Overall, our study offers an important insight into the molecular mechanisms of Pb-induced bone marrow toxicity.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
11
|
Li Y, Teng M, Yang H, Li S, Liu X, Zhang J, Qiu Y, Li L. Impact of macrophage differentiation on hematopoietic function enhancement by Shenzhu ErKang Syrup. Aging (Albany NY) 2024; 16:169-190. [PMID: 38175693 PMCID: PMC10817372 DOI: 10.18632/aging.205358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Shenzhu Erkang Syrup (SZEK) is a traditional Chinese medicine that improves spleen and stomach function, tonifying the Qi and activating the blood; however, its therapeutic effects in hematopoietic dysfunction and their underlying mechanism remain unexplored. In this study, mice were given cyclophosphamide (100 mg/kg) by intraperitoneal injections for three days to produce hematopoietic dysfunction model. We investigated the hematopoietic effect and mechanism of SZEK in mice with hematopoietic dysfunction via histopathological examination, flow cytometry, enzyme-linked immunosorbent assay, and Western blotting combined with intestinal flora and serum metabolomics analysis. In mice with hematopoietic dysfunction, SZEK (gavage, 0.3 mL/25 g) alleviated pathological damage to the bone marrow and spleen; increased the number of naïve cells (Lin-), hematopoietic stem cells (Lin-Sca-1+c-Kit+), long-term self-renewing hematopoietic stem cells (Lin-Sca-1+c-Kit+CD48-CD150+), B lymphocytes (CD45+CD19+), and macrophages (CD11b+F4/80+) in the bone marrow; and reduced inflammation. Preliminary intestinal flora and serum metabolome analyses indicated that the pro-hematopoietic mechanism of SZEK was associated with macrophage differentiation. Further validation revealed that SZEK promoted hematopoiesis by decreasing the number of M2 macrophages and inhibiting the secretion of negative hematopoietic regulatory factors in mice with hematopoietic dysfunction.
Collapse
Affiliation(s)
- Yuan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Meng Teng
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Jicheng Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130012, Jilin, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
12
|
Qiao C, Hu S, Wang D, Cao K, Wang Z, Wang X, Ma X, Li Z, Hou W. Effectiveness and safety of Shenqi Fuzheng injection combined with platinum-based chemotherapy for treatment of advanced non-small cell lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1198768. [PMID: 37731634 PMCID: PMC10507621 DOI: 10.3389/fonc.2023.1198768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Objective To evaluate the efficacy and safety of Shenqi Fuzheng Injection (SFI) combined with platinum-based chemotherapy (PBC) for the treatment of advanced non-small cell lung cancer (NSCLC). Methods Seven electronic databases, including CNKI and Wanfang, were comprehensively searched to screen randomized controlled trials (RCTs) until May 1, 2022. The quality of each trial was evaluated according to the Cochrane Handbook for Systematic Reviews of Interventions, and systematic reviews were conducted according to the PRISMA guidelines. Statistical analysis was performed using Review Manager 5.3, and the results were expressed as relative risk (RR) and 95% confidence interval (95% CI). The primary outcome measures were objective response rate (ORR) and disease control rate (DCR). The secondary outcome measures were quality of life and toxicity. Subgroup analysis was performed according to the number of days of SFI single-cycle treatment and combined PBC regimen. Results A total of 44 RCTs involving 3475 patients were included in the study. The meta-analysis results showed that, compared with PBC alone, SFI combined with PBC significantly improved the ORR (RR = 1.27, 95% CI = 1.18-1.37, P < 0.00001), DCR (RR = 1.12, 95% CI = 1.08-1.15, P < 0.00001), and quality of life (RR = 1.41, 95% CI = 1.31-1.52, P < 0.00001). It also reduced chemotherapy-induced hemoglobin reduction (RR = 0.57, 95% CI = 0.48-0.67, P < 0.00001), leukopenia (RR = 0.61, 95% CI = 0.53-0.71, P < 0.00001), thrombocytopenia (RR = 0.62, 95% CI = 0.55-0.70, P < 0.00001), and simple bone marrow suppression (RR = 0.55, 95% CI = 0.41-0.73, P < 0.0001). Nausea and vomiting (RR = 0.63, 95% CI = 0.52-0.77, P < 0.00001), diarrhea (RR = 0.48, 95% CI = 0.37-0.64, P < 0.00001), and simple digestive tract reactions (RR = 0.63, 95% CI = 0.49-0.80, P = 0.0002) also decreased with the treatment of SFI. Conclusion SFI combined with PBC for the treatment of advanced NSCLC improved the ORR, DCR, and quality of life, and reduced the incidence of myelosuppression and gastrointestinal adverse reactions. However, considering the limitations of existing evidence, further verification using high-quality RCTs is required. Systematic review registration https://inplasy.com/inplasy-2022-7-0026, identifier INPLASY202270026.
Collapse
Affiliation(s)
- Chenxi Qiao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuaihang Hu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kangdi Cao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhuo Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xinyan Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xiumei Ma
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Dong M, Li J, Yang D, Li M, Wei J. Biosynthesis and Pharmacological Activities of Flavonoids, Triterpene Saponins and Polysaccharides Derived from Astragalus membranaceus. Molecules 2023; 28:5018. [PMID: 37446680 PMCID: PMC10343288 DOI: 10.3390/molecules28135018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has been widely used in ailments for more than 2000 years. The main bioactive compounds including flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a wide range of biological activities and pharmacological effects. These bioactive compounds have a significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiinflammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream pathway of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide (APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of polysaccharides in A. membranaceus. We further systematically summarized the pharmacological effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis to improve the industrialized production and sustainable supply of natural products with pharmacological activities from A. membranaceus, thereby providing an important guide for their future development trend.
Collapse
Affiliation(s)
- Miaoyin Dong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinjuan Li
- Institute of Agricultural Quality Standards and Testing Technology, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.D.); (D.Y.)
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
14
|
Cao F, Zhang H, Yan Y, Chang Y, Ma J. Extraction of polysaccharides from Maca enhances the treatment effect of 5-FU by regulating CD4 +T cells. Heliyon 2023; 9:e16495. [PMID: 37274637 PMCID: PMC10238885 DOI: 10.1016/j.heliyon.2023.e16495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
In our previous studies, we used a graded alcohol precipitation method to extract four maca polysaccharide components (MCP1, MCP2, MCP3, and MCP4) from maca with various molecular weights. Compared to other three components, MCP2 had stronger immunoregulatory abilities on CD4+T cells. To avoid the immunosuppressive effect of 5-fluorouracil (5-FU), maca polysaccharides in combination with 5-FU treatment were investigated in this study. The results show that 500 mg/kg and 1000 mg/kg MCP2 could significantly delay the growth of tumor and enhance the anti-tumor effect of 5-FU in vivo. Furthermore, MCP2 can partly recover the proliferation of CD4+T cells after being suppressed by 5-FU in vitro. Additionally, in order to explore the mechanism in which MCP2 acts on CD4+T cells, the MCP2 is marked with FITC fluorescence and synthesis MCP2-Tyr-FITC for the first time. Confocal microscope results show that MCP2-Tyr-FITC can directly bind to the surface of CD4+T cells. Together, our work demonstrates that maca polysaccharides could enhance the anti-tumor effect when combined with 5-FU by regulating CD4+T cells, suggesting a novel potential immunomodulator in tumor therapy.
Collapse
Affiliation(s)
- Fenghua Cao
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Hanyuan Zhang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Ying Yan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Chang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jie Ma
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Wang S, Peng Y, Zhuang Y, Wang N, Jin J, Zhan Z. Purification, Structural Analysis and Cardio-Protective Activity of Polysaccharides from Radix Astragali. Molecules 2023; 28:molecules28104167. [PMID: 37241906 DOI: 10.3390/molecules28104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Two polysaccharides, named APS2-I and APS3-I, were purified from the water extract of Radix Astragali. The average molecular weight of APS2-I was 1.96 × 106 Da and composed of Man, Rha, GlcA, GalA, Glc, Gal, Xyl, and Ara in a molar ratio of 2.3:4.8:1.7:14.0:5.8:11.7:2.8:12.6, while the average molecular weight of APS3-I was 3.91 × 106 Da and composed of Rha, GalA, Glc, Gal, and Ara in a molar ratio of 0.8:2.3:0.8:2.3:4.1. Biological evaluation showed APS2-I and APS3-I had significant antioxidant activity and myocardial protection activity. Furthermore, total polysaccharide treatment could significantly enhance hemodynamic parameters and improve cardiac function in rat ischemia and reperfusion isolated heart models. These results provided important information for the clinical application of APS in the field of cardiovascular disease and implied that Astragalus polysaccharides (APS) could be considered as a reference for the quality control of Radix Astragali.
Collapse
Affiliation(s)
- Shilei Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuan Peng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Zhuang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jianchang Jin
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
16
|
A lymphatic route for a hyperbranched heteroglycan from Radix Astragali to trigger immune responses after oral dosing. Carbohydr Polym 2022; 292:119653. [DOI: 10.1016/j.carbpol.2022.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
|
17
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
18
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
19
|
Zhang G, Huang J, Hao S, Zhang J, Zhou N. Radix Astragalus Polysaccharide Accelerates Angiogenesis by Activating AKT/eNOS to Promote Nerve Regeneration and Functional Recovery. Front Pharmacol 2022; 13:838647. [PMID: 35431954 PMCID: PMC9010722 DOI: 10.3389/fphar.2022.838647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) results in loss of neural control and severe disabilities in patients. Promoting functional nerve recovery by accelerating angiogenesis is a promising neuroprotective treatment strategy. Here, we identified a bioactive Radix Astragalus polysaccharide (RAP) extracted from traditional Chinese medicine (TCM) as a potent enhancer of axonal regeneration and remyelination. Notably, RAP promoted functional recovery and delayed gastrocnemius muscle atrophy in a rat model of sciatic nerve crush injury. Further, RAP treatment may induce angiogenesis in vivo. Moreover, our in vitro results showed that RAP promotes endothelial cell (EC) migration and tube formation. Altogether, our results show that RAP can enhance functional recovery by accelerating angiogenesis, which was probably related to the activation of AKT/eNOS signaling pathway, thereby providing a polysaccharide-based therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Geyi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Hao
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchao Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Nan Zhou, ; Jingchao Zhang,
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Nan Zhou, ; Jingchao Zhang,
| |
Collapse
|
20
|
Liu Y, Li S, Pu M, Qin H, Wang H, Zhao Y, Chen T. Structural Characterization of Polysaccharides Isolated from Panax notoginseng Medicinal Residue and Its Protective Effect on Myelosuppression Induced by Cyclophosphamide. Chem Biodivers 2021; 19:e202100681. [PMID: 34817123 DOI: 10.1002/cbdv.202100681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
This study aims to establish the isolation and purification method of polysaccharides from medicinal residue of Panax notoginseng (PPN). The structure and protective effect of PPN on myelosuppression mice were investigated. One neutral polysaccharide (NPPN) and five acidic polysaccharides (APPN I, APPN II-A, APPN II-B, APPN III-A, and APPN III-B) were obtained. The results confirmed that NPPN, APPN I and APPN II-A are glycan with 1, 4 main chains. APPN III-A is a glycan. APPN II-B and APPN III-B are homogalacturonan pectin with 1, 4 main chains. This study demonstrated that NPPN played a bone marrow protective role in myelosuppression mice induced by cyclophosphamide. NPPN could relieve cell cycle arrest, reduce the apoptosis rate of marrow cells, and improve granulocyte-macrophage colony-stimulating (GM-CSF), thermoplastic polyolefin (TPO) and erythropoietin (EPO) serum level, which contributes to promoting the proliferation of hematopoietic cells.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China.,Yunnan Maternal and Child Health Hospital, No. 200 Gulou Road, Kunming, 650051, P. R. China
| | - Shuang Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China.,Kunming Children's Hospital, No. 288 Qianxing Road, Kunming, 650034, P. R. China
| | - Mengdi Pu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| | - Huayan Qin
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| | - Hong Wang
- Department of Geriatrics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, P. R. China
| | - Yunqi Zhao
- College of Science and Technology, Wenzhou-Kean University, No. 88 Daxue Road, Wenzhou, 325060, P. R. China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 Western Chunrong Road, Yuhua Street, Kunming, 650500, P. R. China
| |
Collapse
|