1
|
Mousavi H, Zeynizadeh B, Sepehraddin F. Green procedures for synthesizing potential hNMDA receptor allosteric modulators through reduction and one-pot reductive acetylation of nitro(hetero)arenes using a superparamagnetic Fe 3O 4@APTMS@Cp 2ZrCl x (x = 0, 1, 2) nanocatalyst. NANOSCALE ADVANCES 2025:d4na00882k. [PMID: 40070439 PMCID: PMC11892742 DOI: 10.1039/d4na00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
The conversion of nitro(hetero)arenes to corresponding (hetero)aryl amines and other practical organic compounds plays a crucial role in various sciences, especially environmental remediation and public health. In the current research work, diverse green and efficient strategies for the convenient reduction (hydrogenation) and one-pot two-step reductive acetylation of nitro(hetero)arenes using a core-shell-type mesoporous zirconocene-containing magnetically recoverable nanocomposite (viz. Fe3O4@APTMS@Cp2ZrCl x (x = 0, 1, 2)) as a powerful nanocatalytic system have been developed. In the presented organic transformations, the superparamagnetic Fe3O4@APTMS@Cp2ZrCl x (x = 0, 1, 2) nanocomposite exhibited satisfactory turnover numbers (TONs) and turnover frequencies (TOFs), along with acceptable reusability. On the other hand, we investigated the potential biological effect of the synthesized (hetero)aryl amines and N-(hetero)aryl acetamides against the transmembrane domain (TMD) of the human N-methyl-d-aspartate (hNMDA) receptor based on molecular docking studies. Furthermore, the drug-likeness properties of our hit compound (viz. N-(3-(1-hydroxyethyl)phenyl)acetamide) have been scrutinized by in silico ADMET analyses.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Farhad Sepehraddin
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
2
|
Wang X, Chen L, Chang X, Yi X, Yu W, Wang R. Investigating the inhibition of benzimidazole derivatives on SARS-CoV-2 M pro by enzyme activity inhibition, spectroscopy, and molecular docking. J Biomol Struct Dyn 2025:1-16. [PMID: 39967567 DOI: 10.1080/07391102.2025.2466697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 02/20/2025]
Abstract
The inhibition of twenty-five 1,2-fused/disubstituted benzimidazoles on the SARS-CoV-2 Mpro were investigated in this work. It was found that four compounds (1i, 1k, 1l, and 1m) showed obvious inhibitory effect on Mpro. The inhibitory effect of 1k (IC50 46.86 μM) was the best. UV-vis, fluorescence, CD and molecular docking methods were used to reveal the mechanisms of interaction between these compounds and Mpro. Results indicated that static quenching was the main type of quenching. 1i, 1k, 1l, and 1m may alter the conformation and microenvironment of Mpro. The dominant forces between 1i (or 1l) and Mpro were hydrogen bonds or van der Waals forces. The dominant forces between 1k (or 1m) and Mpro were electrostatic or hydrophobic forces, which was consistent with the results of molecular docking. The influence of molecular structure on the binding was investigated. Chlorine atom groups were favorable for the 1,2-fused/disubstituted benzimidazoles derivative inhibitors of Mpro. This work confirmed the changes in the micro-environment of Mpro by 1k, and provided clues for the design of potential Mpro inhibitors.
Collapse
Affiliation(s)
- Xueyuan Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Leyao Chen
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Chang
- College of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofei Yi
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Lu S, Hou BL, Wang T, Ma K, Huang A, Wu X, Liang YN, Wang Z. Antitumor Effects of Tryptanthrin on Colorectal Cancer by Regulating the Mitogen-Activated Protein Kinase Signaling Pathway and Targeting Topo I and IDO1. ACS OMEGA 2025; 10:3206-3221. [PMID: 39895716 PMCID: PMC11780470 DOI: 10.1021/acsomega.4c11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Tryptanthrin (TRYP) is an indole quinazoline alkaloid with a range of pharmaceutical activities, but the specific mechanism of TRYP against colorectal cancer (CRC) remains obscure. The purpose of this study was to evaluate the antitumor effects of TRYP on CRC models both in vitro and in vivo and further analyze its concrete mechanisms. The results of the in vitro experiment show that TRYP effectively inhibited the proliferation and migration of SW620 cells, arrested the cell cycle at the S phase, and induced cell apoptosis. Deeply, TRYP dramatically increased the expression of Bax and cleaved caspase 3 while decreasing the expression of Bcl-2. The results of transcriptome sequencing implied that the inhibitory effects of TRYP were closely related to the mitogen-activated protein kinase (MAPK) signaling pathway, and the results of western blotting verified that TRYP could decrease the expression of p-Erk and increase the expression of p-p38 and p-Jnk. Besides, our results identified that topoisomerase I (Topo I) and indole amine 2,3-dioxygenase 1 (IDO1) were the targets of TRYP. In vivo, the results showed that different TRYP doses significantly inhibited tumor growth in mice, induced different degrees of necrosis in tumor tissues, decreased the expression level of Ki67 protein, and increased the apoptotic signal in tumor tissues. The findings demonstrated the inhibitory effects of TRYP on CRC, and the mechanisms were tightly connected to inhibiting the activity of Topo I and IDO1 and regulating the expression of the MAPK signaling pathway. Especially, it was first identified that TRYP could directly inhibit Topo I to arrest SW620 at the S phase. Therefore, this work established a scientific basis for the development of TRYP.
Collapse
Affiliation(s)
- Simeng Lu
- Co-construction
Collaborative Innovation Center of Chinese Medicine Resources Industrialization
by Shaanxi & Education Ministry, State Key Laboratory of Research
& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, Shaanxi712046, China
| | - Bao-Long Hou
- Co-construction
Collaborative Innovation Center of Chinese Medicine Resources Industrialization
by Shaanxi & Education Ministry, State Key Laboratory of Research
& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, Shaanxi712046, China
| | - Ting Wang
- Co-construction
Collaborative Innovation Center of Chinese Medicine Resources Industrialization
by Shaanxi & Education Ministry, State Key Laboratory of Research
& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, Shaanxi712046, China
| | - Keyu Ma
- Co-construction
Collaborative Innovation Center of Chinese Medicine Resources Industrialization
by Shaanxi & Education Ministry, State Key Laboratory of Research
& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, Shaanxi712046, China
| | - Anli Huang
- Co-construction
Collaborative Innovation Center of Chinese Medicine Resources Industrialization
by Shaanxi & Education Ministry, State Key Laboratory of Research
& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, Shaanxi712046, China
| | - Xue Wu
- Medical
Experiment Center, Shaanxi University of
Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yan-Ni Liang
- Co-construction
Collaborative Innovation Center of Chinese Medicine Resources Industrialization
by Shaanxi & Education Ministry, State Key Laboratory of Research
& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, Shaanxi712046, China
| | - Zheng Wang
- Co-construction
Collaborative Innovation Center of Chinese Medicine Resources Industrialization
by Shaanxi & Education Ministry, State Key Laboratory of Research
& Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, Shaanxi712046, China
| |
Collapse
|
4
|
Jabbour CR, Schnabl KB, Yan H, O'Beirn NN, Dorresteijn JM, Meirer F, Mandemaker LDB, Weckhuysen BM. Chitosan as Support Material for Metal-Organic Framework based Catalysts. Chemphyschem 2024; 25:e202400154. [PMID: 38798029 DOI: 10.1002/cphc.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Turning waste into valuable products is one of the main challenges of the chemical industry. In this work, chitosan (CS), an abundant, low-cost, and non-toxic biopolymer derived from chitin, was reshaped into beads of ~3 mm. Their suitability as a support material for active phase catalyst materials was tested for a zirconium-based Metal-Organic Framework (MOF) with incorporated Pt, namely UiO-67-Pt. Its incorporation was investigated via two procedures: a one-pot synthesis (OPS) and a post-synthetic functionalization (PSF) synthesis method. Scanning electron microscopy (SEM) images show good UiO-67-Pt dispersion throughout the CS beads for the one-pot synthesized material (UiO-67-Pt-OPS@CS). However, this uniform dispersion was not observed for the post-synthetically functionalized material (UiO-67-Pt-PSF@CS). The success of the implementation of UiO-67-Pt was evaluated with ultraviolet-visible and infrared spectroscopy for both composite materials. Thermogravimetric analysis (TGA) reveals higher thermal stabilities for UiO-67-Pt-OPS@CS composite beads in comparison to pure CS beads, but not for UiO-67-Pt-PSF@CS. The study provides valuable insights into the potential of chitosan as a green, bead-shaped support material for MOFs, offering flexibility in their incorporation through different synthesis routes. It further contributes to the broader goal of the sustainable and eco-friendly design of a new generation of catalysts made from waste materials, which will be the topic of future studies.
Collapse
Affiliation(s)
- Christia R Jabbour
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kordula B Schnabl
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Haoxiang Yan
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Naoise N O'Beirn
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Joren M Dorresteijn
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
5
|
Soni S, Teli S, Teli P, Manhas A, Jha PC, Agarwal S. Highly efficient synthesis of isoxazolones and pyrazolones using g-C 3N 4·OH nanocomposite with their in silico molecular docking, pharmacokinetics and simulation studies. Sci Rep 2024; 14:19123. [PMID: 39155360 PMCID: PMC11330972 DOI: 10.1038/s41598-024-70071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
An environmentally friendly, versatile multicomponent reaction for synthesizing isoxazol-5-one and pyrazol-3-one derivatives has been developed, utilizing a freshly prepared g-C3N4·OH nanocomposite as a highly efficient catalyst at room temperature in aqueous environment. This innovative approach yielded all the desired products with exceptionally high yields and concise reaction durations. The catalyst was well characterized by FT-IR, XRD, SEM, EDAX, and TGA/DTA studies. Notably, the catalyst demonstrated outstanding recyclability, maintaining its catalytic efficacy over six consecutive cycles without any loss. The sustainability of this methodology was assessed through various eco-friendly parameters, including E-factor and eco-score, confirming its viability as a green synthetic route in organic chemistry. Additionally, the gram-scale synthesis verifies its potential for industrial applications. The ten synthesized compounds were also analyzed via a PASS online tool to check their several pharmacological activities. The study is complemented by in silico molecular docking, pharmacokinetics, and molecular dynamics simulation studies. These studies discover 5D as a potential candidate for drug development, supported by its favorable drug-like properties, ADMET studies, docking interaction, and stable behavior in the protein binding cavity.
Collapse
Affiliation(s)
- Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India
| | - Anu Manhas
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Prakash C Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
6
|
Mavaddatiyan L, Zeynizadeh B. A new strategy for immobilization of copper on the Fe 3O 4@EDTA nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines. Heliyon 2024; 10:e35062. [PMID: 39166007 PMCID: PMC11334667 DOI: 10.1016/j.heliyon.2024.e35062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
A new and efficient Cu(II)-containing mesoporous nanocatalytic system was synthesized by direct immobilization of copper metal powder on the Fe3O4@EDTA nanocomposite. The as-prepared Fe3O4@EDTA@Cu(II) nanocomposite was then characterized by FT-IR, XRD, SEM, TEM, SEM-based EDX and elemental mapping, XPS, TGA, VSM, and also BET and BJH analyses. The resulting Fe3O4@EDTA@Cu(II) mesoporous nanocomposite exhibited satisfactory catalytic activity towards the reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines in water at 60 °C. Notably, the applied Cu(II)-containing nanocatalyst was efficiently recovered from the reaction mixture using an external magnetic field and could be reused successfully for five cycles. The protocol developed in this study offers several advantages in terms of mild reaction conditions, simple workflows, using water as a green solvent, and easy recovery and catalyst reuse, making it more ecologically and economically attractive.
Collapse
Affiliation(s)
- Leila Mavaddatiyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
7
|
Mousavi H, Zeynizadeh B, Hasanpour Galehban M. Ni II-containing l-glutamic acid cross-linked chitosan anchored on Fe 3O 4/ f-MWCNT: a sustainable catalyst for the green reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes. NANOSCALE ADVANCES 2024; 6:3961-3977. [PMID: 39050942 PMCID: PMC11265578 DOI: 10.1039/d4na00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024]
Abstract
In this research, new and eye-catching catalytic applications of the nickelII (NiII) nanoparticles (NPs)-containing l-glutamic acid cross-linked chitosan anchored on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu/NiII) system, which was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) and elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and vibrating sample magnetometry (VSM), have been introduced for the environmentally benign and efficient reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes in water at 60 °C under an air atmosphere. It is worth noting that the NiII-containing hybrid nanocatalyst, in the mentioned organic reactions, showed short reaction times, high yields of the desired products, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), and also satisfactory magnetic recycling and reusability performance even after ten times of reuse. As another significant point, all the titled organic transformations have been carried out in water as an entirely favorable and green solvent for chemical reactions.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | | |
Collapse
|
8
|
Paganelli S, Brugnera E, Di Michele A, Facchin M, Beghetto V. Chitosan as a Bio-Based Ligand for the Production of Hydrogenation Catalysts. Molecules 2024; 29:2083. [PMID: 38731574 PMCID: PMC11085195 DOI: 10.3390/molecules29092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Bio-based polymers are attracting increasing interest as alternatives to harmful and environmentally concerning non-biodegradable fossil-based products. In particular, bio-based polymers may be employed as ligands for the preparation of metal nanoparticles (M(0)NPs). In this study, chitosan (CS) was used for the stabilization of Ru(0) and Rh(0) metal nanoparticles (MNPs), prepared by simply mixing RhCl3 × 3H2O or RuCl3 with an aqueous solution of CS, followed by NaBH4 reduction. The formation of M(0)NPs-CS was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). Their size was estimated to be below 40 nm for Rh(0)-CS and 10nm for Ru(0)-CS by SEM analysis. M(0)NPs-CS were employed for the hydrogenation of (E)-cinnamic aldehyde and levulinic acid. Easy recovery by liquid-liquid extraction made it possible to separate the catalyst from the reaction products. Recycling experiments demonstrated that M(0)NPs-CS were highly efficient up to four times in the best hydrogenation conditions. The data found in this study show that CS is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles, allowing the production of some of the most efficient, selective and recyclable hydrogenation catalysts known in the literature.
Collapse
Affiliation(s)
- Stefano Paganelli
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
| | - Eleonora Brugnera
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Alessandro Di Michele
- Dipartimento Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
- Crossing S.R.L., Viale della Repubblica 193/b, 31100 Treviso, Italy
| |
Collapse
|
9
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
10
|
Alzahrani AY, Gomha SM, Zaki ME, Farag B, Abdelgawad FE, Mohamed MA. Chitosan-sulfonic acid-catalyzed green synthesis of naphthalene-based azines as potential anticancer agents. Future Med Chem 2024; 16:647-663. [PMID: 38385167 DOI: 10.4155/fmc-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Aim: This study focuses on advancing green chemistry in anticancer drug discovery, particularly through the synthesis of azine derivatives with a naphthalene core using CS-SO3H as a catalyst. Methods: Novel benzaldazine and ketazine derivatives were synthesized using (E)-(naphthalen-1-ylmethylene)hydrazine and various carbonyl compounds. The methods employed included thermal and grinding techniques, utilizing CS-SO3H as an eco-friendly and cost-effective catalyst. Results: The approach resulted in high yields, short reaction times and demonstrated catalyst reusability. Cytotoxicity tests highlighted compounds 3b, 11 and 13 as potent against the HEPG2-1. Conclusion: This study successfully aligns with the objectives of eco-conscious drug development in organic chemistry. Molecular docking and in silico studies further indicate the potential of these ligands as antitumor medicines, with favorable oral bioavailability properties.
Collapse
Affiliation(s)
- Abdullah Ya Alzahrani
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Magdi Ea Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fathy E Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Mahmoud A Mohamed
- Technology of Textile Department, Faculty of Technology & Education, Beni-Suef University, Beni-Suef, 62521, Egypt
- Chemistry Department, Faculty of Science & Humanity study-Afif, Shaqra University, 11911, Saudi Arabia
| |
Collapse
|
11
|
Mondal I, Halder AK, Pattanayak N, Mandal SK, Cordeiro MNDS. Shaping the Future of Obesity Treatment: In Silico Multi-Modeling of IP6K1 Inhibitors for Obesity and Metabolic Dysfunction. Pharmaceuticals (Basel) 2024; 17:263. [PMID: 38399478 PMCID: PMC10891520 DOI: 10.3390/ph17020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Recent research has uncovered a promising approach to addressing the growing global health concern of obesity and related disorders. The inhibition of inositol hexakisphosphate kinase 1 (IP6K1) has emerged as a potential therapeutic strategy. This study employs multiple ligand-based in silico modeling techniques to investigate the structural requirements for benzisoxazole derivatives as IP6K1 inhibitors. Firstly, we developed linear 2D Quantitative Structure-Activity Relationship (2D-QSAR) models to ensure both their mechanistic interpretability and predictive accuracy. Then, ligand-based pharmacophore modeling was performed to identify the essential features responsible for the compounds' high activity. To gain insights into the 3D requirements for enhanced potency against the IP6K1 enzyme, we employed multiple alignment techniques to set up 3D-QSAR models. Given the absence of an available X-ray crystal structure for IP6K1, a reliable homology model for the enzyme was developed and structurally validated in order to perform structure-based analyses on the selected dataset compounds. Finally, molecular dynamic simulations, using the docked poses of these compounds, provided further insights. Our findings consistently supported the mechanistic interpretations derived from both ligand-based and structure-based analyses. This study offers valuable guidance on the design of novel IP6K1 inhibitors. Importantly, our work exclusively relies on non-commercial software packages, ensuring accessibility for reproducing the reported models.
Collapse
Affiliation(s)
- Ismail Mondal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nirupam Pattanayak
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Maria Natalia D. S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
12
|
Mohamed MA, Abouzied AS, Reyad A, Sayed Abdelsalam Zaki ME, Abdelgawad FE, Al-Humaidi JY, Gomha SM. Novel terpyridines as Staphylococcus aureus gyrase inhibitors: efficient synthesis and antibacterial assessment via solvent-drop grinding. Future Med Chem 2024; 16:205-220. [PMID: 38230640 DOI: 10.4155/fmc-2023-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Aim: This study was designed to synthesize a novel series of terpyridines with potential antibacterial properties, targeting multidrug resistance. Materials & methods: Terpyridines (4a-h and 6a-c) were synthesized via a one-pot multicomponent reaction using 2,6-diacetylpyridines, benzaldehyde derivatives and malononitrile or ethyl 2-cyanoacetate. The reactions, conducted under grinding conditions with glacial acetic acid, produced high-yield compounds, confirmed by spectroscopic data. Results: The synthesized terpyridines exhibited potent antibacterial activity. Notably, compounds 4d and 4h demonstrated significant inhibition zones against Staphylococcus aureus and Bacillus subtilis, outperforming ciprofloxacin. Conclusion: Molecular docking studies highlighted compounds 4d, 4h and 6c as having strong binding affinity to DNA gyrase B, correlating with their robust antibacterial activity, suggesting their potential as effective agents against multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Mahmoud Abdalla Mohamed
- Technology of Textile Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
- Chemistry Department, Faculty of Science and Humanity study, Afif, Shaqra University, Saudi Arabia
| | - Amr Salah Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control & Research, Giza, 12311, Egypt
| | - Amany Reyad
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | | | - Fathy Elsayed Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Jehan Yahya Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Sobhi Mohamed Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
13
|
Khalymbadzha IA, Fatykhov RF, Butorin II, Sharapov AD, Potapova AP, Muthipeedika NJ, Zyryanov GV, Melekhin VV, Tokhtueva MD, Deev SL, Kukhanova MK, Mochulskaya NN, Tsurkan MV. Bioinspired Pyrano[2,3- f]chromen-8-ones: Ring C-Opened Analogues of Calanolide A: Synthesis and Anti-HIV-1 Evaluation. Biomimetics (Basel) 2024; 9:44. [PMID: 38248618 PMCID: PMC10813249 DOI: 10.3390/biomimetics9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
We have designed and synthesized a series of bioinspired pyrano[2,3-f]coumarin-based Calanolide A analogs with anti-HIV activity. The design of these new calanolide analogs involved incorporating nitrogen heterocycles or aromatic groups in lieu of ring C, effectively mimicking and preserving their bioactive properties. Three directions for the synthesis were explored: reaction of 5-hydroxy-2,2-dimethyl-10-propyl-2H,8H-pyrano[2,3-f]chromen-8-one with (i) 1,2,4-triazines, (ii) sulfonylation followed by Suzuki cross-coupling with (het)aryl boronic acids, and (iii) aminomethylation by Mannich reaction. Antiviral assay of the synthesized compounds showed that compound 4 has moderate activity against HIV-1 on enzymes and poor activity on the cell model. A molecular docking study demonstrates a good correlation between in silico and in vitro HIV-1 reverse transcriptase (RT) activity of the compounds when docked to the nonnucleoside RT inhibitor binding site, and alternative binding modes of the considered analogs of Calanolide A were established.
Collapse
Affiliation(s)
- Igor A. Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ramil F. Fatykhov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ilya I. Butorin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ainur D. Sharapov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Anastasia P. Potapova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Nibin Joy Muthipeedika
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Vsevolod V. Melekhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
- Department of Medical Biology and Genetics, Ural State Medical University, 620028 Yekaterinburg, Russia
| | - Maria D. Tokhtueva
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Sergey L. Deev
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | | | - Nataliya N. Mochulskaya
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | | |
Collapse
|
14
|
Km S, Ravishankar K, Lobo NP, Baskar R, Raghavachari D. Solvent-less carboxymethylation-induced electrostatic crosslinking of chitosan. Int J Biol Macromol 2023; 253:126633. [PMID: 37659501 DOI: 10.1016/j.ijbiomac.2023.126633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The successful N-carboxymethylation and concomitant crosslinking of solid chitosan upon heating its mixture with solid monochloroacetic acid, without the use of solvents or catalysts, is reported. The N-carboxymethylation was confirmed through the analysis of the partially depolymerized product using NMR spectroscopy, as well as a control reaction with lysine. This transformation was facilitated by the nucleophilic nature of the free amine group in the repeating unit of chitosan, which possesses lone pair of electrons capable of attacking the carbon center bearing the leaving group and displacing the leaving group in a concerted manner. The crosslinking, on the other hand, was established by the observed insolubility in aqueous acidic solutions, even when subjected to prolonged heating at 60 °C. This crosslinking occurs due to the electrostatic interactions between the carboxylate groups and the adjacent ammonium groups, as supported by evidence from FTIR spectroscopy and a control reaction involving ethyl chloroacetate. The resulting crosslinked carboxymethyl chitosan demonstrated its usefulness in the adsorption of methyl orange and fluorescein, as well as functioning as an organic catalyst for aza-Michael addition, Hantzsch reaction, and substituted perimidine synthesis.
Collapse
Affiliation(s)
- Shelly Km
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India
| | - Kartik Ravishankar
- Polymer Science and Technology Division, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India
| | - Nitin Prakash Lobo
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Ramaganthan Baskar
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India
| | - Dhamodharan Raghavachari
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
15
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
16
|
Kattula B, Reddi B, Jangam A, Naik L, Adimoolam BM, Vavilapalli S, Are S, Thota JR, Jadav SS, Arifuddin M, Addlagatta A. Development of 2-chloroquinoline based heterocyclic frameworks as dual inhibitors of SARS-CoV-2 M Pro and PL Pro. Int J Biol Macromol 2023; 242:124772. [PMID: 37172706 PMCID: PMC10171901 DOI: 10.1016/j.ijbiomac.2023.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Evolution of new variants of SARS-CoV-2 warrant the need for the continued efforts in identifying target-oriented new drugs. Dual targeting agents against MPro and PLPro not only overcome the incomplete efficacy but also the drug resistance, which is common problem. Since both these are cysteine proteases, we designed 2-chloroquinoline based molecules with additional imine moiety in the middle as possible nucleophilic warheads. In the first round of design and synthesis, three molecules (C3, C4 and C5) inhibited (Ki < 2 μM) only MPro by binding covalently to C145 and one molecule (C10) inhibited both the proteases non-covalently (Ki < 2 μM) with negligible cytotoxicity. Further conversion of the imine in C10 to azetidinone (C11) improved the potency against both the enzymes in the nanomolar range (820 nM against MPro and 350 nM against PLPro) with no cytotoxicity. Conversion of imine to thiazolidinone (C12), reduced the inhibition by 3-5 folds against both the enzymes. Biochemical and computational studies suggest that C10-C12 bind in the substrate binding pocket of MPro and in the BL2 loop of the PLPro. Since these dual inhibitors have least cytotoxicity, they could be further explored as therapeutics against the SARS-CoV-2 and other analogous viruses.
Collapse
Affiliation(s)
- Bhavita Kattula
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Bharati Reddi
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Aruna Jangam
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Lekhika Naik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Bala Manikanta Adimoolam
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Suresh Vavilapalli
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Sayanna Are
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Jagadeshwar Reddy Thota
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Surender Singh Jadav
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India.
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Anthony Addlagatta
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
17
|
Ibrahim MS, Farag B, Y. Al-Humaidi J, Zaki MEA, Fathalla M, Gomha SM. Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents. Molecules 2023; 28:3869. [PMID: 37175279 PMCID: PMC10180502 DOI: 10.3390/molecules28093869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
The development of new approaches for the synthesis of new bioactive heterocyclic derivatives is of the utmost importance for pharmaceutical industry. In this regard, the present study reports the green synthesis of new benzaldazine and ketazine derivatives via the condensation of various carbonyl compounds (aldehydes and ketones with the 3-(1-hydrazineylideneethyl)-1H-indole using the grinding method with one drop of acetic acid). Various spectroscopic techniques were used to identify the structures of the synthesized derivatives. Furthermore, the anticancer activities of the reported azine derivatives were evaluated against colon, hepatocellular, and breast carcinoma cell lines using the MTT technique with doxorubicin as a reference medication. The findings suggested that the synthesized derivatives exhibited potential anti-tumor activities toward different cell lines. For example, 3c, 3d, 3h, 9, and 13 exhibited interesting activity with an IC50 value of 4.27-8.15 µM towards the HCT-116 cell line as compared to doxorubicin (IC50 = 5.23 ± 0.29 µM). In addition, 3c, 3d, 3h, 9, 11, and 13 showed excellent cytotoxic activities (IC50 = 4.09-9.05 µM) towards the HePG-2 cell line compared to doxorubicin (IC50 = 4.50 ± 0.20 µM), and 3d, 3h, 9, and 13 demonstrated high potency (IC50 = 6.19-8.39 µM) towards the breast cell line (MCF-7) as compared to the reference drug (IC50 = 4.17 ± 0.20 µM). The molecular interactions between derivatives 3a-h, 7, 9, 11, 13, and the CDK-5 enzyme (PDB ID: 3IG7) were studied further using molecular docking indicating a high level of support for the experimental results. Furthermore, the drug-likeness analysis of the reported derivatives indicated that derivative 9 (binding affinity = -8.34 kcal/mol) would have a better pharmacokinetics, drug-likeness, and oral bioavailability as compared to doxorubicin (-7.04 kcal/mol). These results along with the structure-activity relationship (SAR) of the reported derivatives will pave the way for the design of additional azines bearing indole with potential anticancer activities.
Collapse
Affiliation(s)
- Mohamed S. Ibrahim
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Jehan Y. Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Maher Fathalla
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
18
|
Rana P, Dixit R, Sharma S, Dutta S, Yadav S, Arora B, Kaushik B, Gawande MB, Sharma RK. Preparation and characterization of the h-BN/Fe 3O 4/APTES-AMF/Cu II nanocomposite as a new and efficient catalyst for the one-pot three-component synthesis of 2-amino-4-aryl(or heteroaryl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4 H-chromene-3-carbonitriles. NANOSCALE 2023; 15:3482-3495. [PMID: 36723031 DOI: 10.1039/d2nr05852a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The intriguing features of surface-engineered hexagonal two-dimensional boron nitride (h-BN) nanostructures have captivated the immense interest of researchers working in the arena of materials science. Inspired by striking attributes exhibited by h-BN nanosheets as the support material, we devoted our efforts towards synthesizing a novel magnetically retrievable h-BN/Fe3O4/APTES-AMF/CuII catalytic system, which was then comprehensively characterized using various techniques including SEM, TEM, EDX, SEM-based elemental mapping, ED-XRF, AAS, XRD, FT-IR, VSM, XPS, TGA, and BET. Further, the catalytic potential of h-BN/Fe3O4/APTES-AMF/CuII nanocomposites was investigated in the one-pot multicomponent coupling reaction to gain access to a library of biologically active 2-amino-4-aryl(or heteroaryl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles under ambient conditions. In addition, the use of green solvent, facile magnetic recoverability, and reusability of up to six successive runs made this protocol environmentally benign and economical. This work throws light on the development of covalently functionalized 2D-BN nanostructure-based copper catalysts and establishes its significance in furnishing industrially demanding products that would pave the way towards sustainable chemistry.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Ranjana Dixit
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi-110007, India
| | - Shivani Sharma
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi-110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431213, Maharashtra, India.
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
19
|
Ionic Liquid Modified SPION@Chitosan as a Novel and Reusable Superparamagnetic Catalyst for Green One-Pot Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives in Water. Catalysts 2023. [DOI: 10.3390/catal13020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this paper, the chitosan-functionalized ionic liquid is modified with superparamagnetic iron oxide nanoparticles to form a novel and reusable catalyst (SPION@CS-IL), which was carried out using an ultrasonic promoted approach. Transmission electron microscopy (TEM), vibrating-sample magnetometer (VSM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA) are some of the techniques that are used to fully characterize SPION@CS-IL. The created nanoparticles were discovered to be a reusable heterogeneous superparamagnetic catalyst for the environmentally friendly one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using a simple three-component reaction approach involving thiobarbituric acid, 4-hydroxy coumarin, and various aromatic aldehydes. The method is studied by performing the reaction under ultrasonic irradiation, while the approach is a “green” method, it uses water as the solvent. The isolated yields of the synthesized products are very advantageous. The catalyst has outstanding reusability and is easily removed from the products via filtration (5 runs). Short reaction times, low catalyst loadings, the nanocatalyst’s capacity to be recycled five times, and the absence of harmful chemical reagents are all significant benefits of this environmentally benign process.
Collapse
|
20
|
Li JX, Xia YQ, Cheng LM, Feng X. One-pot hydrothermal synthesis of a mononuclear cobalt(II) complex and an organic-inorganic supramolecular adduct: Structures, properties and hirshfeld surface analyses. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Green and one-pot synthesis of novel amidoalkyl naphthols using triethanolammonium acetate [(OHCH2CH2)3NH][OAc]) ionic liquid and their anti-H.pylori activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Galehban MH, Zeynizadeh B, Mousavi H. Introducing Fe3O4@SiO2@KCC-1@MPTMS@CuII catalytic applications for the green one-pot syntheses of 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones and 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
24
|
A hassle-free and cost-effective transfer hydrogenation strategy for the chemoselective reduction of arylnitriles to primary amines through in situ-generated nickelII dihydride intermediate in water. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Diverse and efficient catalytic applications of new cockscomb flower-like Fe 3O 4@SiO 2@KCC-1@MPTMS@Cu II mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds. RSC Adv 2022; 12:11164-11189. [PMID: 35479105 PMCID: PMC9020196 DOI: 10.1039/d1ra08763k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
26
|
Molaei Yielzoleh F, Nikoofar K. Metal-bio functionalized bismuthmagnetite [Fe 3-x Bi x O 4/SiO 2@l-ArgEt 3 +I -/Zn(ii)]: a novel bionanocomposite for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[ b][1,4]diazepine malononitriles and malonamides at room temperature and under sonication. RSC Adv 2022; 12:10219-10236. [PMID: 35425005 PMCID: PMC8972908 DOI: 10.1039/d2ra00212d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/13/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, a new magnetized composite of bismuth (Fe3-x Bi x O4) was prepared and functionalized stepwise with silica, triethylargininium iodide ionic liquid, and Zn(ii) to prepare a multi-layered core-shell bio-nanostructure, [Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii)]. The modified bismuth magnetic amino acid-containing nanocomposite was characterized using several techniques including Fourier-transform infrared (FT-IR), X-ray fluorescence (XRF), vibrating sample magnetometer (VSM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), thermogravimetric/differential scanning calorimetric (TGA/DSC) analysis, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The magnetized bionanocomposite exhibited high catalytic activity for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[b][1,4]diazepine malononitriles via five-component reactions between 1,2-phenylenediamines, Meldrum's acid, malononitrile, aldehydes, and isocyanides at room temperature in ethanol. The efficacy of this protocol was also examined to obtain malonamide derivatives via pseudo six-component reactions of 1,4-phenylenediamine, Meldrum's acid, malononitrile, aldehydes, and isocyanides. When the above-mentioned MCRs were repeated under the same conditions with the application of sonication, a notable decrease in the reaction time was observed. The recovery and reusability of the metal-bio functionalized bismuthmagnetite were examined successfully in 3 runs. Furthermore, the characteristics of the recovered Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii) were investigated though FESEM and EDAX analysis.
Collapse
Affiliation(s)
| | - Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran
| |
Collapse
|
27
|
Solvent-free one-pot synthesis of 4-aryl-3,5-dimethyl-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4′,3′-e]pyridines using Fe3O4@SiO2@(BuSO3H)3 catalytic Fe3+ system as selective colorimetric. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04682-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
A concise and focused overview upon arylglyoxal monohydrates-based one-pot multi-component synthesis of fascinating potentially biologically active pyridazines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|