1
|
Wang R, Wang F. CircCENPM serves as a CeRNA to aggravate nasopharyngeal carcinoma metastasis and stemness via enhancing BMI1. Hereditas 2025; 162:39. [PMID: 40087716 PMCID: PMC11907939 DOI: 10.1186/s41065-025-00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer with high mortality and dismal prognosis. Emerging research have disclosed that circRNAs are crucial gene expression regulators engaged in tumor advancement. This work aspired to identify novel oncogenic circRNA driving NPC progression. METHODS Bioinformatics analysis was performed to explore and predict underlying circRNA and downstream targets. Luciferase reporter assay was executed to check the binding relationship between these genes. Cell function tests were conducted using CCK-8, would healing, and flow cytometry. The stemness markers CD133, Nanog and Oct4 was detected via western blot. RESULTS CircCENPM was notably enhanced in NPC. Silencing of circCENPM suppressed NPC cell growth, migration, and stemness in vitro, simultaneously impeded tumorigenesis of NPC in vivo. Moreover, circCENPM could interact with miR-362-3p, whereas miR-362-3p inhibitor apparently reversed the mitigated growth and stemness induced by circCENPM knockdown in NPC cells. Furthermore, BMI1 was identified to be the downstream target of miR-362-3p, and BMI1 introduction partially offset the anti-tumor function of miR-362-3p in NPC cells. CONCLUSION CircCENPM functioned as a carcinogenic driver and facilitated NPC growth and stemness via miR-362-3p/BMI1 regulatory network, which provided a potential biomarker and attractive target for NPC intervention and treatment.
Collapse
Affiliation(s)
- Rui Wang
- The Second Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Fei Wang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
2
|
Hu W, Zhao X, Luo N, Xiao M, Feng F, An Y, Chen J, Rong L, Yang Y, Peng J. Circulating cell-free DNA methylation analysis of pancreatic cancer patients for early noninvasive diagnosis. Front Oncol 2025; 15:1552426. [PMID: 40129923 PMCID: PMC11930829 DOI: 10.3389/fonc.2025.1552426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Background Aberrant hypermethylation of genomic DNA CpG islands (CGIs) is frequently observed in human pancreatic cancer (PAC). A plasma cell-free DNA (cfDNA) methylation analysis method can be utilized for the early and noninvasive detection of PAC. This study also aimed to differentiate PAC from other cancer types. Methods We employed the methylated CpG tandem amplification and sequencing (MCTA-Seq) method, which targets approximately one-third of CGIs, on plasma samples from PAC patients (n = 50) and healthy controls (n = 52), as well as from cancerous and adjacent noncancerous tissue samples (n = 66). The method's efficacy in detecting PAC and distinguishing it from hepatocellular carcinoma (HCC), colorectal cancer (CRC), and gastric cancer (GC) was evaluated. Additionally, a methylation score and typing system for PAC was also established. Results We identified a total of 120 cfDNA methylation biomarkers, including IRX4, KCNS2, and RIMS4, for the detection of PAC in blood. A panel comprising these biomarkers achieved a sensitivity of 97% and 86% for patients in the discovery and validation cohorts, respectively, with a specificity of 100% in both cohorts. The methylation scoring and typing systems were clinically applicable. Furthermore, we identified hundreds of differentially methylated cfDNA biomarkers between PAC and HCC, CRC, and GC. Certain combinations of these markers can be used in a highly specific (approximately 100%) algorithm to differentiate PAC from HCC, CRC, and GC in blood. Conclusions Our study identified cfDNA methylation markers for PAC, offering a novel approach for the early, noninvasive diagnosis of PAC.
Collapse
Affiliation(s)
- Wenzhe Hu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Oncology, Capital Medical University, Beijing, China
| | - Xudong Zhao
- Department of Endoscopy Center, Peking University First Hospital, Peking University, Beijing, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Oncology, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Mengmeng Xiao
- Department of General Surgery, Peking University People’s Hospital, Peking University, Beijing, China
| | - Feng Feng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Oncology, Capital Medical University, Beijing, China
| | - Yuan An
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Oncology, Capital Medical University, Beijing, China
| | - Jianfei Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Oncology, Capital Medical University, Beijing, China
| | - Long Rong
- Department of Endoscopy Center, Peking University First Hospital, Peking University, Beijing, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Oncology, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
3
|
Zhu R, Huang J, Qian F. The role of tumor-associated macrophages in lung cancer. Front Immunol 2025; 16:1556209. [PMID: 40079009 PMCID: PMC11897577 DOI: 10.3389/fimmu.2025.1556209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, necessitating innovative treatments. Tumor-associated macrophages (TAMs) are primary immunosuppressive effectors that foster tumor proliferation, angiogenesis, metastasis, and resistance to therapy. They are broadly categorized into proinflammatory M1 and tumor-promoting M2 phenotypes, with elevated M2 infiltration correlating with poor prognosis. Strategies aimed at inhibiting TAM recruitment, depleting TAMs, or reprogramming M2 to M1 are therefore highly promising. Key signaling pathways, such as CSF-1/CSF-1R, IL-4/IL-13-STAT6, TLRs, and CD47-SIRPα, regulate TAM polarization. Additionally, macrophage-based drug delivery systems permit targeted agent transport to hypoxic regions, enhancing therapy. Preclinical studies combining TAM-targeted therapies with chemotherapy or immune checkpoint inhibitors have yielded improved responses and prolonged survival. Several clinical trials have also reported benefits in previously unresponsive patients. Future work should clarify the roles of macrophage-derived exosomes, cytokines, and additional mediators in shaping the immunosuppressive tumor microenvironment. These insights will inform the design of next-generation drug carriers and optimize combination immunotherapies within precision medicine frameworks. Elucidating TAM phenotypes and their regulatory molecules remains central to developing novel strategies that curb tumor progression and ultimately improve outcomes in lung cancer. Importantly, macrophage-based immunomodulation may offer expanded treatment avenues.
Collapse
Affiliation(s)
| | | | - Fenhong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Li J, Li X, Liu H. Sesquiterpene lactones and cancer: new insight into antitumor and anti-inflammatory effects of parthenolide-derived Dimethylaminomicheliolide and Micheliolide. Front Pharmacol 2025; 16:1551115. [PMID: 40051564 PMCID: PMC11882563 DOI: 10.3389/fphar.2025.1551115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
The isolation and application of biological macromolecules (BMMs) have become central in applied science today, with these compounds serving as anticancer, antimicrobial, and anti-inflammatory agents. Parthenolide (PTL), a naturally occurring sesquiterpene lactone derived from Tanacetum parthenium (feverfew), is among the most important of these BMMs. PTL has been extensively studied for its anticancer and anti-inflammatory properties, making it a promising candidate for further research and drug development. This review summarizes the anticancer and anti-inflammatory effects of PTL and its derivatives, with a focus on Micheliolide (MCL) and Dimethylaminomicheliolide (DMAMCL). These compounds, derived from PTL, have been developed to overcome PTL's instability in acidic and basic conditions and its low solubility. We also explore their potential in targeted and combination therapies, providing a comprehensive overview of their therapeutic mechanisms and highlighting their significance in future cancer treatment strategies.
Collapse
Affiliation(s)
| | | | - Hongwei Liu
- Department of Thyroid Head and Neck Surgery, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Shu Y, Li J. Disulfidptosis as a key regulator of glioblastoma progression and immune cell impairment. Front Immunol 2025; 16:1526296. [PMID: 39949776 PMCID: PMC11821639 DOI: 10.3389/fimmu.2025.1526296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background Glioblastoma, associated with poor prognosis and impaired immune function, shows potential interactions between newly identified disulfidptosis mechanisms and T cell exhaustion, yet these remain understudied. Methods Key genes were identified using Lasso regression, followed by multivariate analysis to develop a prognostic model. Single-cell pseudotemporal analysis explored disulfidptosis T-cell exhaustion (Tex) signaling in cell differentiation. Immune infiltration was assessed via ssGSEA, while transwell assays and immunofluorescence examined the effects of disulfidptosis-Tex genes on glioma cell behavior and immune response. Results Eleven disulfidptosis-Tex genes were found critical for glioblastoma survival outcomes. This gene set underpinned a model predicting patient prognosis. Single-cell analysis showed high disulfidptosis-Tex activity in endothelial cells. Memory T cell populations were linked to these genes. SMC4 inhibition reduced LN299 cell migration and increased chemotherapy sensitivity, decreasing CD4 and CD8 T cell activation. Conclusions Disulfidptosis-Tex genes are pivotal in glioblastoma progression and immune interactions, offering new avenues for improving anti-glioblastoma therapies through modulation of T cell exhaustion.
Collapse
|
6
|
Pan S, Shi T, Ji J, Wang K, Jiang K, Yu Y, Li C. Developing and validating a machine learning model to predict multidrug-resistant Klebsiella pneumoniae-related septic shock. Front Immunol 2025; 15:1539465. [PMID: 39867898 PMCID: PMC11757138 DOI: 10.3389/fimmu.2024.1539465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Background Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions. Methods A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024. The cohort was randomly divided into a training set (n = 969) and a validation set (n = 416). Feature selection was performed using LASSO regression and the Boruta algorithm. Seven machine learning algorithms were evaluated, with logistic regression chosen for its optimal balance between performance and robustness against overfitting. Results The overall incidence of MDR-KP-associated septic shock was 16.32% (226/1,385). The predictive model identified seven key risk factors: procalcitonin (PCT), sepsis, acute kidney injury, intra-abdominal infection, use of vasoactive medications, ventilator weaning failure, and mechanical ventilation. The logistic regression model demonstrated excellent predictive performance, with an area under the receiver operating characteristic curve (AUC) of 0.906 in the training set and 0.865 in the validation set. Calibration was robust, with Hosmer-Lemeshow test results of P = 0.065 (training) and P = 0.069 (validation). Decision curve analysis indicated substantial clinical net benefit. Conclusion This study presents a validated, high-performing predictive model for MDR-KP-associated septic shock, offering a valuable tool for early clinical decision-making. Prospective, multi-center studies are recommended to further evaluate its clinical applicability and effectiveness in diverse settings.
Collapse
Affiliation(s)
- Shengnan Pan
- Department of Medical Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ting Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Jinling Ji
- Department of Medical Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Kai Wang
- Department of Rheumatology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Kun Jiang
- Department of Medical Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Yabin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Chang Li
- Department of Medical Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
7
|
Li F, Li Z, Wei C, Xu L, Liang Y, Yan J, Li Y, He B, Sun C. Application of hydrogels for targeting cancer stem cells in cancer treatment. Biomed Pharmacother 2024; 180:117486. [PMID: 39321506 DOI: 10.1016/j.biopha.2024.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cancer stem cells (CSCs) are a major hindrance to clinical cancer treatment. Owing to their high tumorigenic and metastatic potential, CSCs are vital in malignant tumor initiation, growth, metastasis, and therapeutic resistance, leading to tumorigenesis and recurrence. Compared with normal tumor cells, CSCs express high levels of surface markers (CD44, CD90, CD133, etc.) and activate specific signaling pathways (Wnt/β-catenin, Notch, and Hedgehog). Although Current drug delivery systems (DDS) precisely target CSCs, the heterogeneity and multidrug resistance of CSCs impede CSC isolation and screening. Conversely, hydrogel DDSs exhibit good biocompatibility and high drug delivery efficiency. Hydrogels are three-dimensional (3D) spatial structures for drug encapsulation that facilitate the controlled release of bioactive molecules. Hence, hydrogels can be loaded with drugs to precisely target CSCs. Their 3D structure can also culture non-CSCs and facilitate their transformation into CSCs. for identification and isolation. Given that their elastic modulus and stiffness characteristics reflect those of the cellular microenvironment, hydrogels can simulate extracellular matrix pathways and markers to regulate CSCs, disrupting the equilibrium between CSC and non-CSC transformation. This article reviews the CSC microenvironment, metabolism, signaling pathway, and surface markers. Additionally, we summarize the existing CSC targeting strategies and explore the application of hydrogels for CSC screening and treatment. Finally, we discuss potential advances in CSC research that may lead to curative measures for tumors through targeted and precise attacks on CSCs.
Collapse
Affiliation(s)
- Fashun Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
8
|
Cui Y, Pu M, Gong Y, Li R, Wang X, Ye J, Huang H, Liao D, Yang Y, Yin A, Li J, Deng Y, Tian Z, Pu R. METTL3-driven m6A modification of lncRNA FAM230B suppresses ferroptosis by modulating miR-27a-5p/BTF3 axis in gastric cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130714. [PMID: 39278369 DOI: 10.1016/j.bbagen.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Our previous research revealed the apoptosis-inhibiting effect of lncRNA FAM230B in gastric cancer (GC). While its role on ferroptosis of GC remain unexplored. In this study, the m6A level and RNA stability regulation of METTL3 on FAM230B was detected by m6A quantification, stability assays, MeRIP, and their interaction was confirmed by RIP, and RNA pull-down assays. The level of ferroptosis was detected by flow cytometry, MDA and GSH level assessments, and electron microscopy. Gene expression was detected by quantitative real-time PCR, western blot, and immunofluorescence. The miR-27a-5p and BTF3 interaction was predicted with TargetScan and confirmed by dual-luciferase assay. Here, elevated levels of METTL3 and FAM230B were observed in GC tissues and cell lines. METTL3 was confirmed to bind with FAM230B RNA. Furthermore, silencing METTL3 reduced FAM230B m6A levels and stability, leading to decreased FAM230B and increased miR-27a-5p expressions. FAM230B knockdown favored ferroptosis and increased BTF3 expression, while its overexpression mitigated erastin-induced ferroptosis in GC cells. Additionally, BTF3 overexpression was found to negate miR-27a-5p's ferroptosis-promoting effects in GC cells. Collectively, our study demonstrates that the m6A modification of FAM230B by METTL3 plays a crucial role in promoting GC progression by reducing ferroptosis, through the modulation of the miR-27a-5p/BTF3 axis.
Collapse
Affiliation(s)
- Yejia Cui
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yanting Gong
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Runchao Li
- Department of Hand and Foot Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Xiaokang Wang
- Department of Thoracic Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jinjun Ye
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Haohai Huang
- Department of Clinical Pharmacy, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Dan Liao
- Department of Gynaecology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yufeng Yang
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Aiping Yin
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jiale Li
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yuling Deng
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Zhen Tian
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Rong Pu
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China.
| |
Collapse
|
9
|
Wang P, Sun J, Sun C, Zhao H, Zhang Y, Chen J. BTF3 promotes proliferation and glycolysis in hepatocellular carcinoma by regulating GLUT1. Cancer Biol Ther 2023; 24:2225884. [PMID: 37382415 PMCID: PMC10312033 DOI: 10.1080/15384047.2023.2225884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a grievous tumor with an increasing incidence worldwide. Basic transcription factor 3 (BTF3) is discovered to regulate the expression of glucose transporter 1 (GLUT1), which benefits glycolysis, a momentous signature of tumors, through transactivation of the forkhead box M1 (FOXM1) expression. BTF3 is highly expressed in HCC. However, whether BTF3 promotes GLUT1 expression through FOXM1 to modulate glycolysis in HCC remains unclear. The expression profile of BTF3 were determined by online database, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. The role and mechanism of BTF3 in the proliferation and glycolysis of HCC cells were examined by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, XF96 Extracellular Flux analyzer, spectrophotometry and western blot analysis. In addition, the direct interaction between BTF3 and FOXM1 was verified by dual-luciferase reporter and co-immunoprecipitation assays. Moreover, the role of BTF3 was also explored in a xenografted mice model. The expression of BTF3 was increased in HCC cells and tumor tissues. Knockdown of BTF3 reduced the cell viability, Edu positive cells, extracellular acidification rate (ECAR), glucose consumption and lactate production in both Huh7 and HCCLM3 cells. The expressions of FOXM1 and GLUT1 were increased in HCC tissues, which were positively correlated with the BTF3 expression. Moreover, a direct interaction existed between BTF3 and FOXM1 in HCC cells. Downregulation of BTF3 decreased the relative protein levels of FOXM1 and GLUT1, which were rescued with overexpression of FOXM1 in both cells. More importantly, overexpression of FOXM1 restored the cell viability, ECAR, glucose consumption and lactate production in both Huh7 and HCCLM3 cells transfected with siBTF3#1. Furthermore, inhibition of BTF3 decreased tumor weight and volume, and the relative level of BTF3, FOXM1, GLUT1 and Ki-67 in tumor tissues from mice xenografted with Huh7 cells. BTF3 enhanced the cell proliferation and glycolysis through FOXM1/GLUT1 axis in HCC.
Collapse
Affiliation(s)
- Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jianmin Sun
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chengming Sun
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Haoran Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - YuBao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jing Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Gomila Pelegri N, Stanczak AM, Bottomley AL, Milthorpe BK, Gorrie CA, Padula MP, Santos J. Adipose-Derived Stem Cells Spontaneously Express Neural Markers When Grown in a PEG-Based 3D Matrix. Int J Mol Sci 2023; 24:12139. [PMID: 37569515 PMCID: PMC10418654 DOI: 10.3390/ijms241512139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Neurological diseases are among the leading causes of disability and death worldwide and remain difficult to treat. Tissue engineering offers avenues to test potential treatments; however, the development of biologically accurate models of brain tissues remains challenging. Given their neurogenic potential and availability, adipose-derived stem cells (ADSCs) are of interest for creating neural models. While progress has been made in differentiating ADSCs into neural cells, their differentiation in 3D environments, which are more representative of the in vivo physiological conditions of the nervous system, is crucial. This can be achieved by modulating the 3D matrix composition and stiffness. Human ADSCs were cultured for 14 days in a 1.1 kPa polyethylene glycol-based 3D hydrogel matrix to assess effects on cell morphology, cell viability, proteome changes and spontaneous neural differentiation. Results showed that cells continued to proliferate over the 14-day period and presented a different morphology to 2D cultures, with the cells elongating and aligning with one another. The proteome analysis revealed 439 proteins changed in abundance by >1.5 fold. Cyclic nucleotide 3'-phosphodiesterase (CNPase) markers were identified using immunocytochemistry and confirmed with proteomics. Findings indicate that ADSCs spontaneously increase neural marker expression when grown in an environment with similar mechanical properties to the central nervous system.
Collapse
Affiliation(s)
- Neus Gomila Pelegri
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Aleksandra M. Stanczak
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Amy L. Bottomley
- Microbial Imaging Facility, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Bruce K. Milthorpe
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| | - Catherine A. Gorrie
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| |
Collapse
|
11
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
12
|
Jia F, Li Y, Gao Y, Wang X, Lu J, Cui X, Pan Z, Xu C, Deng X, Wu Y. Long-acting anti-colorectal cancer by nanocomplex co-regulating Bmi1 through miR-218 and siCCAT1. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Guo Y, Li M, Long J, Fan P, Zuo C, Wang Y. LncRNA-ZNF252P-AS1/miR-15b-5p promotes the proliferation of keloid fibroblast by regulating the BTF3-STAT3 signaling pathway. J Dermatol Sci 2022; 108:146-156. [PMID: 36641250 DOI: 10.1016/j.jdermsci.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND JAK2/STAT3 signaling pathway plays an important role in keloid formation, but the upstream mechanism of their activation remains unclear. OBJECTIVE This study aims to investigate the possible mechanism of lncRNA-ZNF252P-AS1 in keloid. METHODS The differentially expressed genes in keloid and their upstream regulatory miRNAs and long non-coding RNAs (lncRNAs) were analyzed by bioinformatics database, and the targeting relationship was further verified by dual-luciferase reporter gene assay. LncRNA function as competitive endogenous RNA (ceRNA) in keloid was further verified by in keloid fibroblasts (KFs) and in nude mice with subcutaneous keloids. RESULTS BTF3 expression was up-regulated in keloid tissues. The targeting relationship between BTF3 and miR-15b-5p was confirmed by dual-luciferase reporter gene assay. miR-15b-5p overexpression inhibited BTF3, Bcl-2, Cyclin D1, C-myc, Collagen I, MMP2, MMP9, N-cadherin, and ZEB2 expressions in KFs, inhibited cell proliferation and migration, while promoted E-cadherin levels. BTF3 overexpression reversed miR-15b-5p effects on KFs. Bioinformatics analysis as well as clinical and cellular experiments confirmed that the lncRNA ZNF252P-AS1 was highly expressed in keloid/KFs. Dual-luciferase reporter gene assays confirmed the targeting relationship between lncRNA ZNF252P-AS1 and miR-15b-5p. LncRNA ZNF252P-AS1 overexpression inhibited miR-15b-5p and E-cadherin levels, upregulated BTF3, Bcl-2, Cyclin D1, C-myc, Collagen I, MMP2, MMP9, N-cadherin, and ZEB2 expressions, increased cell proliferation and migration, and activated JAK2/STAT3 pathway, while miR-15b-5p overexpression reversed this effect. The in vivo results were consistent with in vitro results. In vivo experiments further confirmed that lncRNA ZNF252P-AS1 reduced keloid volume and weight. CONCLUSION lncRNA ZNF252P-AS1 is a potential target for keloid treatment.
Collapse
Affiliation(s)
- Yu Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengjuan Li
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhong Long
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengju Fan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenchen Zuo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongjie Wang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Liu XS, Liu C, Zeng J, Zeng DB, Chen YJ, Tan F, Gao Y, Liu XY, Zhang Y, Zhang YH, Pei ZJ. Nucleophosmin 1 is a prognostic marker of gastrointestinal cancer and is associated with m6A and cuproptosis. Front Pharmacol 2022; 13:1010879. [PMID: 36188614 PMCID: PMC9515486 DOI: 10.3389/fphar.2022.1010879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background: NPM1 is highly expressed in a variety of solid tumors and promotes tumor development. However, there are few comprehensive studies on NPM1 analysis in gastrointestinal cancer. Methods: We used bioinformatics tools to study the expression difference of NPM1 between gastrointestinal cancer and control group, and analyzed the relationship between its expression level and the diagnosis, prognosis, functional signaling pathway, immune infiltration, m6A and cuproptosis related genes of gastrointestinal cancer. At the same time, the expression difference of NPM1 between esophageal carcinoma (ESCA) samples and control samples was verified by in vitro experiments. Results: NPM1 was overexpressed in gastrointestinal cancer. In vitro experiments confirmed that the expression of NPM1 in ESCA samples was higher than that in normal samples. The expression of NPM1 has high accuracy in predicting the outcome of gastrointestinal cancer. The expression of NPM1 is closely related to the prognosis of multiple gastrointestinal cancers. Go and KEGG enrichment analysis showed that NPM1 co-expressed genes involved in a variety of biological functions. NPM1 expression is potentially associated with a variety of immune cell infiltration, m6A and cuproptosis related genes in gastrointestinal cancers. Conclusion: NPM1 can be used as a diagnostic and prognostic marker of gastrointestinal cancer, which is related to the immune cell infiltration and the regulation of m6A and cuproptosis.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| | - Chao Liu
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dao-Bing Zeng
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi-Jia Chen
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fan Tan
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| |
Collapse
|
15
|
Michalak M, Golde V, Helm D, Kaltner H, Gebert J, Kopitz J. Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms23126414. [PMID: 35742860 PMCID: PMC9223697 DOI: 10.3390/ijms23126414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022] Open
Abstract
Galectin-4 (Gal4) has been suggested to function as a tumor suppressor in colorectal cancer (CRC). In order to systematically explore its function in CRC, we established a CRC cell line where Gal4 expression can be regulated via the doxycycline (dox)-inducible expression of a single copy wildtype LGALS4 transgene generated by recombinase-mediated cassette exchange (RMCE). Using this model and applying in-depth proteomic and phosphoproteomic analyses, we systematically screened for intracellular changes induced by Gal4 expression. Overall, 3083 cellular proteins and 2071 phosphosites were identified and quantified, of which 1603 could be matched and normalized to their protein expression levels. A bioinformatic analysis revealed that most of the regulated proteins and phosphosites can be localized in the nucleus and are categorized as nucleic acid-binding proteins. The top candidates whose expression was modulated by Gal4 are PURB, MAPKAPK3, BTF3 and BCAR1, while the prime candidates with altered phosphorylation included ZBTB7A, FOXK1, PURB and CK2beta. In order to validate the (phospho)proteomic data, we confirmed these candidates by a radiometric metabolic-labelling and immunoprecipitation strategy. All candidates exert functions in the transcriptional or translational control, indicating that Gal4 might be involved in these processes by affecting the expression or activity of these proteins.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Viola Golde
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
| | - Dominik Helm
- Proteomics Core Facility, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Herbert Kaltner
- Veterinary Faculty, Institute of Physiological Chemistry, Ludwig-Maximilians-University, 80539 München, Germany;
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence:
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Huang JL, Chen SY, Lin CS. Targeting Cancer Stem Cells through Epigenetic Modulation of Interferon Response. J Pers Med 2022; 12:jpm12040556. [PMID: 35455671 PMCID: PMC9027081 DOI: 10.3390/jpm12040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells and are thought to play a critical role in the initiation and maintenance of tumor mass. CSCs exhibit similar hallmarks to normal stem cells, such as self-renewal, differentiation, and homeostasis. In addition, CSCs are equipped with several features so as to evade anticancer mechanisms. Therefore, it is hard to eliminate CSCs by conventional anticancer therapeutics that are effective at clearing bulk cancer cells. Interferons are innate cytokines and are the key players in immune surveillance to respond to invaded pathogens. Interferons are also crucial for adaptive immunity for the killing of specific aliens including cancer cells. However, CSCs usually evolve to escape from interferon-mediated immune surveillance and to shape the niche as a “cold” tumor microenvironment (TME). These CSC characteristics are related to their unique epigenetic regulations that are different from those of normal and bulk cancer cells. In this review, we introduce the roles of epigenetic modifiers, focusing on LSD1, BMI1, G9a, and SETDB1, in contributing to CSC characteristics and discussing the interplay between CSCs and interferon response. We also discuss the emerging strategy for eradicating CSCs by targeting these epigenetic modifiers, which can elevate cytosolic nuclei acids, trigger interferon response, and reshape a “hot” TME for improving cancer immunotherapy. The key epigenetic and immune genes involved in this crosstalk can be used as biomarkers for precision oncology.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan;
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Cheng Z, Jiang S, Tao R, Ge H, Qin J. Activating transcription factor 3-activated long noncoding RNA forkhead box P4-antisense RNA 1 aggravates colorectal cancer progression by regulating microRNA-423-5p/nucleus accumbens associated 1 axis. Bioengineered 2022; 13:2114-2129. [PMID: 35034547 PMCID: PMC8973600 DOI: 10.1080/21655979.2021.2023798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have vital roles in the progression of colorectal cancer (CRC). Forkhead box P4-antisense RNA 1 (FOXP4-AS1) showed a potential unfavorable prognostic factor for CRC, while its underlying mechanism remains elusive. Thus, the goal of this research is to determine mechanism of FOXP4-AS1 in CRC occurrence and development. Herein, a Dual-luciferase reporter assay was performed to assess the regulation of miR-423-5p to nucleus accumbens-associated protein 1 (NACC1) and activating transcription factor 3 (ATF3) to FOXP4-AS1 promoter. Hematoxylin-eosin (H&E) staining was performed to detect the pathological changes of tumor tissues. Flow cytometry, cell counting kit 8, Transwell, and wound healing assays were conducted to assess apoptosis, proliferation, migration, and invasion of CRC cells, respectively. The results showed that FOXP4-AS1 was highly expressed in CRC cell lines and tissues. CRC progression was promoted by the overexpression of FOXP4-AS1 in HTC116 cells and animal models. Furthermore, FOXP4-AS1 served as a molecular sponge for miR-423-5p, and NACC1 is a direct target of miR-423-5p. MiR-423-5p silencing or overexpression of NACC1 increased proliferation, migration, and invasion of HCT116 cells while suppressing apoptosis. We also found that the upregulation of FOXP4-AS1 was activated by ATF3 in CRC cells. Collectively, our results demonstrated that ATF3-activated FOXP4-AS1 aggravates CRC progression by regulating miR-423-5p/NACC1 axis, indicating a new target for CRC treatment.
Collapse
Affiliation(s)
- Zhouyang Cheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Song Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Ran Tao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Haipeng Ge
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| |
Collapse
|