1
|
Bettaieb F, Abdelaziz MA, Alatawi IS, Aljowni MA, Parveen H, Mukhtar S, Omer N, Jame R, Alshareef SA, Owda ME, Bin Jardan YA. Polyethylenimine-grafted cellulose nanofibril composites: Adsorbents for anionic dye removal with thermodynamic insights. Int J Biol Macromol 2025; 310:143354. [PMID: 40268000 DOI: 10.1016/j.ijbiomac.2025.143354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Water pollution is a critical environmental issue that necessitates innovative approaches to water purification. This study presents the development of a novel cellulose-based adsorbent, DCNF/PEI, synthesized by grafting branched polyethyleneimine (PEI) onto dialdehyde cellulose nanofibers (DCNF) via a Schiff base reaction. This functionalization enhances the adsorption capacity of cellulose nanofibers for removing anionic dyes from aqueous solutions. The DCNF/PEI composite was characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA), confirming successful modification and favorable structural and thermal properties. Batch adsorption experiments with methyl orange (MO) were conducted under various conditions, including pH, dye concentration, and contact time. The composite exhibited excellent dye removal efficiency, achieving a maximum adsorption capacity of 313 mg/g. The adsorption process followed the Langmuir isotherm and pseudo-second-order kinetic models, indicating monolayer chemisorption. These results highlight the DCNF/PEI composite as an efficient, sustainable, and scalable adsorbent for anionic dye removal, offering a promising solution for wastewater treatment.
Collapse
Affiliation(s)
- Fedia Bettaieb
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble, F-38000, France
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Maha Ali Aljowni
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Medhat E Owda
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Rahmatpour A, Hesarsorkh AHA. Chitosan and silica nanoparticles-modified xanthan gum-derived bio-nanocomposite hydrogel film for efficient uptake of methyl orange acidic dye. Carbohydr Polym 2024; 328:121721. [PMID: 38220324 DOI: 10.1016/j.carbpol.2023.121721] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
In this contribution, a bio-nanocomposite hydrogel film (CS/XG.SiO2) of chitosan/silica NPs-modified xanthan gum was prepared via a facile solution casting blending approach and utilized to capture the anionic methyl orange (MO) from aqueous solution. A Taguchi standard method was used to optimize the hydrogel nanocomposite synthesis reaction conditions after comprehensive characterization using various techniques. Under various operating parameters, the hydrogel biofilm was tested for its effectiveness in adsorbing MO dye in a batch process. In agreement with Langmuir isotherm, the CS/XG.SiO2 biofilm was capable of adsorbing MO at a maximum capacity of 294 mg/g at pH 5.30, contact time 45 min, temperature 25 °C, and concentration (C0) 50 mg/L. Pseudo-second-order model and adsorption kinetics data well matched. The thermodynamic data indicate that adsorption occurred spontaneously and exothermically. The main mechanisms driving the adsorption are electrostatic interactions and hydrogen bonding between the CS/XG.SiO2 nanocomposite and the dye. Furthermore, the biofilm is regenerative, allowing for up to five reuses while maintaining a 75 % dye removal efficiency. This study highlights that the CS/XG.SiO2 hydrogel nanocomposite is an inexpensive, reusable, and eco-friendly bio-adsorbent that is capable of anionic dye adsorption.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh Hesarsorkh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
3
|
Devre PV, Gore AH. Agro-Waste Valorization into Carbonaceous Eco-Hydrogel: A Circular Economy and Zero Waste Tactic for Doxorubicin Removal in Water/Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:141-158. [PMID: 38113477 DOI: 10.1021/acs.langmuir.3c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The existing work aims to evaluate the efficiency of eco-hydrogel for adsorption of pollutants prepared from biopolymeric matrix and agricultural waste-derived biochar. An efficient and reusable adsorbent, designed from the integration of maize stalk activated carbon into a gelatin-alginate composite (MSAC@GE-SA) was explored for removal of doxorubicin hydrochloride (Doxo.HCL) from polluted water. The structural properties, presence of surface functional groups, and elemental composition were explored using XRD, SEM, BET, FTIR, and XPS techniques. The key adsorption parameters such as Doxo.HCL concentration, MSAC@GE-SA amount, solution pH, and the contact time between adsorbate and adsorbents were successfully optimized for the effective removal of Doxo.HCL (qmax = 239.41 mg g-1). The kinetic mechanism of MSAC@GE-SA fits well with a pseudo-second-order rate model (R2 = 0.980), followed by mono- and multilayered Langmuir and Freundlich isotherms with R2 values 0.991 and 0.993, respectively. The recyclability of MSAC@GE-SA showed great stability without any physical damage and having sustained removal efficiency up to 10 cycles (96.32 to 55.66%). The versatility of MSAC@GE-SA was further investigated for river, canal, and sewage water samples under identical experimental conditions. The practicality of the MSAC@GE-SA was evaluated by spiking Doxo.HCL into industrial effluents via the standard addition method. Subsequently, the chemical oxygen demand (COD) of the treated pollutants exhibited a notable reduction, decreasing significantly from 128 to 80 mg L-1. Following 10 successful adsorption-desorption cycles, the spent MSAC@GE-SA was utilized as a fertilizer for Vigna radiata plants, positively contributing to overall plant growth without causing harm. Hence, proposed adsorbent (MSAC@GE-SA) emerges as a viable and sustainable solution, demonstrating features of reusability and cost-effectiveness. It holds significant promise for the removal of pharmaceutical pollutants, aligning with the principles of circular economy and zero-waste tactics.
Collapse
Affiliation(s)
- Pooja V Devre
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi-394350 Surat, Gujarat, India
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi-394350 Surat, Gujarat, India
| |
Collapse
|
4
|
Gao Y, Cai P, Zhong L, Zhang R, Hou X, Ren X, Wang J, Chu X, Lu Y, Zhou Z. Chitosan-polyvinyl alcohol-diatomite hydrogel removes methylene blue from water. Int J Biol Macromol 2024; 254:127886. [PMID: 37926301 DOI: 10.1016/j.ijbiomac.2023.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Dye pollution in the aquatic environment can harm ecosystems and human health. Here, we developed a new green adsorbent by applying an improved drying process. Diatomite was embedded in a network structure formed between chitosan and polyvinyl alcohol without using any crosslinking agent to prepare chitosan-polyvinyl alcohol-diatomite hydrogel beads through alkali solidification. The beads were tested for removing a cationic dye (methylene blue (MB)) from water. The structure of the adsorbent beads was analysed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The adsorption capacity was investigated, and the results indicated excellent MB adsorption properties. The adsorbents had a rough surface and high swelling capacity of 66.9 g/g. The maximum MB adsorption capacity was 414.70 mg/g, and the adsorption followed the Freundlich isothermal and quasi-second-order kinetic models. The adsorption was an endothermic spontaneous process governed by both intra-particle and external diffusion processes. The proposed adsorption mechanisms involved hydrogen bonding and electrostatic interactions. These adsorbent beads have considerable application potentials owing to their high adsorption capacity, green composition, and non-polluting nature.
Collapse
Affiliation(s)
- Yanfei Gao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Pingxiong Cai
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535000, China
| | - Lei Zhong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Ruixian Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xueyi Hou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiuxiu Ren
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Junzhong Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiaokun Chu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Yanyue Lu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China.
| | - Zeguang Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
5
|
Salama A, El-Sakhawy M. Synthesis and adsorption performance of functionalized chitosan and carboxyethylsilanetriol hybrids. BMC Chem 2023; 17:33. [PMID: 37029397 PMCID: PMC10080773 DOI: 10.1186/s13065-023-00943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
A novel adsorbent from cationic chitosan derivative and anionic silica precursor was fabricated to remove methylene blue (MB). The hybrid material was prepared from N-guanidinium chitosan acetate (GChi) and carboxyethylsilanetriol sodium salt by a simple ionic interaction followed by sol-gel approach. Multiple characterization methods were used to analyze the morphology and the structure of the well-prepared functionalized material. Batch experiments were conducted to optimize the various operational parameters. The Langmuir isotherm was used to fit the data, and it predicted monolayer adsorption with a maximum capacity of 334 mg g-1. A pseudo-second-order equation fit the adsorption process well. Chitosan/silica hybrids containing carboxylic groups are efficient and cost-effective adsorbents for cationic dyes adsorption from aqueous solutions.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
6
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
7
|
Li L, Cen J, Huang L, Luo L, Jiang G. Fabrication of a dual pH-responsive and photothermal microcapsule pesticide delivery system for controlled release of pesticides. PEST MANAGEMENT SCIENCE 2023; 79:969-979. [PMID: 36309964 DOI: 10.1002/ps.7265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The development of stimulus-responsive and photothermally controlled-release microcapsule pesticide delivery systems is a promising solution to enhance the effective utilization and minimize the excessive use of pesticides in agriculture. RESULTS In this study, an AVM@CS@TA-Fe microcapsule pesticide delivery system was developed using avermectin as the model drug, chitosan and tannic acid as the wall materials, and tannic acid-Fe complex layer as the photothermal agent. The optical microscope, scanning electron microscope, transmission electron microscope, and Fourier-transform infrared spectroscope were used to characterize the prepared microcapsule. The slow-release, UV-shielding, photothermal performance, and nematicidal activity of the microcapsule were systematically investigated. The results showed that the system exhibited excellent pH-responsive and photothermal-sensitive performances. In addition, the UV-shielding performance of the delivery system was improved. The photothermal conversion efficiency (η) of the system under the irradiation of near-infrared (NIR) light was determined to be 14.18%. Moreover, the nematicidal activities of the system against pine wood nematode and Aphelenchoides besseyi were greatly increased under the irradiation of light-emitting diode (LED) simulated sunlight. CONCLUSION The release of the pesticide-active substances in such a pesticide delivery system could be effectively regulated with the irradiation of NIR light or LED-simulated sunlight. Thus, the developed pesticide delivery system may have broad application prospects in modern agriculture fields. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linhuai Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Jun Cen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Ling Luo
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
8
|
Synthesis of hyperbranched polyamine dendrimer/chitosan/silica composite for efficient adsorption of Hg(II). Int J Biol Macromol 2023; 230:123135. [PMID: 36610565 DOI: 10.1016/j.ijbiomac.2023.123135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The pollution of water system with Hg(II) exerts hazardous effect to ecosystem and public health. Adsorption is considered to be a promising strategy to remove Hg(II) from aqueous solution. Herein, hyperbranched polyamine dendrimer/chitosan/silica composite (SiO2-FP) was synthesized for the adsorption of aqueous Hg(II). The adsorption performance of SiO2-FP was comprehensively determined by considering various influencing factors. SiO2-FP displays good adsorption performance for Hg(II) with the adsorption capacity of 0.79 mmol·g-1, which is higher than the corresponding chitosan functionalized silica (SiO2-CTS) by 46.30 %. The optimal solution pH for the adsorption of Hg(II) is 6. Adsorption kinetic indicates the adsorption for Hg(II) can reach equilibrium at 250 min. Adsorption kinetic process can be well fitted by pseudo-second-order (PSO). Adsorption isotherm reveals the adsorption for Hg(II) can be promoted by increasing initial Hg(II) concentration and adsorption temperature. The adsorption isotherm indicates the adsorption process can be described by Langmuir model and the adsorption is a spontaneous, endothermic and entropy-increased process. SiO2-FP displays excellent adsorption selectivity and can 100 % adsorb Hg(II) with the coexisting of Ni(II), Zn(II), Pb(II), Mn(II), and Co(II). Adsorption mechanism demonstrates -NH-, -NH2, CN, CONH, -OH, and CO participated in the adsorption. SiO2-FP exhibits good regeneration property and the regeneration rate can maintain approximately 90 % after five adsorption-desorption cycles.
Collapse
|
9
|
Zong E, Fan R, Hua H, Yang J, Jiang S, Dai J, Liu X, Song P. A magnetically recyclable lignin-based bio-adsorbent for efficient removal of Congo red from aqueous solution. Int J Biol Macromol 2023; 226:443-453. [PMID: 36473527 DOI: 10.1016/j.ijbiomac.2022.11.317] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It has been always attractive to design a sustainable bio-derived adsorbent based on industrial waste lignin for removing organic dyes from water. However, existing adsorbent strategies often lead to the difficulties in adsorbent separation and recycling. Herein, we report a novel magnetically recyclable bio-adsorbent of Mg(OH)2/Fe3O4/PEI functionalized enzymatic lignin (EL) composite (EL-PEI@Fe3O4-Mg) for removing Congo red (CR) by Mannish reaction and hydrolysis-precipitation. The Mg(OH)2 and PEI functionalized EL on the surface act as active sites for the removal of CR, while the Fe3O4 allows for the easy separation under the help of a magnet. As-obtained EL-PEI@Fe3O4-Mg forms flower-like spheres and has a relatively lager surface area of 24.8 m2 g-1 which is 6 times that of EL. The EL-PEI@Fe3O4-Mg exhibits a relatively high CR adsorption capacity of 74.7 mg g-1 which is 15 times that of EL when initial concentration is around 100 mg L-1. And it can be easily separated from water by applying an external magnetic field. Moreover, EL-PEI@Fe3O4-Mg shows an excellent anti-interference capability according to the results of pH values and salt ions influences. Importantly, EL-PEI@Fe3O4-Mg possesses a good reusability and a removal efficiency of 92 % for CR remains after five consecutive cycles. It is illustrated that electrostatic attraction, π-π interaction and hydrogen binding are primary mechanisms for the removal of CR onto EL-PEI@Fe3O4-Mg. This work provides a novel sustainable strategy for the development of highly efficient, easy separable, recyclability bio-derived adsorbents for removing organic dyes, boosting the efficient utilization of industrial waste lignin.
Collapse
Affiliation(s)
- Enmin Zong
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China; School of Earth Science and Engineering, Nanjing University, Nanjing 210093, PR China
| | - Runfang Fan
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Hao Hua
- School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Jiayao Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengtao Jiang
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Jinfeng Dai
- School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Xiaohuan Liu
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China; School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China.
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield Central 4300, Australia.
| |
Collapse
|
10
|
Saigl Z, Tifouti O, Alkhanbashi B, Alharbi G, Algamdi H. Chitosan as adsorbent for removal of some organic dyes: a review. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Nayl AA, Abd-Elhamid AI, Arafa WAA, Ahmed IM, AbdEl-Rahman AME, Soliman HMA, Abdelgawad MA, Ali HM, Aly AA, Bräse S. A Novel P@SiO 2 Nano-Composite as Effective Adsorbent to Remove Methylene Blue Dye from Aqueous Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:514. [PMID: 36676250 PMCID: PMC9864475 DOI: 10.3390/ma16020514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This work aims to prepare a novel phosphate-embedded silica nanoparticles (P@SiO2) nanocomposite as an effective adsorbent through a hydrothermal route. Firstly, a mixed solution of sodium silicate and sodium phosphate was passed through a strong acidic resin to convert it into hydrogen form. After that, the resultant solution was hydrothermally treated to yield P@SiO2 nanocomposite. Using kinetic studies, methylene blue (MB) dye was selected to study the removal behavior of the P@SiO2 nanocomposite. The obtained composite was characterized using several advanced techniques. The experimental results showed rapid kinetic adsorption where the equilibrium was reached within 100 s, and the pseudo-second-order fitted well with experimental data. Moreover, according to Langmuir, one gram of P@SiO2 nanocomposite can remove 76.92 mg of the methylene blue dye. The thermodynamic studies showed that the adsorption process was spontaneous, exothermic, and ordered at the solid/solution interface. Finally, the results indicated that the presence of NaCl did not impact the adsorption behavior of MB dye. Due to the significant efficiency and promising properties of the prepared P@SiO2 nanocomposite, it could be used as an effective adsorbent material to remove various cationic forms of pollutants from aqueous solutions in future works.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Aref M. E. AbdEl-Rahman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Hesham M. A. Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hazim M. Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Abouzeid RE, Khiari R, Ali KA. Activated Charcoal/Alginate Nanocomposite Beads for Efficient Adsorption of the Cationic Dye Methylene Blue: Kinetics and Equilibrium. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Boosting highly capture of trace tetracycline with a novel water-resistant and magnetic (ZIF-8)-on-(Cu-BTC@Fe3O4) composite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
El-Sayed NS, Salama A, Guarino V. Coupling of 3-Aminopropyl Sulfonic Acid to Cellulose Nanofibers for Efficient Removal of Cationic Dyes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6964. [PMID: 36234302 PMCID: PMC9570761 DOI: 10.3390/ma15196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
A novel anionic nanostructured cellulose derivate was prepared through the coupling of TEMPO-oxidized cellulose nanofibers with 3-aminopropyl sulfonic acid (3-APSA). 3-APSA grafting was variously investigated by FT-IR spectroscopy and transmission electron microscopy (TEM) analysis, confirming a high reaction degree. The surface morphology investigated via scanning electron microscopy (SEM) revealed a more uniform organization of the nanofibers after the 3-APSA coupling, with improvements in terms of fiber packing and pore interconnectivity. This peculiar morphology contributes to improving methylene blue (MB) adsorption and removal efficiency at different operating conditions (pH, initial time, and initial concentration). The results indicated a maximum adsorption capacity of 526 mg/g in the case of 3-APSA grafted nanofibers, over 30% more than that of non-grafted ones (370 mg/g), which confirm a relevant effect of chemical modification on the adsorbent properties of cellulose nanofibers. The adsorption kinetics and isotherms of the current adsorbents match with the pseudo-second-order kinetic and Langmuir isotherm models. This study suggests the use of chemical grafting via 3-APSA is a reliable and facile post-treatment to design bio-sustainable and reusable nanofibers to be used as high-performance adsorbent materials in water pollutant remediation.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, pad.20, V.le Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
15
|
Abouzeid RE, Owda ME, Dacrory S. Effective adsorption of cationic methylene blue dye on cellulose nanofiber/graphene oxide/silica nanocomposite: Kinetics and equilibrium. J Appl Polym Sci 2022. [DOI: 10.1002/app.52377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science Al‐Azhar University Nasr City Cairo Egypt
| | - Sawsan Dacrory
- Cellulose and Paper Department National Research Centre Giza Egypt
| |
Collapse
|
16
|
Efficiency of air-dried and freeze-dried alginate/xanthan beads in batch, recirculating and column adsorption processes. Int J Biol Macromol 2022; 204:345-355. [PMID: 35149093 DOI: 10.1016/j.ijbiomac.2022.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Alginate (Alg) beads are low-cost adsorbents used for wastewater remediation. In this work, alginate (Alg) and alginate/xanthan (Alg/XG) blend beads were synthesized by gelation method into calcium chloride and freeze-dried to improve the porosity. Their adsorption efficiency was tested for methylene blue (MB) dye in batch, recirculating and column adsorption systems. The blend beads were characterized using by SEM, FTIR-ATR and X-ray microcomputer tomography (Micro-CT) analyzes. Freeze-dried Alg and Alg/XG beads presented porosity of 46 ± 5% and 77 ± 3%, respectively. Adsorption isotherms of MB on freeze-dried Alg/XG beads indicated better adsorption capacity in comparison to the air-dried ones. Adsorption kinetics and breakthrough curves based on recirculating and vertical column adsorption processes of MB on freeze dried Alg/XG and air-dried Alg/XG beads indicated higher efficiency for the vertical column system packed with freeze dried Alg/XG beads. The removal efficiency of 91% MB by the freeze-dried Alg/XG beads in vertical column remained even after four consecutive adsorption-desorption cycles, disclosing these beads as potential systems for the wastewater treatment.
Collapse
|
17
|
Machado TS, Crestani L, Marchezi G, Melara F, de Mello JR, Dotto GL, Piccin JS. Synthesis of glutaraldehyde-modified silica/chitosan composites for the removal of water-soluble diclofenac sodium. Carbohydr Polym 2022; 277:118868. [PMID: 34893273 DOI: 10.1016/j.carbpol.2021.118868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Composite materials are effective adsorbents for the removal of various types of contaminants, such as pharmaceutical products. However, they require improvement to achieve a good adsorption capacity. This study presents the development of a promising adsorbent: silica/chitosan modified with different proportions of glutaraldehyde, which involves the D-glucosamine units from chitosan. The developed materials were evaluated for their ability to remove diclofenac sodium. The adsorption data showed that the diclofenac adsorption efficiency increased with increasing degree of glutaraldehyde crosslinking. The equilibrium and kinetic data were well fit by the Liu and Elovich models, respectively, and the maximum adsorption capacity was 237.8 mg/g. Therefore, it can be assumed that the process is predominantly chemical and exothermic, with a high affinity between the adsorbents and diclofenac sodium. The adsorption mechanisms were investigated to better understand the interactions, and the predominance of covalent bonds with the self-polymerized glutaraldehyde was verified.
Collapse
Affiliation(s)
- Thaís Strieder Machado
- Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, km 171, Passo Fundo, RS, Brazil.
| | - Larissa Crestani
- Chemical Engineering Course, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, km 171, Passo Fundo, RS, Brazil
| | - Giovana Marchezi
- Chemical Engineering Course, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, km 171, Passo Fundo, RS, Brazil
| | - Flávia Melara
- Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, km 171, Passo Fundo, RS, Brazil
| | - Jonatan Rafael de Mello
- Postgraduate in Food Science and Technology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, BR 285, km 171, Passo Fundo, RS, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Roraima Avenue, 1000 Santa Maria, RS, Brazil.
| | - Jeferson Steffanello Piccin
- Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, km 171, Passo Fundo, RS, Brazil
| |
Collapse
|
18
|
Chen X, Zhang X, Li F, Yang X, Du M, Fan J. Mesoporous maltose/calcium oxalate hybrid material with abundant reaction sites and its efficient Pb( ii) removal from diverse water bodies. NEW J CHEM 2022. [DOI: 10.1039/d2nj01092e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maltose/calcium oxalate exhibits high capacity and selective adsorption of Pb(ii) due to the synergistic mechanism of ion exchange, electrostatic and complexation.
Collapse
Affiliation(s)
- Xinxin Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P. R. China
| | - Xia Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P. R. China
| | - Xitong Yang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P. R. China
| | - Mengmeng Du
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P. R. China
| | - Jing Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
19
|
Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3008. [PMID: 34835769 PMCID: PMC8620168 DOI: 10.3390/nano11113008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Wei Sun Leong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Pieter Samyn
- Institute for Materials Research (MO-IMOMEC), Applied and Analytical Chemistry, University of Hasselt, B-3590 Diepenbeek, Belgium;
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|