1
|
Chen J, Zhang X, Qiu R, Cao Y, Lou W. Fabrication and characterization of fish oil emulsions stabilized by metal-phenolic network coatings-decorated Acipenser sturgeon protein. Food Chem 2025; 472:142896. [PMID: 39842197 DOI: 10.1016/j.foodchem.2025.142896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025]
Abstract
Acipenser sturio fish oil, rich in ω-3 PUFAs, offers potential for functional foods but is prone to oxidative degradation. This study investigates enhancing antioxidant and emulsifying properties of the oil by modifying Acipenser sturgeon protein (ASP) using metal-phenolic networks (MPNs). ASP was coated with EGCG (epigallocatechin-3-gallate) and Ca2+, forming ASP-EGCG-Ca complexes (AECas) used as emulsifiers. The study examined the influence of interface compositions on the physicochemical and oxidative stability of AECas emulsions. Results showed AECas altered protein conformation, increased particle size and zeta potential, and improved antioxidant activity. Fish oil emulsions stabilized by AECas demonstrated superior stability under neutral pH compared to pH-adjusted ASP emulsions. Notably, AECa4 reduced primary oxidation products by 75.14 % and secondary ones by 83.18 %. This research highlights the use of MPNs for encapsulating ASP as an effective antioxidant and emulsifier to protect lipid-rich emulsions from oxidation.
Collapse
Affiliation(s)
- Jingwen Chen
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Xin Zhang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Ruhong Qiu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Yifang Cao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
2
|
Saeed M, Zafar S, Sajjad Z, Aslam R, Ali S, Mahmood MS, Aayan M, Sophy M, Umer S, Rahman SU, Anwar MN. The efficacy of egg albumin nanoparticles adjuvanted Clostridium perfringens type D toxoid vaccine in rabbits. Braz J Microbiol 2025; 56:665-674. [PMID: 39730777 PMCID: PMC11885720 DOI: 10.1007/s42770-024-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024] Open
Abstract
Epsilon toxin (ETX) is an exotoxin produced by Clostridium perfringens type D that induces enterotoxaemia or necrotic intestinal infection in small ruminants and bovine. Immunization is an essential element in preventing the spread of infectious diseases. In recent literature, nanocarriers have exhibited the capacity to deliver protection, stability, and regulated distribution properties to protein-based antigens. Furthermore, egg albumin is a highly adaptable protein nanocarrier in vaccine delivery systems due to its biocompatible, biodegradable, non-toxic, and non-immune-modulating properties. In this study, we assessed the efficacy, safety, immunogenicity, and dose-effect relationships of the nanoparticle-advanced toxoid vaccine (G1) in contrast to the commercially available vaccine (ETV) (G2). Two different vaccines (1 ml) were inoculated in experimental animals (rabbits) on days 1, 7, 14, 21, and 28. The geometric mean titers (GMT) of Groups 2 and 3 were recorded on the respective day of inoculation. The findings reveal that the GMT of group 2 was significantly higher than group 3. The use of nanoparticles to detain toxins demonstrated enhanced immune protection against the harmful effects caused by the toxins. This work is anticipated to explore new opportunities in developing improved vaccinations using nanoparticles to combat the pathogenicity/ virulence factors that present potential risks to livestock.
Collapse
Affiliation(s)
- Mehwish Saeed
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saad Zafar
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zarreen Sajjad
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rizwan Aslam
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shahid Mahmood
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mueed Aayan
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maria Sophy
- Department of Physics, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saqib Umer
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Naveed Anwar
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan.
| |
Collapse
|
3
|
Li W, Liu H, Zheng J, Wang D, Wang Z, Hong M, Zhou Y. Kaempferol modulates ɑ2M secretion in bone marrow-derived macrophages by downregulating GR/PER1-mediated lipid metabolism to attenuate the emotional stress-aggravated metastasis of prostate cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119162. [PMID: 39603396 DOI: 10.1016/j.jep.2024.119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prostate cancer patients often suffer from depression during androgen deprivation therapy. Chaihu-Shugan-San (CSS) can prevent prostate cancer metastasis caused by chronic unpredictable mild stress (CUMS), but its active ingredients and molecular mechanism remain unelucidated. AIM OF STUDY This study aims to explore the potential targets and molecular mechanisms of CSS in the treatment of emotional stress-aggravated metastasis of prostate cancer. RESULTS Stress induces nuclear translocation of GR, initiating the transcription of PER1, which leads to an enhanced lipid metabolism and decreased secretion of α2M in BMDMs. CSS, a classical Traditional Chinese Medicine (TCM) formula for alleviating depression, can improve prostate cancer metastasis caused by CUMS. Of the active ingredients in CSS, kaempferol demonstrated the highest potency for enhancing α2M secretion in BMDMs and inhibiting prostate cancer cell migration. Kaempferol also inhibited nuclear translocation of GR and the GR/PER1 pathway in Per1-overexpressed BMDMs. CONCLUSIONS These findings reveal that emotional stress-aggravated prostate cancer growth and metastasis rely on the GR/PER1 pathway and lipid metabolism, as the suppression of this pathway ultimately leads to an increase in α2M secretion in BMDMs and inhibition of PC-3 cell metastasis.
Collapse
Affiliation(s)
- Wei Li
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dechao Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zhiying Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
4
|
Zhou X, Guo N, Zhang F, Zhuo K, Zhu G. Improving stability and bioavailability of ACNs based on Gellan gum-whey protein isolate nanocomplexes. Food Chem X 2024; 24:102050. [PMID: 39703377 PMCID: PMC11656087 DOI: 10.1016/j.fochx.2024.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Blueberry anthocyanins (ACNs) have been widely applied in the food industry and medicine due to their numerous beneficial properties. However, the stability of ACNs is extremely poor. This study aimed to develop a delivery system for ACNs using nanocomplexes prepared from gellan gum (GG) and whey protein isolate (WPI) via Maillard reaction. The effects of the GG-WPI nanocomplexes on the stability, antioxidant capacity, and bioavailability of ACNs were investigated. FTIR, fluorescence spectroscopy, and UV-vis absorption spectroscopy revealed covalent bonding between the GG and WPI in the nanocomplexes. The nanocomplex demonstrated a good loading efficiency for ACNs (60.34 %), with a particle size of 368.42 nm. It also showed better stability and bioaccessibility than free ACNs, and their DPPH radical scavenging capacity reached a maximum of 63.11 %. Our research is significant for developing novel multifunctional foods and constructing high-performance food delivery systems.
Collapse
Affiliation(s)
- Xin Zhou
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Na Guo
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Fangyan Zhang
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Kaili Zhuo
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| | - Guilan Zhu
- School of Biology and Food Engineering, Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei 230601, Anhui Province, PR China
| |
Collapse
|
5
|
Wang C, Wei M, Zhu H, Wang L, Ni S, Li X, Gao D. Development of porous materials via protein/polysaccharides/polyphenols nanoparticles stabilized Pickering high internal phase emulsions for adsorption of Pb 2+ and Cu 2+ ions. Food Chem 2024; 445:138796. [PMID: 38471345 DOI: 10.1016/j.foodchem.2024.138796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The porous materials (PM) were prepared by the Pickering high internal phase emulsion (PHIPE) template. Firstly, the nanoparticles named as ZHMNPs or MZHMNPs were fabricated based on zein, Hohenbuehelia serotina polysaccharides and Malus baccata (Linn.) Borkh polyphenols without or with Maillard reaction, the average particle sizes and zeta potentials of which were distributed in a range of 718.1-979.4 nm and -21.6-25.2 mV. ZHMNPs possessed the relatively uniform spherical morphology, while MZHMNPs were irregular in shape. With ZHMNPs or MZHMNPs serving as the stabilizers, the PHIPEs were prepared, and exhibited the good viscoelasticity and excellent storage and freeze-thaw stabilities. Based on above PHIPEs template, the constructed PM possessed the large specific surface area and uniform pore structure. Through the investigations of adsorption performances, PM showed the outstanding adsorption capacities on Pb2+ and Cu2+ ions regardless of dissolving in deionized water or simulated gastrointestinal digestive fluid. Furthermore, the results also showed that the pH, temperature and adsorbent dosage had certain impacts on the adsorption performances of PM on Pb2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Cheng Wang
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mian Wei
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Huipeng Zhu
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lu Wang
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xiaoyu Li
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Dawei Gao
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Li L, Zhang C, Cao Z, Ma L, Liu C, Lan X, Qu C, Fu P, Luo R, Wang Y. Passivation protein-adhesion platform promoting stent reendothelialization using two-electron-assisted oxidation of polyphenols. Biomaterials 2024; 305:122423. [PMID: 38142470 DOI: 10.1016/j.biomaterials.2023.122423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Superhydrophilic surfaces play an important role in nature. Inspired by this, scientists have designed various superhydrophilic materials that are widely used in the field of biomaterials, such as PEG molecular brushes and zwitterionic materials. However, superhydrophilic coatings with only anti-fouling properties do not satisfy the requirements for rapid reendothelialization of cardiovascular stent surfaces. Herein, a novel polyphenol superhydrophilic surface with passivated protein-adsorption properties was developed using two-electron oxidation of dopamine and polyphenols. This coating has a multiscale effects: 1) macroscopically: anti-fouling properties of superhydrophilic; 2) microscopically: protein adhesion properties of active groups (quinone-, amino-, hydroxyphenyl groups and aromatic ring). Polyphenols not only enhance the ability of coating to passivate protein-adsorption, but also make the coating have polyphenol-related biological functions. Therefore, the polyphenol and passivated protein-adsorption platform together maintain the stability of the scaffold microenvironment. This, in turn, provides favorable conditions for the growth of endothelial cells on the scaffold surface. In vivo implantation of the coated stents into the abdominal aorta resulted in uniform and dense endothelial cells covering the surface of the neointima. Moreover, new endothelial cells secreted large amounts of functional endothelial nitric oxide synthase like healthy endothelial cells. These results indicate that the polyphenol superhydrophilic coating potentially resists intra-stent restenosis and promotes surface reendothelialization. Hence, polyphenol superhydrophilic coatings with passivated protein-adsorption properties constructed by two-electron-assisted oxidation are a highly effective and versatile surface-modification strategy for implantable cardiovascular devices.
Collapse
Affiliation(s)
- Linhua Li
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chunle Zhang
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhengjiang Cao
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chang Liu
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ping Fu
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
7
|
Chen Q, Liu Y, Li Y, Dong L, Liu Y, Liu L, Farag MA, Liu L. Interaction and binding mechanism of ovalbumin with cereal phenolic acids: improved structure, antioxidant activity, emulsifying and digestion properties for potential targeted delivery systems. Food Res Int 2024; 175:113726. [PMID: 38128987 DOI: 10.1016/j.foodres.2023.113726] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Ovalbumin (OVA) has been considered as a nutrient carrier for bioactive, which has high nutrition value and multiple properties. Recently, proteins-phenolic acids composite delivery systems have received widespread attention. Therefore, this research aimed to investigate the interaction between OVA and cereal phenolic acids (CPA) to establish delivery systems for bioactive. Spectroscopy results have found that CPA generated complexes with OVA, causing the microenvironment changes of OVA. Ferulic acid (FA), p-coumaric acid (CA), vanillic acid (VA), syringic acid (SY), sinapic acid (SI), and protocatechuic acid (PA) not only quenched the intrinsic fluorescence of OVA, but also altered protein microenvironment. Further investigation showed these complexes were formed by static quenching mode, while hydrogen bond and hydrophobic interaction were dominant binding forces. Meanwhile, the interaction decreased α-helix contents and increased β-sheet contents, leading to conformational changes in OVA. Besides, OVA/CPA complexes displayed an increase in hydrophobicity with a reduce in free-SH. After combination with FA, SY, CA, VA, SI, PA, it was found that all formed complexes had superior solubility, emulsifying and antioxidant activities than native OVA. Among them, OVA-PA exhibited the highest emulsifying activity index and emulsion stability index values (36.4 ± 0.39 m2/g and 60.4 ± 0.94 min) and stronger antioxidant activities. Finally, the combination with phenolic acids further improved the digestion efficiency in vitro of OVA. The OVA-CPA complexes showed improved properties for excellent delivery systems. Overall, OVA-CPA complexes could be a good carrier for bioactive, which provided valuable avenues in target delivery system application.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68588, NE, USA.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
8
|
He W, Zhang J, Ju J, Wu Y, Zhang Y, Zhan L, Li C, Wang Y. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions. Drug Deliv Transl Res 2023; 13:2885-2902. [PMID: 37149557 DOI: 10.1007/s13346-023-01357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Kaempferol (KAE) is a naturally occurring flavonoid compound with antitumor activity. However, the low aqueous solubility, poor chemical stability, and suboptimal bioavailability greatly restrict its clinical application in cancer therapy. To address the aforementioned limitations and augment the antitumor efficacy of KAE, we developed a kaempferol nanosuspensions (KAE-NSps) utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a stabilizing agent, screened the optimal preparation process, and conducted a comprehensive investigation of their fundamental properties as well as the antitumor effects in the study. The findings indicated that the particle size was 186.6 ± 2.6 nm of the TPGS-KAE-NSps optimized, the shape of which was fusiform under the transmission electron microscope. The 2% (w/v) glucose was used as the cryoprotectant for TPGS-KAE-NSps, whose drug loading content was 70.31 ± 2.11%, and the solubility was prominently improved compared to KAE. The stability and biocompatibility of TPGS-KAE-NSps were favorable and had a certain sustained release effect. Moreover, TPGS-KAE-NSps clearly seen to be taken in the cytoplasm exhibited a stronger cytotoxicity and suppression of cell migration, along with increased intracellular ROS production and higher apoptosis rates compared to KAE in vitro cell experiments. In addition, TPGS-KAE-NSps had a longer duration of action in mice, significantly improved bioavailability, and showed a stronger inhibition of tumor growth (the tumor inhibition rate of high dose intravenous injection group was 68.9 ± 1.46%) than KAE with no obvious toxicity in 4T1 tumor-bearing mice. Overall, TPGS-KAE-NSps prepared notably improved the defect and the antitumor effects of KAE, making it a promising nanodrug delivery system for KAE with potential applications as a clinical antitumor drug.
Collapse
Affiliation(s)
- Wen He
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junfeng Zhang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jiale Ju
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinghua Wu
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuxi Zhang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lin Zhan
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenchen Li
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yanli Wang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Tropical Translation Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
9
|
Xu W, McClements DJ, Peng X, Xu Z, Meng M, Zou Y, Chen G, Jin Z, Chen L. Optimization of food-grade colloidal delivery systems for thermal processing applications: a review. Crit Rev Food Sci Nutr 2023; 64:12907-12921. [PMID: 37724782 DOI: 10.1080/10408398.2023.2258215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Colloidal delivery systems are widely used in the food industry to enhance the dispersibility, stability, efficacy, or bioavailability. However, when exposed to the high temperature, delivery systems are often prone to degradation, which limits its application in thermal processing. In this paper, the effects of thermal processing on the performance of traditional protein-based or starch-based delivery systems are firstly described, including the molecular structure changes of proteins, starches or lipids, and the degradation of embedded substances. These effects are unfavorable to the application of the delivery system in thermal processing. Then, strategies of improving the heat resistance of food grade colloid delivery system and their use in frying, baking and cooking food are mainly introduced. The heat resistance of the delivery system can be improved by a variety of strategies, including the development of new heat-resistant materials, the addition of heat-resistant coatings to the surface of delivery systems, the cross-linking of proteins or starches using cross-linking agents, the design of particle structures, the use of physical means such as ultrasound, or the optimization of the ingredient formula. These strategies will help to expand the application of heat-resistant delivery systems so that they can be used in real thermal processing.
Collapse
Affiliation(s)
- Wen Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd, Zhongshan, China
| | - Yidong Zou
- Yixing Skystone Feed Co., Ltd, Wuxi, China
| | | | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Licheng Detection & Certification Group Co., Ltd, Zhongshan, China
| |
Collapse
|
10
|
Noor N, Jhan F, Gani A, Raina IA, Shah MA. Nutraceutical and toxicological evaluation of hydrogels architected using resistant starch nanoparticles and gum acacia for controlled release of kaempferol. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|