1
|
Zhang J, Tang J, Shi S, Huang H, Li Y, Liu W, Shi J, Tong C, Pang J, Wu C. Research progress on marine polysaccharide-based Pickering emulsions and their potential applications in the food industry. Food Res Int 2025; 208:116073. [PMID: 40263875 DOI: 10.1016/j.foodres.2025.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
Recently, natural biopolymers have increasingly been utilized to stabilize Pickering emulsions (PEs) for food applications. The research and development of marine polysaccharides is one of the hotspots in the field of PEs due to their low-cost, non-toxicity, abundant, and sustainability. This review aims to provide a comprehensive overview of the latest advancements in marine polysaccharide-based stabilized PEs systems. We begin with an introduction to the sources of marine polysaccharides and the methods for fabricating marine polysaccharide-based PEs. Following this, we summarize the role of natural marine polysaccharides and their complexes (combined with other polysaccharides, proteins, polyphenols, fatty acids, or other particles) as particles to form and stabilize PEs. Additionally, we detail the current applications of marine polysaccharide-based PEs in food packaging films/coatings, 3D printing, encapsulation and delivery of functional food ingredients, as well as in fat substitutes. Finally, potential future developments of PEs stabilized by marine polysaccharides in the food industry are also proposed. This review will provide valuable references to promote the application of marine polysaccharide-based PEs in the food sector.
Collapse
Affiliation(s)
- Jianxi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junjie Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Si Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhao Li
- Engineering University of Peoples Armed Police, Coll Equipment Management & Supportabil, Xian, Shaanxi, China
| | - Wenhao Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Cailing Tong
- Xiamen Ocean Vocational College, Xiamen, Fujian, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Jin Q, Lin B, Lu L. Potential therapeutic value of dietary polysaccharides in cardiovascular disease: Extraction, mechanisms, applications, and challenges. Int J Biol Macromol 2025; 296:139573. [PMID: 39793800 DOI: 10.1016/j.ijbiomac.2025.139573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Dietary polysaccharides, recognised as significant natural bioactive compounds, have demonstrated promising potential for the prevention and treatment of cardiovascular disease (CVD). This review provides an overview of the biological properties and classification of polysaccharides, with particular emphasis on their extraction and purification methods. The paper then explores the diverse mechanisms by which polysaccharides exert their effects in CVD, including their antioxidant activity, protection against ischemia-reperfusion injury, anti-apoptotic properties, protection against diabetic cardiomyopathy, anticoagulant and antithrombotic effects, prevention of ventricular remodeling, and protection against vascular injury. Furthermore, this paper summarises the current status of clinical trials involving polysaccharides in CVD and analyzes the support and challenges posed by these studies for the practical application of polysaccharides. Finally, the major challenges facing the therapeutic use of polysaccharides in CVD are discussed, particularly the issues of low bioavailability and lack of standardized quality control. Through this review, we aimed to provide a reference and guidance for further research on and application of dietary polysaccharides in CVD.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Bin Lin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Lingfen Lu
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| |
Collapse
|
3
|
Liu S, Xiang Y, Xu C, Sun J, Pi Y, Shao JH. Systematic preparation of animal-derived glycosaminoglycans: Research progress and industrial significance. Food Chem 2025; 464:141565. [PMID: 39406132 DOI: 10.1016/j.foodchem.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Impurities and isomerized polysaccharides affect the analytical accuracy of glycosaminoglycans (GAGs) structure and bioactivity, hindering their application in food and medicine. Preparing homogeneous GAGs components is essential for exploring structure-potency relationships and facilitating industrial production. This review primarily summarizes research on animal-derived GAGs preparation over the past five years, standardizing the preparation process into four operational units: pre-extraction treatment, extraction of crude polysaccharides, refinement of crude polysaccharides, and separation of GAGs components. Analyzed for scientific research and industrial production, the principles and application conditions of traditional means and novel techniques to preparing GAGs are comprehensively emphasized, exploring the effects of different treatments on biological activity and structure. Current challenges and development trends are illuminated. This review aims to lay a foundation for the in-depth study of GAGs structure, bioactivity, and function, providing theoretical references for the comprehensive utilization of animal raw materials and the development of animal polysaccharide deep-processing industries.
Collapse
Affiliation(s)
- Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanpeng Xiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chang Xu
- Foreign Languages Teaching Department, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
4
|
Nafeez Ahmed A, Abdul Majeed S, Taju G, Suryakodi S, Mithra S, Abdul Wazith MJ, Kanimozhi K, Rajkumar V, Badhusha A, Sahul Hameed AS. Production of biologically active recombinant salmon calcitonin in Escherichia coli and fish cell line. Arch Microbiol 2025; 207:44. [PMID: 39862273 DOI: 10.1007/s00203-024-04216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Salmon calcitonin is a small peptide hormone synthesised and released by a specialised gland called ultimobranchial gland in fish. This hormone has been used to treat osteoporosis for over 50 years. The aim of this study was to compare the efficacy of five repeats of salmon calcitonin (5sCT) produced in two different hosts (bacteria and fish cell line). The 5sCT gene was synthesised and cloned in prokaryotic (pET32b(+)) and eukaryotic (pcDNA 3.1 + and pGenlenti) vectors. The pET32 b cloned plasmid was transformed into bacterial host BL 21 (DE3) and expression of recombinant 5sCT was induced by IPTG. The 5sCT cloned pcDNA 3.1 and pGenlenti plasmids were transfected using Lipofectamine 3000 in snubnose pompano fin (SPF) cell line. The expression of recombinant 5sCT protein in both hosts was confirmed by Western blot and ELISA using a polyclonal antibody raised against r-5sCT in mice. The results of Western blot and ELISA confirmed the expression of 5sCT protein in E. coli and SPF cells. The purified r-5cST expressed from both hosts was evaluated in mice via intramuscular injection at various dosages, and it was found that it significantly decreased serum calcium levels in mice when compared to normal mice.
Collapse
Affiliation(s)
- A Nafeez Ahmed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - S Abdul Majeed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India.
| | - G Taju
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - S Suryakodi
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - S Mithra
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - M J Abdul Wazith
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - K Kanimozhi
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - V Rajkumar
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - A Badhusha
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India
| | - A S Sahul Hameed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India.
| |
Collapse
|
5
|
Ata O, Bozdogan N, Mataraci CE, Kumcuoglu S, Kaya Bayram S, Tavman S. Extraction and characterization of valuable compounds from chicken sternal cartilage: Type II collagen and chondroitin sulfate. Food Chem 2025; 462:141023. [PMID: 39217742 DOI: 10.1016/j.foodchem.2024.141023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Type II collagen (Col II) and chondroitin sulfate (CS) are the main macromolecules in the extracellular matrix. This study investigated the characteristics of Col II and CS obtained from chicken sternal cartilage (CSC) via enzymatic hydrolysis for various treatment times. For Col II and CS, the highest efficiency of enzymatic hydrolysis was achieved after 24 and 6 h of treatment, respectively. The average molecular weights were α1 chain-130 kDa, β chain-270 kDa for Col II, and 80.27 kDa for CS. Fourier transform infrared spectroscopy revealed that the Col II samples maintained their triple-helical structure and that the predominant type of CS was chondroitin-4-sulfate. Scanning electron microscopy revealed that the Col II and CS samples possessed fibrillar and clustered structures, respectively. This study suggests that collagen and CS obtained from CSC can be used as promising molecules for application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ozge Ata
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Ceren Evrim Mataraci
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | | | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye.
| |
Collapse
|
6
|
Pruvost L, Gerlei M, Paris C, Velot É, Kahn CJF, Bianchi A, Linder M. Chondroitin Sulfate Nanovectorized by LC-PUFAs Nanocarriers Extracted from Salmon ( Salmo salar) by Green Process with Decreased Inflammatory Marker Expression in Interleukin-1β-Stimulated Primary Human Chondrocytes In Vitro Culture. Mar Drugs 2024; 22:571. [PMID: 39728145 DOI: 10.3390/md22120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes. The polar lipids, naturally rich in long-chain fatty acids (docosahexaenoic acid DHA C22:6 n-3 and eicosapentaenoic acid EPA C20:5 n-3), and the CS, primarily located in the nasal cartilage, were separated and concentrated before being characterized using various techniques to determine functional and lipid composition. These compounds were then used to formulate liposomes of 63 to 95 nm in size composed of 19.38% of DHA and 7.44% of EPA and encapsulating CS extract with a Δdi-4S/Δdi-6S ratio of 0.53 at 2 weight masses (10-30 kDa and >30 kDa) or CS standard all at two different concentrations. Liposomes were tested on human chondrocytes in inflamed conditions. Thus, compatibility tests, the expression of various inflammation markers at transcriptional and molecular levels, nitrites, and the amount of collagenase produced were analyzed. The results showed that CS, in synergy with the liposomes, played a positive role in combating chondrocyte inflammation even at a low concentration.
Collapse
Affiliation(s)
- Louis Pruvost
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | | | - Cédric Paris
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Émilie Velot
- CNRS, IMoPA, Université de Lorraine, F-54000 Nancy, France
| | | | - Arnaud Bianchi
- CNRS, IMoPA, Université de Lorraine, F-54000 Nancy, France
| | - Michel Linder
- LIBio, Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
7
|
Du Q, Song H, Yan C, Ai C, Wu S, Song S. Structural analysis and bioavailability study of low-molecular-weight chondroitin sulfate‑iron complexes prepared by photocatalysis-Fenton reaction. Carbohydr Polym 2024; 342:122435. [PMID: 39048209 DOI: 10.1016/j.carbpol.2024.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Increasing studies focus on depolymerization of chondroitin sulfate (CS) to enhance its biological activities. In the present study, low-molecular-weight chondroitin sulfate (LMWCS)‑iron complexes were obtained by photocatalysis-Fenton reaction. After degradation with the optimal condition of 0.25 % (w/v) TiO2, 10 mM FeSO4, and 400 mM H2O2 for 0, 15, and 60 min, the average relative molecular weights of CS were reduced to 4.77, 2.47, and 1.21 kDa, respectively. Electron paramagnetic resonance and free radical capture test identified •OH, •O2-, and h+ in the photocatalysis-Fenton system, among them h+ was the major contributor for CS degradation. The structures of degradation products were analyzed by UV, CD, XRD, SEM-EDS, and NMR, and the results indicated that CS chelated iron with its carboxyl and sulfate groups, leading to changes in conformation and microtopography. Then 10 oligosaccharides were identified in the degradation products using HPLC-MSn and the depolymerization mechanism was proposed. Furthermore, iron release was observed in simulated gastrointestinal digestion of LMWCS‑iron complexes. Notably, the everted gut sac experiment demonstrated that LMWCS‑iron complex possessed 3.75 times higher iron absorption than FeSO4 (p < 0.01) and 12.60 times higher CS absorption than original CS (p < 0.0001). In addition, LMWCS‑iron exhibited stronger in vitro antioxidant activity than CS.
Collapse
Affiliation(s)
- Qianqian Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Haoran Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Sitong Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
8
|
Bougatef H, Volpi N, Ben Amor I, Capitani F, Maccari F, Gargouri J, Sila A, Bougatef A. Chondroitin sulfate from heads of corb: Recovery, structural analysis and assessment of anticoagulant activity. Carbohydr Res 2024; 541:109163. [PMID: 38805806 DOI: 10.1016/j.carres.2024.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
In this study, glycosaminoglycans (GAGs) were extracted from corb (Sciaena umbra) heads and thoroughly examined for their structure. Through cellulose acetate electrophoresis, the GAGs were identified as chondroitin sulfate (CS), with a recovery yield of 10.35 %. The CS exhibited notable characteristics including a high sulfate content (12.4 %) and an average molecular weight of 38.32 kDa. Further analysis via 1H NMR spectroscopy and SAX-HPLC revealed that the CS primarily consisted of alternating units predominantly composed of monosulfated disaccharides at positions 6 and 4 of GalNAc (52.6 % and 38.8 %, respectively). The ratio of sulfate groups between positions 4 and 6 of GalNAc (4/6 ratio) was approximately 0.74, resulting in an overall charge density of 0.98. Thermal properties of the CS were assessed using techniques such as differential scanning calorimetry and thermogravimetric analysis. Notably, the CS demonstrated concentration-dependent prolongation of activated partial thromboplastin time (aPTT) and thrombin time (TT) while showing no effect on platelet function. At 200 μg/mL, aPTT and TT coagulation times were 1.4 and 3.7 times faster than the control, respectively. These findings suggest that CS derived from corb heads holds promise as an anticoagulant agent for therapy, although further clinical investigations are necessary to validate its efficacy.
Collapse
Affiliation(s)
- Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Ikram Ben Amor
- Sfax Regional Blood Transfusion Center, El-Ain Road Km 0.5, 3003, Sfax, Tunisia
| | - Federica Capitani
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Jalel Gargouri
- Laboratory of Hematology, Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029, Sfax, Tunisia
| | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, 2100, Gafsa, Tunisia
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia; High Institute of Biotechnology of Sfax, University of Sfax, Sfax, 3038, Tunisia.
| |
Collapse
|
9
|
Shi C, Deng Y, An X, Chen Y, Lv X, Liu Q. Extraction, Physicochemical Properties, and In Vitro Antioxidant Activities of Chondroitin Sulfate from Bovine Nose Cartilage. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6328378. [PMID: 38800764 PMCID: PMC11126348 DOI: 10.1155/2024/6328378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/31/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Beef is an important high-nutrition livestock product, and several byproducts, such as bovine cartilage, are produced during slaughter. To effectively utilize these agricultural and pastoral byproducts, combined (trypsin-papain) enzymolysis and cetylpyridine chloride purification methods were used to obtain chondroitin sulfate (CS) from the nasal cartilage of Shaanxi Yellow cattle. The effects of pH, temperature, and time on the CS yield during enzymatic hydrolysis were investigated, and the CS extraction process was optimized using response surface methodology. The best yield of CS was 21.62% under the optimum conditions of pH 6.51, temperature of 64.53°C, and enzymolysis time of 19.86 h. The molecular weight of CS from Shaanxi cattle nasal cartilage was 89.21 kDa, glucuronic acid content was 31.76 ± 0.72%, protein content was 1.12 ± 0.03%, and sulfate group content was 23.34 ± 0.08%. The nasal cartilage CS of the Yellow cattle showed strong DPPH•, •OH, and ABTS+• radical scavenging abilities and ferrous reduction ability in the experimental concentration range. This study could contribute to "turn waste into treasure" and improve the comprehensive utilization of regional characteristic biological resources.
Collapse
Affiliation(s)
- Chan Shi
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxuan Deng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xin An
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuan Chen
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xingang Lv
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
10
|
Pang HL, Lu H, Liu P, Zhang YT, Zhang LT, Ren Q. A chondroitin sulfate purified from shark cartilage and bovine serum albumin interaction activity. Int J Biol Macromol 2024; 260:129499. [PMID: 38262829 DOI: 10.1016/j.ijbiomac.2024.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Chondroitin sulfate (CS) was extracted and purified from shark cartilage, and its interaction with bovine serum albumin (BSA) were studied. The content of chondroitin sulfate in shark cartilage was 29.97 % using the 1,9-dimethyl-methylene blue method. The molecular weight of CS was determined to be 62.464 kDa by high-performance gel permeation chromatography. UV and FT-IR spectroscopy identified the characteristics of CS and its functional group information. NMR spectroscopy and disaccharide derivatization revealed that CS was predominantly composed of disulfated disaccharides, specifically ΔDi4,6S. Fluorescence quenching experiments indicated that the interaction between CS and BSA exhibited static quenching, with a binding site number of 1. The binding process was primarily mediated by van der Waals forces and hydrogen bonds. Furthermore, synchronous and 3D fluorescence spectroscopy demonstrated that CS had minimal impact on the polarity and hydrophobicity of the microenvironment surrounding Tyr and Trp residues. UV-vis absorption and circular dichroism (CD) spectroscopy demonstrated the altered structure of BSA. The molecular docking analysis revealed that CS formed hydrogen bonds and salt bridges with BSA, predominantly binding to the IIA substructure domain of BSA. Investigating the interaction between CS and BSA holds the potential for enhancing its applications in drug delivery and tissue engineering endeavors.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Han Lu
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Peng Liu
- Rizhao Science and Technology Innovation Service Center, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Li-Tao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
11
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
12
|
M. E. Elkhalifa A, Ali SI, Nabi SU, Bashir I, Taifa S, Rakhshan R, Shah IH, Mir MA, Malik M, Ramzan Z, Nazar M, Bashir N, Ahad S, Khursheed I, Elamin E, Bazie EA, Alzerwi NA, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alsultan A, Alzahrani AM. Modulation of immune cum inflammatory pathway by earthworm granulation tissue extract in wound healing of diabetic rabbit model. Heliyon 2024; 10:e24909. [PMID: 38333811 PMCID: PMC10850419 DOI: 10.1016/j.heliyon.2024.e24909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Regeneration is a rare occurrence in the animal kingdom, but the earthworm stands out as a remarkable example of this phenomenon. Recent research has highlighted the promising wound healing properties of extracts derived from earthworms. Therefore, we propose that earthworm granulation tissue extract (EGTE) may facilitate wound healing by regulating immune responses in a rabbit diabetic wound model. Electron microscopy reveals that 70 % EGTE possesses noteworthy porosity with spherical to irregularly oval configuration. Gas chromatography-mass spectrometry (GC-MS) Characterization of EGTE revealed higher levels of ergosta-5,7,22-trien-3-ol, (3. beta.,22E). In-Vitro studies revealed significant anti-oxidant, anti-inflammatory and anti-bacterial properties in dose dependent manner. Likewise, cytotoxicity assessments reveal that 70 % EGTE exhibits minimal harm to cells while displaying substantial antioxidant and anti-inflammatory activities. For In-Vivo studies excision wounds were created on the dorsal regions of the experimental animals and were divided as Group I (50 % EGTE), Group II (70 % EGTE), Group III (vehicle) and Group IV (distilled water). Over a 21-day observation period 70 % EGTE facilitated the early healing of wounds in the experimental animals, evident through prompt wound closure, granulation tissue formation, increased DNA content, enhanced tensile strength of the wound area and enhanced the expression/synthesis of wound healing markers/proteins. From these results it can be postulated that EGTE accelerates wound healing by immune modulation, dampening of inflammatory pathway and enhanced expression of growth markers. Henceforth making it promising candidate for therapeutic use in diabetic wound healing.
Collapse
Affiliation(s)
- Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Imran Bashir
- Department of Sheep Husbandry, Srinagar, Jammu & Kashmir, 190006, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Mehak Nazar
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, 191201, Nunar, Ganderbal, Jammu & Kashmir, India
| | - Elham Elamin
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Nasser A.N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City in Riyadh, Makkah Al Mukarramah Rd, As Sulimaniyah, Saudi Arabia
| | - Fares Rayzah
- Department of Surgery, Aseer Central Hospital, Abha, Saudi Arabia
| | - Yaser Baksh
- Department of Surgery, Al-Iman General Hospital, Riyadh, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed M. Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Yang B, Yang C, Liu R, Sui W, Zhu Q, Jin Y, Wu T, Zhang M. The Relationship between Preparation and Biological Activities of Animal-Derived Polysaccharides: A Comprehensive Review. Foods 2024; 13:173. [PMID: 38201201 PMCID: PMC10779202 DOI: 10.3390/foods13010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Polysaccharides are biomolecules found in microorganisms, plants, and animals that constitute living organisms. Glycosaminoglycans, unique acidic polysaccharides in animal connective tissue, are often combined with proteins in the form of covalent bonds due to their potent biological activity, low toxicity, and minimal side effects, which have the potential to be utilized as nutrition healthcare and dietary supplements. Existing studies have demonstrated that the bioactivity of polysaccharides is closely dependent on their structure and chain conformation. The characteristic functional groups and primary structure directly determine the strength of activity. However, the relationship between structure and function is still unclear, and the target and mechanism of action are not fully understood, resulting in limited clinical applications. As a result, the clinical applications of these polysaccharides are currently limited. This review provides a comprehensive summary of the extraction methods, structures, and biological activities of animal-derived polysaccharides that have been discovered so far. The aim is to promote developments in animal active polysaccharide science and provide theoretical support for exploring other unknown natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (B.Y.); (C.Y.); (R.L.); (W.S.); (Y.J.); (M.Z.)
| | | |
Collapse
|
14
|
Chikha SB, Bougatef H, Capitani F, Ben Amor I, Maccari F, Gargouri J, Sila A, Volpi N, Bougatef A. Composition and Anticoagulant Potential of Chondroitin Sulfate and Dermatan Sulfate from Inedible Parts of Garfish ( Belone belone). Foods 2023; 12:3887. [PMID: 37959006 PMCID: PMC10647378 DOI: 10.3390/foods12213887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Glycosaminoglycans (GAGs) play a crucial role due to their significant biomedical functions. Chondroitin sulfate (CS) and dermatan sulfate (DS), the main representative family of GAGs, were extracted and purified from garfish (Belone belone) by-products, i.e., skin (GSB), bones (GCB), and heads (GHB), and their composition and anticoagulant activity were investigated. CS/DS were purified by ion-exchange chromatography with yields of 8.1% for heads, 3.7% for skin, and 1.4% for bones. Cellulose acetate electrophoresis was also explored for analyzing the extracted CS/DS. Interestingly, GHB, GSB, and GCB possessed sulfate contents of 21 ± 2%, 20 ± 1%, and 20 ± 1.5%, respectively. Physico-chemical analysis showed that there were no significant differences (p > 0.05) between the variances for sulfate, uronic acid, and total sugars in the GAGs extracted from the different parts of fish. Disaccharide analysis by SAX-HPLC showed that the GSB and GCB were predominately composed of ΔDi-4S [ΔUA-GalNAc 6S] (74.78% and 69.22%, respectively) and ΔDi-2,4S [ΔUA2S-GalNAc 4S] (10.92% and 6.55%, respectively). However, the GHB consisted of 25.55% ΔDi-6S [ΔUA-GalNAc 6S] and 6.28% ΔDi-2,6S [ΔUA2S-GalNAc 4S]. Moreover, classical anticoagulation tests were also used to measure their anticoagulant properties in vitro, which included the activated partial thromboplastin time, prothrombin time, and thrombin time. The CS/DS isolated from garfish by-products exhibited potent anticoagulant effects. The purified CS/DS showed exceptional anticoagulant properties according to this research and can be considered as a new agent with anticoagulant properties.
Collapse
Affiliation(s)
- Sawssen Ben Chikha
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
| | - Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
| | - Federica Capitani
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Ikram Ben Amor
- Sfax Regional Blood Transfusion Center, El-Ain Road km 0.5, Sfax 3003, Tunisia;
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy; (F.M.); (N.V.)
| | - Jalel Gargouri
- Laboratory of Hematology, Medical Faculty of Sfax, University of Sfax, Magida Boulila Avenue, Sfax 3029, Tunisia;
| | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
- Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2100, Tunisia
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy; (F.M.); (N.V.)
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (S.B.C.); (H.B.); (A.S.)
- High Institute of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| |
Collapse
|
15
|
Hu S, Zhu H, Chen S, Wan X, Liu Y, Ren Z, Gao S. Structural Characterization and Effects on Insulin Resistance of a Novel Chondroitin Sulfate from Halaelurus burgeri Skin. Mar Drugs 2023; 21:md21040221. [PMID: 37103360 PMCID: PMC10142156 DOI: 10.3390/md21040221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Several studies have isolated chondroitin sulphate (CHS) from sharks’ jaws or cartilage. However, there has been little research on CHS from shark skin. In the present study, we extracted a novel CHS from Halaelurus burgeri skin, which has a novel chemical structure and bioactivity on improvement in insulin resistance. Results using Fourier transform–infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance spectroscopy (1H-NMR), and methylation analysis showed that the structure of the CHS was [4)-β-D-GlcpA-(1→3)-β-D-GlcpNAc-(1→]n with 17.40% of sulfate group concentration. Its molecular weight was 238.35 kDa, and the yield was 17.81%. Experiments on animals showed that this CHS could dramatically decrease body weight, reduce blood glucose and insulin levels, lower lipid concentrations both in the serum and the liver, improve glucose tolerance and insulin sensitivity, and regulate serum-inflammatory factors. These results demonstrated that the CHS from H. burgeri skin has a positive effect in reducing insulin resistance because of its novel structure, which provides a significant implication for the polysaccharide as a functional food.
Collapse
|
16
|
Waiprib Y, Ingrungruengluet P, Worawattanamateekul W. Nanoparticles Based on Chondroitin Sulfate from Tuna Heads and Chitooligosaccharides for Enhanced Water Solubility and Sustained Release of Curcumin. Polymers (Basel) 2023; 15:polym15040834. [PMID: 36850119 PMCID: PMC9965308 DOI: 10.3390/polym15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain and an incubation time of 48 h resulted in a degree of hydrolysis of 93.75 ± 2.94% and a CS content of 59.53 ± 1.77 mg/100 g. The FTIR spectra of extracted CS products exhibited identical functional groups found in commercially available CS. The molecular weights of CS extracted from skipjack and yellowfin tuna heads were 11.0 kDa and 7.7 kDa, respectively. Subsequently, a CH:CS ratio of 3:2 for CS and chitooligosaccharides (CH) was chosen as the optimal ratio for the preparation of spherical nanoparticles, with %EE, mean particle size, PDI, and zeta potential values of 50.89 ± 0.66%, 128.90 ± 3.29 nm, 0.27 ± 0.04, and -12.47 ± 2.06, respectively. The CU content was enhanced to 127.21 ± 1.66 μg/mL. The release of CU from this particular nanosystem involved mainly a drug diffusion mechanism, with a burst release in the first 3 h followed by a sustained release of CU over 24 h. The DPPH and ABTS scavenging activity results confirmed the efficient encapsulation of CU into CHCS nanoparticles. This study will provide a theoretical basis for CS derived from tuna head cartilages to be used as a functional component with specific functional properties in food and biomedical applications.
Collapse
Affiliation(s)
- Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-814592125
| | | | | |
Collapse
|
17
|
Krishnamoorthi R, Anbazhagan R, Thankachan D, Thuy Dinh VT, Tsai HC, Lai JY, Wang CF. Antiblood Cell Adhesion of Mussel-Inspired Chondroitin Sulfate- and Caffeic Acid-Modified Polycarbonate Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:717-727. [PMID: 36584671 DOI: 10.1021/acs.langmuir.2c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We fabricated a mussel-inspired hemocompatible polycarbonate membrane (PC) modified by the cross-linking of chondroitin sulfate and caffeic acid polymer using CA-CS via a Schiff base and Michael addition reaction and named it CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with a water contact angle of 0° and a negative surface charge with a zeta potential of -32 mV. The antiadhesion property of the CA-CS-modified PC membrane was investigated by enzyme-linked immunosorbent assay (ELISA), using human plasma protein fibrinogen adsorption studies, and proved to have excellent antiadhesion properties, because of the lower fibrinogen adsorption. In addition, the CA-CS-PC membrane also shows enhanced hemocompatibility. Finally, blood cell attachment tests of the CA-CS-PC membrane were observed by CLSM and SEM, and the obtained results proved that CA-CS-PC effectively resisted cell adhesion, such as platelets and leucocytes. Therefore, this work disclosed a new way to design a simple and versatile modification of the membrane surface by caffeic acid and chondroitin sulfate and apply it for cell adhesion.
Collapse
Affiliation(s)
- Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Darieo Thankachan
- Department of materials science and engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Van Thi Thuy Dinh
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 320, Taiwan
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
18
|
Zhao M, Qin Y, Fan Y, Wang X, Yi H, Cui X, Li F, Wang W. Structural Characterization and Glycosaminoglycan Impurities Analysis of Chondroitin Sulfate from Chinese Sturgeon. Polymers (Basel) 2022; 14:polym14235311. [PMID: 36501703 PMCID: PMC9736423 DOI: 10.3390/polym14235311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chinese sturgeon was an endangered cartilaginous fish. The success of artificial breeding has promoted it to a food fish and it is now beginning to provide a new source of cartilage for the extraction of chondroitin sulfate (CS). However, the structural characteristics of sturgeon CS from different tissues remain to be determined in more detail. In this study, CSs from the head, backbone, and fin cartilage of Chinese sturgeon were individually purified and characterized for the first time. The molecular weights, disaccharide compositions, and oligosaccharide sulfation patterns of these CSs are significantly different. Fin CS (SFCS), rich in GlcUAα1-3GalNAc(4S), has the biggest molecular weight (26.5 kDa). In contrast, head CS (SHCS) has a molecular weight of 21.0 kDa and is rich in GlcUAα1-3GalNAc(6S). Most features of backbone CS (SBCS) are between the former two. Other glycosaminoglycan impurities in these three sturgeon-derived CSs were lower than those in other common commercial CSs. All three CSs have no effect on the activity of thrombin or Factor Xa in the presence of antithrombin III. Hence, Chinese sturgeon cartilage is a potential source for the preparation of CSs with different features for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Mei Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Yong Qin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Ying Fan
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266071, China
| | - Xu Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Haixin Yi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Xiaoyu Cui
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| |
Collapse
|
19
|
Wang K, Qi L, Zhao L, Liu J, Guo Y, Zhang C. Degradation of chondroitin sulfate: Mechanism of degradation, influence factors, structure-bioactivity relationship and application. Carbohydr Polym 2022; 301:120361. [PMID: 36446498 DOI: 10.1016/j.carbpol.2022.120361] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
|