1
|
Guo P, Zhang W, Zhao P, Lv X, Qu A, Liang W, Hou H, Li Y, Wu Z. Isobavachalcone-loaded electrospun polycaprolactone/gelatin nanofibers for antibacterial and antioxidant applications. Biomed Mater 2025; 20:025035. [PMID: 40017021 DOI: 10.1088/1748-605x/adb8b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Antibacterial nanofibers have been widely used in the fields of biomedicine and food packaging fields. To overcome existing antibiotic resistance, this study utilized isobavachalcone (IBC), a natural compound with antibacterial and antioxidant properties, combined with polycaprolactone (PCL) and gelatin (GEL) to develop an electrospun nanofibrous antibacterial membrane. Scanning electron microscopy (SEM) analysis revealed a uniform and smooth surface structure of the nanofiber. Fourier transform infrared spectroscopy and x-ray diffraction confirmed the interactions among the components of the nanofibrous membrane PCL/GEL/IBC (PGI). Thermogravimetric analysis and contact angle measurements demonstrated the thermal stability and hydrophilic nature. Additionally, the mechanical properties of PGI membrane were that the elongation at break increased to 19.9% and the tensile strength to 2.9 MPa.In vitrorelease studies indicated at least 48% release rate of IBC from the PGI nanofibrous membrane in 12 h, and release period up to 14 d. Antioxidant results revealed PGI membranes had fine abilities for scavenging free radical. The elimination of over 99% ofStaphylococcus aureusand elimination of 54%Candida albicansdemonstrated the antibacterial capacities of the PGI membrane, indicating its potential as antibacterial and antioxidant materials. Subsequent faster wound healing, lower oxidative damage for 4-HNE and 8-OHdG, further demonstrated that PGI can reduce oxidative damage at the wound and promote wound healing. These findings also suggest the potential of PGI in the field of tissue engineering.
Collapse
Affiliation(s)
- Peibo Guo
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
- KeyLaboratory of Agricultural Products Low Carbon Cold Chain, Ministry of Agriculture and Rural Affairs, Tianjin 300134, People's Republic of China
| | - Pei Zhao
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Huijing Hou
- School of Biological and Environmental, Tianjin Vocational Institute, Tianjin 300410, People's Republic of China
| | - Ying Li
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
- KeyLaboratory of Agricultural Products Low Carbon Cold Chain, Ministry of Agriculture and Rural Affairs, Tianjin 300134, People's Republic of China
| |
Collapse
|
2
|
El-Aassar MR, Ibrahim OM, Albogmi RG, Hussein MF, Alsirhani AM, Rafea MA, Zaki MEA, Hassan HMA, Agwa MM. Capsaicin/silica-infused polygalacturonic acid/polyvinyl alcohol nano-matrix for enhanced wound healing in skin injuries. Int J Biol Macromol 2024; 282:137319. [PMID: 39515720 DOI: 10.1016/j.ijbiomac.2024.137319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Wound healing is a complex physiological process, demanding advanced strategies for efficient tissue regeneration. To address this, we developed a novel nanofibrous matrix composed of polygalacturonic acid (PGA), polyvinyl alcohol (PVA), capsaicin, and zinc-doped mesoporous silica (Zn/MCM-41). This copolymeric matrix offers enhanced mechanical stability, controlled drug release, and improved cellular adhesion and proliferation, leading to effective tissue regeneration. Infusing capsaicin/Zn-MCM-41 confers synergistic advantages, including accelerated wound closure, diminished inflammation, and enhanced tissue regeneration, culminating in superior wound healing outcomes. Comprehensive physicochemical characterization of the nanofiber was conducted, employing techniques such as EDS, EDX, XRD, FESEM, HRTEM, FTIR, BET, TGA, DSC and Zeta potential, confirming the successful synthesis of Zn/MCM-41 at the nanoscale, exhibiting uniform porosity, colloidal stability, and thermal resilience. In vivo quantitative assessment demonstrates a significant acceleration in wound healing facilitated by the composite nanofibers. Furthermore, the incorporation of capsaicin into Zn/MCM-41 augments the wound healing process, as corroborated by histological evaluations. In summary, our investigation introduces an advanced composite nanofiber formulation that promotes accelerated wound healing quantitatively through the synergistic amalgamation of PVA, PGA, capsaicin, and Zn/MCM-41. The demonstrated efficacy of the nanofibers underscores their potential in translational regenerative medicine and wound healing applications.
Collapse
Affiliation(s)
- Mohamed R El-Aassar
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| | - Omar M Ibrahim
- Department of Medicine and McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Raed G Albogmi
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Modather F Hussein
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed Abdel Rafea
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623 Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623 Riyadh, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Sadat Hosseini S, Hosseini SH, Hajizade A. Preparation of graft copolymer of chitosan-poly ortho-toluidine for antibacterial properties. Heliyon 2024; 10:e33960. [PMID: 39055789 PMCID: PMC11269849 DOI: 10.1016/j.heliyon.2024.e33960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
The combination polymers or copolymers have new and combined properties and increase the efficiency of the new polymer. Biopolymers are biodegradable and can play the role of biocompatible and biodegradable in composite polymers. Therefore, poly ortho-toluidine was grafted on chitosan (Cs-g-POT) by chemical and electrochemical polymerization methods. Cs-g-POT was characterized by FTIR, UV-visible, and 1H NMR spectroscopy techniques. The thermal behaviors of the copolymer were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The images of the surface of the copolymer obtained from imaging SEM confirm the successful attachment of POT on chitosan and indicate that the graft polymerization has been successfully performed with both methods. The percentage and efficiency of engraftment were carefully measured and reported. The electrical conductivity of Cs-g-POT was measured by the four-point method and the conductivity was 9.1 × 10-4 S/cm. The copolymer's antibacterial property was studied on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa as a common bacterium in skin wounds. These studies were investigated using the disk diffusion and minimum inhibitory concentration (MIC) methods. In all tested concentrations the polymer could inhibit the growth of E. coli and P. aeruginosa significantly. However, it inhibited the growth of S. aureus in concentrations above 1 μg. Bacteria are adsorbed on the surface of the polymer by polar-polar and Van Der Waals interactions, where they undergo cell lysis by dopant and electron transfer, and eventually bacterial cell death. Due to its scaffolding properties, this polymer will have a very good use in tissue and bone repair as well as anti-cancer drugs.
Collapse
Affiliation(s)
- Sama Sadat Hosseini
- Department of Veterinary, Faculty of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Abbas Hajizade
- Department of Chemistry, Nika Pooyesh Industrial Research Institute, Tehran, Iran
| |
Collapse
|
4
|
El-Sayed GM, Agwa MM, Emam MTH, Kandil H, Abdelhamid AE, Nour SA. Utilizing immobilized recombinant serine alkaline protease from Bacillus safensis lab418 in wound healing: Gene cloning, heterologous expression, optimization, and characterization. Int J Biol Macromol 2024; 270:132286. [PMID: 38735612 DOI: 10.1016/j.ijbiomac.2024.132286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Microbial proteases have proven their efficiency in various industrial applications; however, their application in accelerating the wound healing process has been inconsistent in previous studies. In this study, heterologous expression was used to obtain an over-yielding of the serine alkaline protease. The serine protease-encoding gene aprE was isolated from Bacillus safensis lab 418 and expressed in E. coli BL21 (DE3) using the pET28a (+) expression vector. The gene sequence was assigned the accession number OP610065 in the NCBI GenBank. The open reading frame of the recombinant protease (aprEsaf) was 383 amino acids, with a molecular weight of 35 kDa. The yield of aprEsaf increased to 300 U/mL compared with the native serine protease (SAFWD), with a maximum yield of 77.43 U/mL after optimization conditions. aprEsaf was immobilized on modified amine-functionalized films (MAFs). By comparing the biochemical characteristics of immobilized and free recombinant enzymes, the former exhibited distinctive biochemical characteristics: improved thermostability, alkaline stability over a wider pH range, and efficient reusability. The immobilized serine protease was effectively utilized to expedite wound healing. In conclusion, our study demonstrates the suitability of the immobilized recombinant serine protease for wound healing, suggesting that it is a viable alternative therapeutic agent for wound management.
Collapse
Affiliation(s)
- Ghada M El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Egypt
| | - Mona M Agwa
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Egypt
| | - Maha T H Emam
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Heba Kandil
- Polymers and Pigments Department, National Research Centre, Egypt
| | | | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Egypt
| |
Collapse
|
5
|
Saravanakumar K, Li Z, Kim Y, Park S, Keon K, Lee CM, Ahn G, Cho N. Fucoidan-coated cotton dressing functionalized with biomolecules capped silver nanoparticles (LB-Ag NPs-FN-OCG) for rapid healing therapy of infected wounds. ENVIRONMENTAL RESEARCH 2024; 246:118004. [PMID: 38145732 DOI: 10.1016/j.envres.2023.118004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The colonization of pathogenic microbes poses a significant clinical barrier that hinders the physiological wound-healing process. Addressing this challenge, we developed a novel wound dressing using a modified cotton gauze dressing coated with fucoidan and functionalized with silver nanoparticles (LB-Ag NPs-FN-OCG) for the rapid treatment of infected wounds. Firstly, phytochemical-capped LB-Ag NPs were synthesized and characterized using high performance liquid chromatography (HPLC), transmission electron microscopy (TEM), and zeta potential analysis. Secondly, different concentrations of LB-Ag NPs (0.1%-1%) were functionalized into FN-OCG to identify appropriate concentrations that were non-toxic with superior antibacterial activities. Screening assays, including antibacterial, hemolysis, chick chorioallantoic membrane (CAM) assay, and cytotoxicity assay, revealed that LB-Ag NPs (0.5%)-FN-OCG were non-toxic and demonstrated greater efficiency in inhibiting bacterial pathogens (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) and promoting fibroblast cell (NIH3T3) migration. In vivo assays revealed that LB-Ag NPs (0.5%)-FN-OCG treatment exhibited excellent wound healing activity (99.73 ± 0.01%) compared to other treatments by inhibiting bacterial colonization, maintaining the blood parameters, developing granulation tissue, new blood vessels, and collagen deposition. Overall, this study highlights that LB-Ag NPs (0.5%)-FN-OCG serve as a antibacterial wound dressing for infected wound healing applications.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - SeonJu Park
- Seoul Metropolitan Center, Korea Basic Science Institute (KBSI), Seoul, 03759, South Korea.
| | - Kim Keon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, South Korea.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
6
|
Mohammadi M, Abbaszadeh S, Nosrati-Siahmazgi V, Akbari M, Rezaei S, Musaie K, Eskandari MR, Santos HA, Poursina N, Shahbazi MA. Diatom-guided bone healing via a hybrid natural scaffold. Heliyon 2024; 10:e25878. [PMID: 38384564 PMCID: PMC10878915 DOI: 10.1016/j.heliyon.2024.e25878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Bone tissue engineering (BTE) involves the design of three-dimensional (3D) scaffolds that aim to address current challenges of bone defect healing, such as limited donor availability, disease transmission risks, and the necessity for multiple invasive surgeries. Scaffolds can mimic natural bone structure to accelerate the mechanisms involved in the healing process. Herein, a crosslinked combination of biopolymers, including gelatin (GEL), chitosan (CS), and hyaluronic acid (HA), loaded with diatom (Di) and β-sitosterol (BS), is used to produce GCH-Di-S scaffold by freeze-drying method. The GCH scaffold possesses a uniform structure, is biodegradable and biocompatible, and exhibits high porosity and interconnected pores, all required for effective bone repair. The incorporation of Di within the scaffold contributes to the adjustment of porosity and degradation, as well as effectively enhancing the mechanical property and biomineralization. In vivo studies have confirmed the safety of the scaffold and its potential to stimulate the creation of new bone tissue. This is achieved by providing an osteoconductive platform for cell attachment, prompting calcification, and augmenting the proliferation of osteoblasts, which further contributes to angiogenesis and anti-inflammatory effects of BS.
Collapse
Affiliation(s)
- Mina Mohammadi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Science, 45139-56111 Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Saman Rezaei
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Narges Poursina
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
7
|
Ruan H, Bek M, Pandit S, Aulova A, Zhang J, Bjellheim P, Lovmar M, Mijakovic I, Kádár R. Biomimetic Antibacterial Gelatin Hydrogels with Multifunctional Properties for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54249-54265. [PMID: 37975260 PMCID: PMC10694820 DOI: 10.1021/acsami.3c10477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
A facile novel approach of introducing dopamine and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide via dopamine-triggered in situ synthesis into gelatin hydrogels in the presence of ZnSO4 is presented in this study. Remarkably, the resulting hydrogels showed 99.99 and 100% antibacterial efficiency against Gram-positive and Gram-negative bacteria, respectively, making them the highest performing surfaces in their class. Furthermore, the hydrogels showed adhesive properties, self-healing ability, antifreeze properties, electrical conductivity, fatigue resistance, and mechanical stability from -100 to 80 °C. The added multifunctional performance overcomes several disadvantages of gelatin-based hydrogels such as poor mechanical properties and limited thermostability. Overall, the newly developed hydrogels show significant potential for numerous biomedical applications, such as wearable monitoring sensors and antibacterial coatings.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Marko Bek
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Jian Zhang
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | | | - Martin Lovmar
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- Welspect
AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Roland Kádár
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
8
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Zhang X, Wang J, Zhang Q, Fan Y, Zhang H, Ahmad K, Hou H. Distribution, Typical Structure and Self-Assembly Properties of Collagen from Fish Skin and Bone. Molecules 2023; 28:6529. [PMID: 37764305 PMCID: PMC10536406 DOI: 10.3390/molecules28186529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The source and type of collagen are crucial to its application, and both play a decisive role. Collagen was prepared from both tilapia skin and bone and skate skin and cartilage, named as CI-TI-s, CI-TI-b, CI-SK-s, and CII-SK-c, respectively. Types, distributions, structures, and self-assembly of collagen were studied. It showed that yellow collagen fibers from skin arranged longitudinally, while collagen fibers from skate cartilages displayed varying colors. CI-TI-s, CI-TI-b, CI-SK-s, and CII-SK-c showed the typical amide A (3316-3336 cm-1) and amide B (2929-2948 cm-1) in FTIR spectra. CI-TI-b and CII-SK-c showed 218-229 nm of UV absorption, 11.56-12.20 Å of d values in XRD, and 0.12-0.14 of Rpn values in CD. The thermal denaturation temperatures of CI-TI-s and CI-SK-s were 30.7 and 20.6 °C, respectively. The self-assembly of CI-TI-s and CII-SK-c were maximum at pH 7.2 and 7.4-7.6, respectively. The unique collagen peptides of tilapia and skate were GPSGPQGAVGATGPK, PAMPVPGPMGPMGPR, SPAMPVPGPMGPMGPR, GESGPSGPAGPAGPAGVR, SSGPPVPGPIGPMGPR, GLTGPIGVPGPPGAQGEK, GLAGPQGPR, and GLSGDPGVQGIK, respectively. The unique peptides of type I and type II collagen were GPTGEIGATGLAGAR, GVLGLTGMR, LGLTGMR, GEPGAAGPAGPSGPMGPR, SSGPPVPGPIGPMGPR, and GLSGDPGVQGIK, respectively.
Collapse
Affiliation(s)
- Xuening Zhang
- College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao 266404, China; (X.Z.); (J.W.); (Q.Z.); (K.A.)
| | - Jie Wang
- College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao 266404, China; (X.Z.); (J.W.); (Q.Z.); (K.A.)
| | - Qian Zhang
- College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao 266404, China; (X.Z.); (J.W.); (Q.Z.); (K.A.)
| | - Yan Fan
- College of Marine Life Sciences, Ocean University of China, Yushan Road, Qingdao 266003, China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs, Xinyue Road, Qingdao 266109, China;
| | - Khurshid Ahmad
- College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao 266404, China; (X.Z.); (J.W.); (Q.Z.); (K.A.)
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao 266404, China; (X.Z.); (J.W.); (Q.Z.); (K.A.)
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Qingdao Institute of Marine Bioresources for Nutrition and Health Innovation, Qingdao 266000, China
| |
Collapse
|
10
|
Elsherbini AM, Sabra SA, Rashed SA, Abdelmonsif DA, Haroun M, Shalaby TI. Electrospun polyvinyl alcohol/ Withania somnifera extract nanofibers incorporating tadalafil-loaded nanoparticles for diabetic ulcers. Nanomedicine (Lond) 2023; 18:1361-1382. [PMID: 37800462 DOI: 10.2217/nnm-2023-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Background: Impaired inflammation and vascularization are common reasons for delayed diabetic wound healing. Nanoparticles (NPs)-in-nanofibers composites can manage diabetic wounds. A multifunctional scaffold was developed based on tadalafil (TDF)-loaded NPs incorporated into polyvinyl alcohol/Withania somnifera extract nanofibers. Materials & methods: TDF-loaded NPs were prepared and fully characterized in terms of their physicochemical properties. Extract of ashwagandha was prepared and a blend composed of TDF-loaded NPs, herbal extract and polyvinyl alcohol was used to prepare the whole composite. Results: The whole composite exhibited improved wound closure in a diabetic rat model in terms of reduced inflammation and enhanced angiogenesis. Conclusion: Results suggest that this multifunctional composite could serve as a promising diabetic wound dressing.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Shimaa A Rashed
- Department of Botany& Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt 4 Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Hamza KH, El-Shanshory AA, Agwa MM, Abo-Alkasem MI, El-Fakharany EM, Abdelsattar AS, El-Bardan AA, Kassem TS, Mo X, Soliman HMA. Topically Applied Biopolymer-Based Tri-Layered Hierarchically Structured Nanofibrous Scaffold with a Self-Pumping Effect for Accelerated Full-Thickness Wound Healing in a Rat Model. Pharmaceutics 2023; 15:1518. [PMID: 37242760 PMCID: PMC10223825 DOI: 10.3390/pharmaceutics15051518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-β1 (TGF-β1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model.
Collapse
Affiliation(s)
- Kholoud H. Hamza
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; (K.H.H.); (A.A.E.-B.); (T.S.K.)
| | - Ahmed A. El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mohamed I. Abo-Alkasem
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Ali A. El-Bardan
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; (K.H.H.); (A.A.E.-B.); (T.S.K.)
| | - Taher S. Kassem
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt; (K.H.H.); (A.A.E.-B.); (T.S.K.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Hesham M. A. Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| |
Collapse
|
12
|
Construction of chitosan-based supramolecular biofilm material for wound dressing based on natural deep eutectic solvents. Int J Biol Macromol 2023; 236:123768. [PMID: 36812964 DOI: 10.1016/j.ijbiomac.2023.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/20/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Bacterial infection is still one of the main problems observed in the clinical process of wound healing, so the development of new multifunctional biocompatible materials is an urgent clinical need. A kind of supramolecular biofilm crosslinked by hydrogen bond between natural deep eutectic solvent and chitosan was studied and successfully prepared to reduce bacterial infection. Its killing rates of Staphylococcus aureus and Escherichia coli can reach 98.86 % ± 1.90 % and 99.69 % ± 0.53 %, and it can be degraded in both soil and water, showing excellent biocompatibility and biodegradability. In addition, the supramolecular biofilm material also has the UV barrier property, which can effectively avoid the secondary injury of UV to the wound. Interestingly, the cross-linking effect of hydrogen bond makes the biofilm have a more compact structure and rough surface, and gives the biofilm strong tensile properties. Overall, owing to these unique advantages, NADES-CS supramolecular biofilm has great potential for medical applications, laying the foundation for the realization of sustainable polysaccharide materials.
Collapse
|
13
|
Mirjalili F, Mahmoodi M. Controlled release of protein from gelatin/chitosan hydrogel containing platelet-rich fibrin encapsulated in chitosan nanoparticles for accelerated wound healing in an animal model. Int J Biol Macromol 2023; 225:588-604. [PMID: 36403766 DOI: 10.1016/j.ijbiomac.2022.11.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The physiological healing process is disrupted in many cases using the current wound healing procedures, resulting in delayed wound healing. Hydrogel wound dressings provide a moist environment to enhance granulation tissue and epithelium formation in the wound area. However, exudate accumulation, bacterial proliferation, and reduced levels of growth factors are difficulties of hydrogel dressings. Here, we loaded platelet-rich fibrin-chitosan (CH-PRF) nanoparticles into the gelatin-chitosan hydrogel (Gel-CH/CH-PRF) by solvent mixing method. Our goal was to evaluate the characteristics of hydrogel dressings, sustained release of proteins from the hydrogel dressing containing PRF, and reduction in the risk of infection by the bacteria in the wound area. The Gel-CH/CH-PRF hydrogel showed excellent swelling behavior, good porosity, proper specific surface area, high absorption of wound exudates, and proper vapor permeability rate (2023 g/m 2.day), which provided requisite moisture without dehydration around the wound area. Thermal behavior and the protein release from the hydrogels were investigated using simultaneous thermal analysis and the Bradford test, respectively. Most importantly, an excellent ability to control the release of proteins from the hydrogel dressings was observed. The high antimicrobial activity of hydrogel was confirmed using Gram-positive and Gram-negative bacteria. Due to the presence of chitosan in the hydrogels, the lowest scavenging capacity-50 value (5.82 μgmL-1) and the highest DPPH radical scavenging activity (83 %) at a concentration 25 μgmL-1 for Gel-CH/CH-PRF hydrogel were observed. Also, the hydrogels revealed excellent cell viability and proliferation. The wound healing process was studied using an in vivo model of the full-thickness wound. The wound closure was significantly higher on Gel-CH/CH-PRF hydrogel compared to the control group, indicating the highest epidermis thickness, and enhancing the formation of new granulation tissue. Our findings demonstrated that Gel-CH/CH-PRF hydrogel can provide an ideal wound dressing for accelerated wound healing.
Collapse
Affiliation(s)
- Fatemeh Mirjalili
- Department of Material Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, 8915813135, Iran; Department of Bioengineering, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
14
|
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels 2022; 8:gels8070393. [PMID: 35877478 PMCID: PMC9322947 DOI: 10.3390/gels8070393] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy;
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
| | - Gibson Stephen Nyanhongo
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
- Correspondence:
| |
Collapse
|