1
|
Kang Y, Cai D, Zhao D, Li X, Hu J, Chen S, Chen W, Li L. A novel dual-signal response Zn-MOF intelligent active label prepared from polyvinyl alcohol/starch for real-time visual monitoring shrimp freshness. Int J Biol Macromol 2025:143538. [PMID: 40316104 DOI: 10.1016/j.ijbiomac.2025.143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/11/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
With the increasing concern over food safety, the development of smart labels capable of visually monitoring food freshness in real-time has become increasingly urgent. In this study, a novel zinc-based metal-organic framework (Zn-MOF) was synthesized and incorporated into a poly(vinyl alcohol) and starch matrix to prepare PS@Zn-MOF composite films. The films demonstrated colorimetric and fluorescent dual-signal responsiveness, ammonia sensitivity, and antimicrobial properties. A comprehensive evaluation of the films revealed excellent mechanical properties, UV shielding ability, and water vapor barrier capabilities. Furthermore, the films exhibited color stability, with a ΔE value change of <2.4 after 40 days of exposure. When applied to monitor shrimp spoilage, the films shifted from yellow-brown to purple-red in daylight and from blue to violet fluorescence under UV light. The color difference and fluorescence intensity in both response modes were linearly correlated with TVB-N values. The shrimp packaging application demonstrated that the films effectively maintained shrimp freshness. These findings suggest that the dual-signal intelligent freshness monitoring system based on PS@Zn-MOF composite films presents a promising solution to food safety challenges.
Collapse
Affiliation(s)
- Yongfeng Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Center for Research on Engineering for Food Thermal Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Center for Aquatic Product Processing and Preservation Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Duhong Cai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Dandan Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiying Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Siwen Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqi Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Center for Research on Engineering for Food Thermal Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Center for Aquatic Product Processing and Preservation Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| |
Collapse
|
2
|
Subramaniyan V, Sellamuthu PS, Jarugala J, Sadiku ER. Effect of PVA-based films incorporated with postbiotics, flax seed mucilage and guar gum to enhance the postharvest quality of fig fruits. Food Chem 2025; 465:142018. [PMID: 39571449 DOI: 10.1016/j.foodchem.2024.142018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
Eco-friendly antimicrobial bio-composite films (BCF) were produced by using guar gum (GG), flax seed mucilage (FM) and polyvinyl alcohol (PVA), supplemented with cell-free supernatant (CFS) of Lactobacillus plantarum (L. p) and Lactobacillus delbrueckii (L. d) by the solvent casting technique. The BCF was categorized into: PVA, PVA + FM, PVA + GG, PVA + FM + GG, PVA + FM + CFS, PVA + GG + CFS, PVA + FM + GG + CFS. The film's mechanical, morphological, physical, and antimicrobial properties were characterised. The mechanical, and hydrophobic features of the BCF were increased with the incorporation of FM, GG, and these attributes were faintly decreased with the fusion of postbiotics in films. However, BCF with postbiotics exhibited antimicrobial activity and UV barrier and biodegradable traits, while BCF without postbiotics did not show any antimicrobial effect. According to the characterization study the fabricated PVA + FM + GG and PVA + FM + GG + CFS was employed as packaging material for fig fruit to prolong the shelf life. Overall, PVA + FM + GG + CFS-based packed fig fruits has prolonged shelf life of till 12 days.
Collapse
Affiliation(s)
- Vishnupriya Subramaniyan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Periyar Selvam Sellamuthu
- Department of Food Process Engineering, Postharvest Research Lab, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| | - Jayaramudu Jarugala
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Emmanuel Rotimi Sadiku
- Institute of Nanoengineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria West Campus, Pretoria, South Africa
| |
Collapse
|
3
|
Luan QY, Wang YS, Chen Y, Chen HH. Review on improvement of physicochemical properties of sodium alginate-based edible films. J Food Sci 2025; 90:e70016. [PMID: 39902914 DOI: 10.1111/1750-3841.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Sodium alginate (SA) is favored for its film-forming ability, biodegradability, and non-toxicity, often serving as a substrate for edible films. However, the application of SA-based edible films in the food industry is limited due to their inherent strong hydrophilicity and high brittleness. To enhance their physical and chemical properties, various exogenous compounds are frequently incorporated. This review summarizes the advancements in the physicochemical properties (mechanical, optical, thermal, hydrophobic, and barrier properties) of SA-based edible films over the past decade. It discusses the types of exogenous additives used and their effects on the properties of these films. Additionally, it highlights the applications of SA-based edible films enriched with functional compounds in areas such as food freshness detection, antioxidation, and antibacterial activity. It has been observed that the characteristics of SA-based edible films vary depending on the properties and structures of the exogenous compounds used, as well as their interactions with the SA matrix. SA-based edible films with functional additives demonstrate significant potential for extending food shelf life and enhancing freshness detection. However, challenges such as scalability, high production costs, and limited application scope still need to be addressed in future research.
Collapse
Affiliation(s)
- Qian-Yu Luan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yan Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
4
|
Zhao J, Ni Y, Tan L, Zhang W, Zhou H, Xu B. Recent advances in meat freshness "magnifier": fluorescence sensing. Crit Rev Food Sci Nutr 2024; 64:11626-11642. [PMID: 37555377 DOI: 10.1080/10408398.2023.2241553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
To address the serious waste of meat resources and food safety problems caused by the decrease in meat freshness due to the action of microorganisms and enzymes, a low-cost, time-saving and high-efficiency freshness monitoring method is urgently needed. Fluorescence sensing could act as a "magnifier" for meat freshness monitoring due to its ability to sense characteristic signal produced by meat spoilage. Here, the magnification mechanism of meat freshness via sensing the water activity, adenosine triphosphate, hydrogen ion, total volatile basic nitrogen, hydrogen sulfide, bioamines was comprehensively analyzed. The existing "magnifier" forms including paper chips, films, labels, arrays, probes, and hydrogels as well as the application in livestock, poultry and aquatic meat freshness monitoring were reviewed. Future research directions involving innovation of principles, visualization and quantification capabilities for various meats freshness were provided. By critically evaluating the potential and limitations, efficient and reliable meat freshness monitoring strategies wish to be developed for the post-epidemic era.
Collapse
Affiliation(s)
- Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| |
Collapse
|
5
|
Yao Y, Zhou W, Cai K, Wen J, Zhang X. Advances in the study of the biological activity of polysaccharide-based carbon dots: A review. Int J Biol Macromol 2024; 281:135774. [PMID: 39419681 DOI: 10.1016/j.ijbiomac.2024.135774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Carbon dots have attracted worldwide interest due to their customizable nature, luminescent properties, and exceptional biocompatibility. In particular, biomass-derived carbon dots have attracted attention for their environmentally friendly and cost-effective synthesis. Recent research looks into how polysaccharides can be used to make carbon dots. Using them as starting materials for nanomaterials has benefits in terms of structure, morphology, and doping elements. Although research has extensively examined the optical properties of carbon dots, their potential biological applications have not been thoroughly investigated. This review mainly summarises the cytotoxicity and biological functions of polysaccharide-based carbon dots (e.g. agar, alginate, cellulose, carrageenan, chitosan, chitosan, starch, gelatin, etc.), such as antioxidant, antibacterial and anti-tumor functions, highlighting the different scenarios of the methods of preparation of carbon dots. The applications of carbon dots in food, biomedical sciences, soil fertilization, and power generation are highlighted by reviewing the low toxicity of carbon dots with safety and biocompatibility in human contact. Finally, the importance and challenges of polysaccharide-based carbon dots and the prospects and research directions of polysaccharide-based carbon dots are explained by comparing them with other nanomaterials.
Collapse
Affiliation(s)
- Yihuan Yao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenzhao Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kaiyue Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaying Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianfei Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Mishra B, Panda J, Mishra AK, Nath PC, Nayak PK, Mahapatra U, Sharma M, Chopra H, Mohanta YK, Sridhar K. Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: A review. Int J Biol Macromol 2024; 279:135583. [PMID: 39270899 DOI: 10.1016/j.ijbiomac.2024.135583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The main goal of emerging food-packaging technologies is to address environmental issues and minimize their impact, while also guaranteeing food quality and safety for consumers. Bio-based polymers have drawn significant interest as a means to reduce the usage and environmental impact of petroleum-derived polymeric products. Therefore, this current review highlights on the biopolymer blends, various biodegradable bio-nanocomposites materials, and their synthesis and characterization techniques recently used in the smart food packaging industry. In addition, some insights on potential challenges as well as possibilities in future smart food packaging applications are thoroughly explored. Nanocomposite packaging materials derived from biopolymers have the highest potential for use in improved smart food packaging that possesses bio-functional properties. Nanomaterials are utilized for improving the thermal, mechanical, and gas barrier attributes of bio-based polymers while maintaining their biodegradable and non-toxic qualities. The packaging films that were developed exhibited enhanced barrier qualities against carbon dioxide, oxygen, and water vapour. Additionally, they demonstrated better mechanical strength, thermal stability, and antibacterial activity. More research is needed to develop and use smart food packaging materials based on bio-nanocomposites on a worldwide scale, while removing plastic packaging.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India
| | | | - Pinku Chandra Nath
- Department of Food Technology, Uttaranchal University, School of Applied and Life Sciences, Dehradun, Uttarakhand 248007, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Hitesh Chopra
- Department of Biosciences, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
7
|
Nesic A, Meseldzija S, Benavides S, Figueroa FA, Cabrera-Barjas G. Seaweed as a Valuable and Sustainable Resource for Food Packaging Materials. Foods 2024; 13:3212. [PMID: 39410246 PMCID: PMC11475904 DOI: 10.3390/foods13193212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Plastic food packaging causes massive pollution in the environment via resource extraction, gas emissions, and the enduring plastic waste accumulation. Hence, it is of crucial importance to discover sustainable alternatives in order to protect ecosystems and conserve precious resources. Recently, seaweed has been emerging as a promising sustainable solution to plastic pollution. Seaweed is a fast-growing marine plant that is abundant in tropical coastlines and requires minimal resources to cultivate. In addition, seaweed is rich in valuable polysaccharides such as alginate, fucoidan, carrageenan, agar, and ulva, which can be extracted and processed into biodegradable films, coatings, and wraps. This ability allows the creation of an alternative to plastic food packages that are completely biodegradable, made from renewable resources, and do not linger in landfills or oceans for centuries. In this context, this review discusses the main classification of seaweed, their production and abundance in the world, and provides a summary of seaweed-based materials developed in the last 2-5 years for potential usage in the food packaging sector.
Collapse
Affiliation(s)
- Aleksandra Nesic
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12–14, 11000 Belgrade, Serbia;
| | - Sladjana Meseldzija
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12–14, 11000 Belgrade, Serbia;
| | - Sergio Benavides
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| | - Fabián A. Figueroa
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4060002, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| |
Collapse
|
8
|
Pu Y, Chen L, Jiang W. Antimicrobial guar gum films optimized with Pickering emulsions of zein-gum arabic nanoparticle-stabilized composite essential oil for food preservation. Int J Biol Macromol 2024; 278:134911. [PMID: 39173796 DOI: 10.1016/j.ijbiomac.2024.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
In this study, composite essential oil Pickering emulsion stabilized with zein-gum arabic (GA) nanoparticles (ZGCEO) was prepared to improve the characteristics of guar gum (GG) films. ZGCEO exhibited commendable stability and compatibility with GG, while leading to a noticeable improvement in the light barrier (from 3.98 A mm-1 to 17.09 A mm-1) and water vapor barrier characteristics of GG films, concomitantly mitigating their hydrophilic nature, with decreasing moisture content (from 17.70 % to 10.50 %), water solubility (from 84.41 % to 71.79 %), water vapor permeability (from 5.64 × 10-11 g (m s Pa)-1 to 4.97 × 10-11 g (m s Pa)-1), and an increasing water contact angle (from 69.8° to 94.2°). The addition of 2 % ZGCEO yielded a notable increase in the tensile strength of the GG-ZGCEO films, but the elongation at break decreased with increasing ZGCEO concentration. Moreover, the incorporated ZGCEO demonstrated outstanding antioxidant and antimicrobial characteristics, featuring a slow-release behavior of essential oil. The GG-ZGCEO coating also showed an excellent preservation effect in pork and "Huangguan" pears during storage. Collectively, we substantiated the efficacy of ZGCEO in augmenting the functional attributes of GG films, thereby establishing their potential utility as antimicrobial packaging materials conducive to food preservation.
Collapse
Affiliation(s)
- Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
9
|
Guo M, Shen M, Zhu Y, Sogore T, Ding T. Ultra-small gold nanoparticles embedded cyclodextrin metal-organic framework composite membrane to achieve antibacterial and humidity-responsive functions. Carbohydr Polym 2024; 340:122200. [PMID: 38857994 DOI: 10.1016/j.carbpol.2024.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 06/12/2024]
Abstract
Cyclodextrin metal-organic framework (CD-MOF) is an edible and porous material that can serve as a template for synthesizing small-sized metal nanoparticles. However, its highly hydrophilic nature has limited its wider application. Herein, ultra-small gold nanoparticles (U-AuNPs) were loaded into CD-MOF to produce a composite material Au@CD-MOF. The CD-MOF was utilized as a template to control the size of the AuNPs. The synthesized Au@CD-MOF was easily dispersible in aqueous medium and its released U-AuNPs exhibited effective water dispersion stability within 120 days. Additionally, compared to gold nanoparticles prepared using traditional methods (T-AuNPs), the U-AuNPs exhibited superior antibacterial properties. Furthermore, hydrophilic Au@CD-MOF was incorporated into a hydrophobic polydimethylsiloxane (PDMS) matrix (Au@CD-MOF/PDMS) to achieve a humidity-responsive antibacterial function. The composite membrane exhibited remarkable responsiveness to humidity, showing almost no release of U-AuNPs at 0 % humidity. However, it exhibited approximately 89 % release within 1 h, and complete release of U-AuNPs was observed within 4 h under 100 % humidity. These findings highlight the successful preparation of a humidity-responsive antibacterial composite membrane, which has great potential applications in various scenarios, particularly in the field of antibacterial food packaging.
Collapse
Affiliation(s)
- Meimei Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Mofei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Yongheng Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Tahirou Sogore
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Dey B, Prabhakar MR, Jayaraman S, Gujjala LKS, Venugopal AP, Balasubramanian P. Biopolymer-based solutions for enhanced safety and quality assurance: A review. Food Res Int 2024; 191:114723. [PMID: 39059918 DOI: 10.1016/j.foodres.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The improper disposal of petroleum-based plastics has been associated with detrimental environmental consequences, such as the proliferation of microplastic pollution and increased emissions of greenhouse gases (GHGs). Consequently, biopolymers have emerged as a highly regarded alternative due to their environmental-friendly attributes and versatile range of applications. In response to consumer demands for safer food options, sustainable packaging, and escalating environmental concerns, the food sector is increasingly adopting biopolymers. Further, in the recent decade, the usage of active or functional biopolymers has evolved into smart biopolymers that can transmit real-time data to consumers. This review covers key topics such as antimicrobial and biodegradable packaging, edible coatings and films, incorporation of scavengers and bioactive substances that prolong the shelf life and guard against moisture and microbial contamination. The paper also discusses the development of edible cutlery as a sustainable substitute for plastic, the encapsulation of bioactive substances within biopolymers, 3-D food printing for regulated nutrition delivery and thickening and gelling agents that improve food texture and stability. It also discusses the integration of smart polymer functions, demonstrating their importance in guaranteeing food safety and quality, such as biosensing, pH and gas detection, antibacterial characteristics, and time-temperature monitoring. By shedding light on market trends, future scope, and potentialities, this review aims to elucidate the prospects of utilizing biopolymers to address sustainability and quality concerns within the food industry effectively.
Collapse
Affiliation(s)
- Baishali Dey
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Muhil Raj Prabhakar
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Sivaraman Jayaraman
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | | | - Arun Prasath Venugopal
- Department of Food Process Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India.
| |
Collapse
|
11
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
12
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
13
|
Chiu I, Ye H, Aayush K, Yang T. Intelligent food packaging for smart sensing of food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:215-259. [PMID: 39103214 DOI: 10.1016/bs.afnr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this contemporary era, with over 8 billion people worldwide, ensuring food safety has become more critical than ever. To address this concern, the introduction of intelligent packaging marks a significant breakthrough. Essentially, this innovation tackles the challenge of rapid deterioration in perishable foods, which is vital to the well-being of communities and food safety. Unlike traditional methods that primarily emphasize shelf-life extension, intelligent packaging goes further by incorporating advanced sensing technologies to detect signs of spoilage and contamination in real-time, such as changes in temperature, oxygen levels, carbon dioxide levels, humidity, and the presence of harmful microorganisms. The innovation can rely on various packaging materials like plastics, metals, papers, or biodegradable polymers, combined with sophisticated sensing techniques such as colorimetric sensors, time-temperature indicators, radio-frequency identification tags, electronic noses, or biosensors. Together, these elements form a dynamic and tailored packaging system. This system not only protects food from spoilage but also offers stakeholders immediate and adequate information about food quality. Moreover, the real-world application on seafood, meat, dairy, fruits, and vegetables demonstrates the feasibility of using intelligent packaging to significantly enhance the safety and shelf life of a wide variety of perishable goods. By adopting intelligent packaging for smart sensing solutions, both the food industry and consumers can significantly reduce health risks linked with contamination and reduce unnecessary food waste. This underscores the crucial role of intelligent packaging in modern food safety and distribution systems, showcasing an effective fusion of technology, safety, and sustainability efforts aimed at nourishing a rapidly growing global population.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Sangeetha UK, Sudhakaran N, Parvathy PA, Abraham M, Das S, De S, Sahoo SK. Coconut husk-lignin derived carbon dots incorporated carrageenan based functional film for intelligent food packaging. Int J Biol Macromol 2024; 266:131005. [PMID: 38522705 DOI: 10.1016/j.ijbiomac.2024.131005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Carbon dots (CDs) derived from sustainable natural feed-stocks like lignin have gained wide acceptance by virtue of their renewability and promising potential in intelligent sensing applications. The precursor lignin is isolated from agro-biomass waste, coconut husk through sodium hydroxide based extraction process. CDs are synthesised from amine functionalized lignin through solvothermal process and integrated into carrageenan biopolymer matrix (1, 2 and 3 wt%). The composite film with 2 wt% CDs (CARR2CD) showed optimum fluorescent emission intensity, excellent pH dependent fluorescent color change in the food pH range, reasonable tensile strength (46.50 ± 1.32 MPa) and 27 % increase in elongation at break. CDs imparted UV-light blocking properties (70 % UV-light) and enhanced hydrophobicity of the carrageenan matrix. CARR2CD film showed 84 % visible light transparency, 79 % reduction in oxygen transmittance rate (OTR), 81 % reduction in CO2 gas permeability and excellent antioxidant and antibacterial properties (against E. coli and S. aureus). As a practical application, the developed responsive packaging material is used to track pH change associated with milk spoilage via noticeable color change in fluorescent emission of the composite film. Thus, the developed responsive composite film paves a way for use as green and sustainable transparent intelligent food packaging material.
Collapse
Affiliation(s)
- U K Sangeetha
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nandhana Sudhakaran
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - P A Parvathy
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malini Abraham
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subrata Das
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata 700125, India
| | - Sushanta K Sahoo
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Qi J, Wang X, Zhang H, Liu X, Wang W, He Q, Guo F. Biopolymer Meets Nanoclay: Rational Fabrication of Superb Adsorption Beads from Green Precursors for Efficient Capture of Pb(II) and Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:766. [PMID: 38727360 PMCID: PMC11085593 DOI: 10.3390/nano14090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of "structure optimization design", environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (J.Q.); (X.W.); (H.Z.); (X.L.); (W.W.); (Q.H.)
| |
Collapse
|
16
|
Rahman S, Konwar A, Konwar AN, Dubey S, Ghosh MP, Boro B, Thakur D, Chowdhury D. Ag Nanoparticle Incorporated Guar Gum-Sodium Alginate-I-Carrageenan Tribiopolymer Blended Cloth Waste Lint Extracted Cellulose Nanocrystal Antimicrobial Composite Film. Biomacromolecules 2024; 25:1491-1508. [PMID: 38377554 DOI: 10.1021/acs.biomac.3c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A biopolymer-based formulation for robust and active food packaging material was developed. This material consisted of a blend of three biopolymers (guar gum-sodium alginate-i-carrageenan) reinforced by cellulose nanocrystals (CNC) alongside the integration of silver nanoparticles (AgNPs) with varying sizes. The CNC utilized in this process was derived from cloth waste lint (CWL) generated from a household cloth dryer machine. This CNC synthesis underwent a series of solvent treatments to yield the CNC used in the composite. CNC and AgNPs were incorporated into the tribiopolymeric blend matrix to construct a nanocomposite film that showed excellent tensile strength (∼90 MPa). The nanocomposite film also exhibited antimicrobial activity against Escherichia coli ATCC 25922 and Bacillus cereus MTCC 1272. In this report, it was demonstrated that the zone of inhibition against E. coli and B. cereus depends on the variation of size and amount of AgNPs inside the polymeric matrix. The practical applicability of such a film was also demonstrated by applying it to sliced bread and the enhancement of the shelf life of the raped bread was compared with a control. Thus, the guar gum-sodium alginate-i-carrageenan tribiopolymer blend with a cloth waste lint extracted cellulose nanocrystal composite film is antimicrobial, hence, an excellent candidate as an active packaging film.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Achyut Konwar
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam India
| | - Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Mritunjoy Prasad Ghosh
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Bitopan Boro
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| |
Collapse
|
17
|
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol 2024; 255:128197. [PMID: 37979757 DOI: 10.1016/j.ijbiomac.2023.128197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
It is essential to use environment-friendly, non-toxic, biodegradable and sustainable materials for various applications. Biopolymers are derived from renewable sources like plants, microorganisms, and agricultural wastes. Unlike conventional polymers, biopolymer has a lower carbon footprint and contributes less to greenhouse gas emission. All biopolymers are biodegradable, meaning natural processes can break them down into harmless products such as water and biomass. This property is of utmost importance for various sustainable applications. This review discusses different classifications of biopolymers based on origin, including plant-based, animal-based and micro-organism-based biopolymers. The review also discusses the desirable properties that are required in materials for their use as packaging material. It also discusses the different processes used in modifying the biopolymer to improve its properties. Finally, this review shows the recent developments taking place in using specifically animal origin-based biopolymer and its use in packaging material. It was observed that animal-origin-based biopolymers, although they possess unique properties however, are less explored than plant-origin biopolymers. The animal-origin-based biopolymers covered in this review are chitosan, gelatin, collagen, keratin, casein, whey, hyaluronic acid and silk fibroin. This review will help in renewing research interest in animal-origin biopolymers. In summary, biopolymer offers a sustainable and environment-friendly alternative to conventional polymers. Their versatility, biocompatibility will help create a more sustainable future.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India
| | - Jahnabi Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
18
|
Su Y, Chen Y, Qin Y, Qin R, Ahmad A, Yao S. Pectin extracted from Premna Microphylla Turcz for preparation of a "sandwich" multi-property sensor film involved with deep eutectic solvent. Int J Biol Macromol 2023; 253:127171. [PMID: 37788731 DOI: 10.1016/j.ijbiomac.2023.127171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
An acidic deep eutectic solvent (DES, choline chloride/citric acid) was used to efficiently extract edible pectin from Premna microphylla Turcz (PMTP) and further prepare the film sensor with the purpose of "four birds with one stone" with the roles of extractant, coalescent, conductivity promoter and bacteriostatic agent. The optimized extraction process accorded with pseudo second-order kinetics, which was carried out at 78.2 °C for 1.29 h with the solid-liquid ratio of 1:34.66 g/mL with the yield up to 0.8210 g/g. After comprehensive characterizations of pectin product, a simple casting method was used to prepare the PMTP-DES based composite film. It showed that the composite film has promising compatibility, smooth surface, good breathability and ideal homogeneity. After 30 power on/power off cycles at 10 V, it exhibited satisfied conductivity stability. Moreover, the PMTP-DES film could be simply assembled as the flexible visual temperature sensor, with sensitive response at breathing or finger touch; it exhibited the highest sensitivity of 134 %/°C when the external temperature changed from 15 to 55 °C. Besides, the composite film also has preferable antimicrobial activity. The whole results and findings were aimed to contribute for the raw material, composition, preparation, and functions of the existing flexible functional materials.
Collapse
Affiliation(s)
- Yadi Su
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuting Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruixuan Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ali Ahmad
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Raghuvanshi S, Khan H, Saroha V, Sharma H, Gupta HS, Kadam A, Dutt D. Recent advances in biomacromolecule-based nanocomposite films for intelligent food packaging- A review. Int J Biol Macromol 2023; 253:127420. [PMID: 37852398 DOI: 10.1016/j.ijbiomac.2023.127420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
In food packaging, biopolymer films are biodegradable films made from biomacromolecule-based natural materials, while biocomposite films are hybrids of two or more materials, with at least one being biodegradable. Bionanocomposites are different than the earlier ones, as they consist of various nanofillers (both natural and inorganic) in combination with biomacromolecule-based biodegradable materials to make good compostable bionanocomposites. In this regard, a new type of material known as bionanocomposite has been recently introduced to improve the properties and performance of biocomposite films. Bionanocomposites are primarily developed for active packaging, but their use in intelligent packaging is also noteworthy. For example, bionanocomposites developed using a hybrid of anthocyanin and carbon dots as intelligent materials have shown their high pH-sensing properties. The natural nanofillers (like nanocellulose, nanochitosan, nanoliposome, cellulose nanocrystals, cellulose nanofibers, etc.) are being employed to promote the sustainability, degradability and safety of bionanocomposites. Overall, this article comprehensively reviews the latest innovations in bionanocomposite films for intelligent food packaging over the past five years. In addition to packaging aspects, the role of nanofillers, the importance of life cycle assessment (LCA) and risk assessment, associated challenges, and future perspectives of bionanocomposite intelligent films are also discussed.
Collapse
Affiliation(s)
- Sharad Raghuvanshi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Hina Khan
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vaishali Saroha
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Harish Sharma
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Hariome Sharan Gupta
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Ashish Kadam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
20
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
21
|
Zhao Y, Li H, Chen J, Wang Y. A novel high water-soluble antibacterial films-based guar gum incorporated with Aloe vera gel and ε-polylysine. Food Chem 2023; 427:136686. [PMID: 37385057 DOI: 10.1016/j.foodchem.2023.136686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
The high water-soluble films are commonly used in food coating and food encapsulation. In this study, the effect of Aloe vera gel (AV) and ε-polylysine (ε-PL) on the comprehensive properties of films based on guar gum (GG) were investigated. When GG to AV was 8:2, the GG:AV:ε-PL composite films (water solubility = 68.50%) had an 82.42% higher water solubility than pure guar gum (PGG) films (water solubility = 37.55%). Compared with PGG films, the composite films more transparent, better thermal stability and elongation at break. X-ray diffraction and SEM analysis showed the composite films were amorphous structures and the AV and ε-PL did not change the structure of PGG. FITR analysis confirmed the formation of hydrogen bonds within the composite films. Antibacterial properties showed the composite films had a good antibacterial effect against Escherichia coli and Staphylococcus aureus. Therefore, the composite films can be a new option of high water-soluble antibacterial food packaging materials.
Collapse
Affiliation(s)
- Yakun Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
22
|
Huang X, Xu F, Yun D, Li C, Kan J, Liu J. Development and application of intelligent packaging films based on guar gum, polyvinyl alcohol and hyacinth bean (Lablab purpureus (L.) sweet) anthocyanins. Int J Biol Macromol 2023; 251:126369. [PMID: 37595704 DOI: 10.1016/j.ijbiomac.2023.126369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The pH-response color-changeable films were prepared by adding different contents (1 %, 2 % and 3 %) of hyacinth bean anthocyanins (HBA) into guar gum/polyvinyl alcohol blend matrix. The structural characterization and optical, barrier, mechanical, thermal, antioxidant and color-changeable properties of the films were determined. The films were applied to monitor the freshness of chilled shrimp and pork. Results showed that HBA were pH-dependent color-changeable pigments that endowed the films with purple color. 2 % and 3 % of HBA improved the uniformity and compactness of the films by forming hydrogen bonds with film matrix. The barrier ability of the films against UV-vis light, water vapor and oxygen was significantly elevated by 2 % and 3 % of HBA. The mechanical, thermal and antioxidant properties of the films were improved by HBA. The films containing HBA were much sensitive to pH variation and ammonia vapor, presenting obvious color changes (purple→green→yellow-green). The films containing HBA showed good color stability when stored at 4 °C for 30 days. Moreover, the film containing 2 % HBA showed color changes (purple→green) when the chilled shrimp and pork decayed. The results suggested that the film containing 2 % HBA was suitable to monitor the freshness of meat products in intelligent packaging field.
Collapse
Affiliation(s)
- Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
23
|
Xu Z, Cheng Z, Tang Q, Huang K, Li H, Zou Z. Ammonia-sensitive cellulose acetate-based films incorporated with Co-BIT microcrystals for smart packaging application. Carbohydr Polym 2023; 316:121045. [PMID: 37321738 DOI: 10.1016/j.carbpol.2023.121045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, there is an increasing demand for smart packaging materials capable of effectively monitoring the food freshness. In this study, new Co-based MOF (Co-BIT) microcrystals with ammonia-sensitivity and antibacterial function were constructed and then loaded within cellulose acetate (CA) matrix to create smart active packaging materials. The influences of Co-BIT loading upon structure, physical, and functional properties of the CA films were then thoroughly explored. It was observed that microcrystalline Co-BIT was uniformly integrated inside CA matrix, which caused significant promotions in mechanical strength (from 24.12 to 39.76 MPa), water barrier (from 9.32 × 10-6 to 2.73 × 10-6 g/m·h·Pa) and ultraviolet light protection performances of CA film. Additionally, the created CA/Co-BIT films displayed striking antibacterial efficacy (>95.0 % for both Escherichia coli and Staphylococcus aureus), favorable ammonia-sensitivity function as well as color stability. Finally, the CA/Co-BIT films were successfully applied for indicating the spoilage of shrimp through discernible color changes. These findings suggest that Co-BIT loaded CA composite films have great potential for use as smart active packaging.
Collapse
Affiliation(s)
- Zongshu Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ze Cheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Kangqi Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
24
|
Liu R, Ning Y, Ren Z, Xu S, Cheng Q, Yang D, Wang L. An antibacterial and intelligent cellulose-based label self-assembled via electrovalent bonds for a multi-range sensing of food freshness. Int J Biol Macromol 2023:125205. [PMID: 37302638 DOI: 10.1016/j.ijbiomac.2023.125205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Intelligent labels provide customers with food freshness information. However, the existing label response is limited and can only detect a single kind of food. Here, an intelligent cellulose-based label with highly antibacterial activity for a multi-range sensing freshness was developed to overcome the limitation. Cellulose fibers were modified using oxalic acid to graft -COO- followed by binding chitosan quaternary ammonium salt (CQAS), the remaining charges of which attached methylene red and bromothymol blue to form response fibers and to further self-assemble into the intelligent label. CQAS electrostatically gathered the dispersed fibers, resulting in an increase in TS and EB of 282 % and 16.2 %, respectively. After that, the rest positive charges fixed the anionic dyes to broaden pH response range of 3-9 effectively. More significantly, the intelligent label exhibited highly antimicrobial activity, killing 100 % of staphylococcus aureus. The rapid acid-base response revealed the potential for practical application in which the label color from green to orange represented the milk or spinach from fresh to close to spoiled, and from green to yellow, and to light green indicated the pork fresh, acceptable, and close to spoiled. This study paves a way for the preparation of intelligent labels in large-scale and promote the commercial application to improve food safety.
Collapse
Affiliation(s)
- Ruoting Liu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yuping Ning
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Zihao Ren
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Shiyu Xu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Qian Cheng
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Dongmei Yang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
25
|
Lin W, Hong W, Sun Y, Huang J, Li Z. Triple-function chitosan-based film for pork and shrimp packaging. Food Chem 2023; 417:135903. [PMID: 36924724 DOI: 10.1016/j.foodchem.2023.135903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
A film simultaneously with colorimetric, fluorescent and active functions was engineered using chitosan (CS) and polyvinyl alcohol (PVA) as the film matrix and curcumin-β-cyclodextrin complex (Cur-β-CD) as the indicator for freshness monitoring and maintaining of pork and shrimp. In addition to the efficacy of prolonging shelf life, the film's color could change from yellow to orange with ΔE > 5 and its fluorescence intensity could decrease during storage. The incorporation of PVA significantly enhanced the mechanical properties of CS film with tensile strength of 31.80 MPa and elongation at break of 127.22 %. The Cur-β-CD improved the antioxidant and antibacterial properties, water contact angle (from 86.3° to 111.2°), water vapor permeability (from 3.28 × 10-10 g (m s Pa)-1 to 0.42 × 10-10 g (m s Pa)-1) and mechanical properties of CS/PVA film. These results show the potential of the film as promising alternatives for intelligent and active food packaging.
Collapse
Affiliation(s)
- Wanmei Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Hong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuanxin Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China.
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
26
|
Anbarasan R, Thamizhlarasan A, Liu YC, Tung KL. Synthesis, characterization, catalytic reduction of Eosin B dye and C, N cross coupling reactions of sodiumalginate/V2O5 nanocomposite. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
27
|
Flexible sensing enabled packaging performance optimization system (FS-PPOS) for lamb loss reduction control in E-commerce supply chain. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|