1
|
Gutiérrez-Silva K, Capezza AJ, Gil-Castell O, Badia-Valiente JD. UV-C and UV-C/H₂O-Induced Abiotic Degradation of Films of Commercial PBAT/TPS Blends. Polymers (Basel) 2025; 17:1173. [PMID: 40362957 PMCID: PMC12073353 DOI: 10.3390/polym17091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) on films of commercial poly(butylene adipate-co-terephthalate)-thermoplastic starch (PBAT/TPS) blends. Changes in structural, chemical, morphological, and thermal properties, as well as molar mass, were analyzed. The results showed distinct degradation mechanisms during exposure to UV-C irradiation either in dry or during water-immersion conditions. UV-C irradiation disrupted PBAT ester linkages, inducing photodegradation and chain scission, leading to a more pronounced molar mass decrease compared to that under water immersion, where a more restrained impact on the molar mass was ascribed to diffuse attenuation coefficient of irradiation. Nevertheless, under UV-C/H2O conditions, erosion and disintegration were enhanced by dissolving and leaching of mainly the TPS fraction, creating a porous structure that facilitated the degradation of the film. Blends with higher TPS content exhibited greater susceptibility, with pronounced reductions in PBAT molar mass. In conclusion, exposure of films of PBAT/TPS blends to ultraviolet/water-assisted environments effectively initiated abiotic degradation, in which fragmentation was accentuated by the contribution of water immersion.
Collapse
Affiliation(s)
- K. Gutiérrez-Silva
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Av. Universitat s/n, 46100 Burjassot, Spain;
| | - Antonio J. Capezza
- Fibre and Polymer Technology Department, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden;
| | - O. Gil-Castell
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Av. Universitat s/n, 46100 Burjassot, Spain;
| | - J. D. Badia-Valiente
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Av. Universitat s/n, 46100 Burjassot, Spain;
| |
Collapse
|
2
|
Han ZW, Wang HM, Chen X, Wu YC, Hou QX. Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance. J Colloid Interface Sci 2025; 684:735-757. [PMID: 39818034 DOI: 10.1016/j.jcis.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites. Moreover, versatile and high tunable lignins can be valorized into functional materials, which are crucial building blocks in the fabrication of biomass-derived composites. Lignin's unique chemical structure, solvent resistance, anti-aging, and anti-ultraviolet functional properties make it highly potential for the fabrication of sustainable biobased barrier materials. This review systematically summarizes the progress in the fabrication and application of lignin-based functional composites, with a particular focus on barrier materials. First, the structural diversity of lignins from different sources and fractionation methods, and the structural modification strategies of lignins are briefly introduced. Then, the multiple barrier performances of lignin-based composites are listed, and the fabrication methods of different composites based on the polymer matrix systems are elaborated. In terms of diverse applications, this review highlights the multifaceted barrier properties of lignin-based composites in oxygen barrier, water vapor barrier, ultraviolet barrier, flame retardant and antibacterial applications. These functional barrier materials are widely used in food/pharmaceutical packaging, agricultural protection, construction, etc., providing an excellent option for sustainable materials with high barrier performance requirements. Finally, the main challenges faced by lignin-based barrier materials and the future directions are proposed.
Collapse
Affiliation(s)
- Zhong-Wei Han
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Han-Min Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Shanying International Holdings Co., Ltd., Maanshan 243021, China.
| | - Xu Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu-Chun Wu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing-Xi Hou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Yu W, Qiu R, Lei W, Chen Y. Effects of Modification on Properties of Wood Flour/PBAT Biocomposites. Polymers (Basel) 2025; 17:555. [PMID: 40076049 PMCID: PMC11902858 DOI: 10.3390/polym17050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Wood flour (WF)-reinforced poly (butylene adipate-co-terephthalate) (PBAT) composites were successfully fabricated by injection-molding process after being mixed using an extruder. The effects of fiber modifications, including mercerization, acetylation, as well as coupling agent treatment on the properties of WF/PBAT composites, were studied. The results indicated that all the modifications increased the mechanical properties (e.g., tensile strength, tensile modulus, flexural strength, flexural modulus, elongation at break, and Charpy impact strength) of the composites. After modification, all the composites showed better interfacial bonding, hydrophobicity, and thermal properties compared to the untreated fiber composites; meanwhile, the moisture absorption test showed that all the modified fiber composites exhibited a much lower saturated water absorption rate than untreated ones. WF modification by addition of a coupling agent could improve the properties most obviously, except for the tensile strength, elongation at break, and saturated water absorption rate. By this modification, the tensile modulus, flexural strength, flexural modulus, impact strength, onset temperature during thermal degradation, degree of crystallinity, and water contact angle of the composite were 313.47 MPa, 20.55 MPa, 830.79 MPa, 16.01 kJ/cm2, 367.71 °C, 17.10%, and 101.8°, all increased from those of untreated composites by 17.95%, 30.73%, 87.52%, 35.79%, 61.49%, 25.67 °C, 89.16%, and 6.6°, respectively.
Collapse
Affiliation(s)
- Wangwang Yu
- School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Qiu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Hongrui Biotech. Co., Ltd., Shanghai 201199, China
| | - Wen Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
5
|
Jia X, Wen Q, Sun Y, Chen Y, Gao D, Ru Y, Chen N. Preparation and Performance of PBAT/PLA/CaCO 3 Composites via Solid-State Shear Milling Technology. Polymers (Basel) 2024; 16:2942. [PMID: 39458770 PMCID: PMC11510872 DOI: 10.3390/polym16202942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Replacing traditional disposable, non-biodegradable plastic packaging with biodegradable plastic packaging is one of the key approaches to address the issue of "white pollution". PBAT/PLA/inorganic filler composites are widely utilized as a biodegradable material, commonly employed in the field of packaging films. However, the poor dispersion of inorganic fillers in the polymer matrix and the limited compatibility between PBAT and PLA have led to inferior mechanical properties and elevated costs. In this work, we propose a simple and effective strategy to improve the dispersion of nano-CaCO3 in a PBAT/PLA matrix through solid-state shear- milling (S3M) technology, combined with mechanochemical modification and in situ compatibilization to enhance the compatibility between PBAT and PLA. The impact of varying milling conditions on the structure and performance of the PBAT/PLA/CaCO3 composites was investigated. During the milling process, PBAT and PLA undergo partial molecular chain fragmentation, generating more active functional groups. In the presence of the chain extender ADR during melt blending, more branched PBAT-g-PLA is formed, thereby enhancing matrix compatibility. The results indicate that the choice of milling materials significantly affects the structure and properties of the composite. The film obtained by milling only PBAT and CaCO3 exhibited the best performance, with its longitudinal tensile strength and fracture elongation reaching 22 MPa and 437%, respectively. This film holds great potential for application in the field of green packaging.
Collapse
Affiliation(s)
- Xuehua Jia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (X.J.)
| | - Qilin Wen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (X.J.)
| | - Yanjun Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (X.J.)
| | - Yinghong Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (X.J.)
| | - Dali Gao
- Sinopec (Beijing) Research Institute of Chemical and Industry Co., Ltd., Beijing 100013, China
| | - Yue Ru
- Sinopec (Beijing) Research Institute of Chemical and Industry Co., Ltd., Beijing 100013, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (X.J.)
| |
Collapse
|
6
|
Wang S, Tang K, Zhang Z, Liu H, Yao Y, Liao X. PBAT/lignin-ZnO composite film for food packaging: Photo-stability, better barrier and antibacterial properties. Int J Biol Macromol 2024; 275:133651. [PMID: 38972656 DOI: 10.1016/j.ijbiomac.2024.133651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
When PBAT used as film, stability deteriorates under sunlight exposure, the poor barrier and antibacterial properties are also limiting its application. In this work, lignin-ZnO nanoparticles were prepared by hydrothermal method, as additives to fill the PBAT matrix. In addition, PBAT-lignin-ZnO composite films were successfully prepared by melting and hot-pressing method. It is found that lignin could well dispersed the ZnO when its implantation into PBAT films, and lignin-ZnO not only maintaining tensile strength and thermal stability, but also could prompt PBAT's crystallinity. Especially, P-L-ZnO-2 composite films have good photostability. After 60 h aging, it can still maintain good molecular weight, chemical structure and mechanical properties. Besides, these composite films have improved hydrophobicity, barrier and antibacterial properties, could prevent mildew and significantly reduce the weight loss rate, color difference and hardness changes of strawberries during storage. This work provides a potential film material for outdoor applications and food packaging.
Collapse
Affiliation(s)
- Shaoze Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Kui Tang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Zhijie Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Haitang Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yue Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
7
|
Wang L, Li D, Ye L, Zhi C, Zhang T, Miao M. Starch-based biodegradable composites: Effects of in-situ re-extrusion on structure and performance. Int J Biol Macromol 2024; 266:130869. [PMID: 38493822 DOI: 10.1016/j.ijbiomac.2024.130869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
In this study, starch-based biodegradable composites (SDC) were prepared by extruding using thermoplastic starch (TPS, 65%wt), polylactic acid (PLA, 30%wt) and poly (butylene adipate co-terephthalate) (PBAT, 5%wt). Structure and properties of the SDC were compared by performing 1-, 2-, 3-times extrusion. The results show that in-situ re-extrusion refines the TPS in composites and reduces the size of the phase. As the number of extrusions increases, the ester bond of composites at 868 cm-1 disappears, the crystallinity increases, and the thermal stability decreases. Among the three types of composites, the mechanical properties and hydrophobic properties of the material obtained by the 2-times are the most outstanding. Compared with SDC, the elongation at break and Young's modulus of SDC-2 are significantly increased, with an increase of 8.01 % and 1.28 % in the machine direction and an increase of 11.02 % and 1.79 % in the transverse direction respectively. Additionally, water contact angle range of SDC-2 from 98.7° to 101.7°. Therefore, SDC prepared by 2-times in-situ re-extrusion has the best film properties and is an ideal packaging material. This study presents a novel method for fabricating starch-degradable composite films by in-situ re-extrusion, providing new insights into the development of starch packaging materials.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dexiang Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lei Ye
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Chaohui Zhi
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
8
|
Nuamduang P, Auras R, Winotapun C, Hararak B, Wanmolee W, Leelaphiwat P. Enhanced antifungal properties of poly(butylene succinate) film with lignin nanoparticles and trans-cinnamaldehyde for mango packaging. Int J Biol Macromol 2024; 267:131185. [PMID: 38565360 DOI: 10.1016/j.ijbiomac.2024.131185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Sustainable poly(butylene succinate) (PBS) films incorporating lignin nanoparticles (LN) and trans-cinnamaldehyde (CN) have been developed to preserve mango freshness and provide food safety. PBS/LN, PBS/CN, and PBS/LN/CN composite films were produced by blown film melt extrusion. This study investigated the effect of CN-LN on the CN remaining content, thermal, mechanical, and barrier properties, diffusion coefficient, and antifungal activity of PBS films both in vitro and in vivo. Results showed that LN in the PBS/LN/CN composite film contained more CN than in the PBS/CN film. The compatibility of CN-LN with PBS produced homogeneous surfaces with enhanced barrier properties. PBS/LN/CN composite films demonstrated superior antifungal efficacy, inhibiting the growth of Colletotrichum gloeosporioides and preserving mango quality during storage. Results suggested that incorporating LN into PBS composite films prolonged the sustained release of antifungal agents, thereby inhibiting microbial growth and extending the shelf life of mangoes. Development of PBS/LN/CN composite films is a beneficial step toward reducing food waste and enhancing food safety.
Collapse
Affiliation(s)
- Pathtamawadee Nuamduang
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA
| | - Charinee Winotapun
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Bongkot Hararak
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pattarin Leelaphiwat
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
9
|
Nzimande MC, Mtibe A, Tichapondwa S, John MJ. A Review of Weathering Studies in Plastics and Biocomposites-Effects on Mechanical Properties and Emissions of Volatile Organic Compounds (VOCs). Polymers (Basel) 2024; 16:1103. [PMID: 38675023 PMCID: PMC11054226 DOI: 10.3390/polym16081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Polymeric materials undergo degradation when exposed to outdoor conditions due to the synergistic effects of sunlight, air, heat, and moisture. The degradation can lead to a decline in mechanical properties, fading, surface cracking, and haziness, attributed to the cleavage of the polymer chains and oxidation reactions. Accelerated weathering testing is a useful technique to evaluate the comparative photodegradation of materials within a reasonable timeframe. This review gives an overview of the different degradation mechanisms occurring in conventional plastics and bio-based materials. Case studies on accelerated weathering and its effect on the mechanical properties of conventional plastics and biocomposites are discussed. Different techniques for analysing volatile organic emissions (VOCs) have been summarized and studies highlighting the characterization of VOCs from aged plastics and biocomposites after aging have been cited.
Collapse
Affiliation(s)
- Monwabisi Cyril Nzimande
- Centre for Nanostructures and Advanced Materials, Chemicals Cluster, CSIR, Pretoria 6011, South Africa; (M.C.N.); (A.M.)
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Asanda Mtibe
- Centre for Nanostructures and Advanced Materials, Chemicals Cluster, CSIR, Pretoria 6011, South Africa; (M.C.N.); (A.M.)
| | - Shepherd Tichapondwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Maya Jacob John
- Centre for Nanostructures and Advanced Materials, Chemicals Cluster, CSIR, Pretoria 6011, South Africa; (M.C.N.); (A.M.)
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
10
|
Avella A, Salse M, Sessini V, Mincheva R, Lo Re G. Reusable, Recyclable, and Biodegradable Heat-Shrinkable Melt Cross-Linked Poly(butylene adipate- co-terephthalate)/Pulp Biocomposites for Polyvinyl Chloride Replacement. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:5251-5262. [PMID: 38577586 PMCID: PMC10988786 DOI: 10.1021/acssuschemeng.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
Heat-shrinkable films are widely used as disposable secondary packaging but are conventionally made from fossil-based and nonbiodegradable polyvinyl chloride or polyethylene. To lower the environmental impact of such products, this work reports the development of recyclable, biodegradable, and partially biosourced heat-shrinkable biocomposites that are cost-competitive with existing shrink wraps. Poly(butylene adipate-co-terephthalate), a growing biodegradable thermoplastic, was simultaneously reinforced with pulp fibers and partially cross-linked in a single-step reactive melt processing. The designed peroxide-initiated reaction led to a 55 wt % cocontinuous insoluble gel incorporating all the pulp fibers into a cross-linked polymer network. In the solid state, the cross-linked biocomposite shows 60% elongation at break with a 200% increase in Young's modulus, while the only addition of pulp fibers stiffens and embrittles the matrix. Creep tests in the melt state indicated that the cross-linked network induces homogeneous shrinking even during the loading phase, demonstrating the potential use of the biocomposites as heat-shrinkable films. The shrinking also promotes the shape-memory of the biocomposite, which retains its dimensions after four cycles. The circularity of the materials was assessed by mechanical recycling and industrial composting, which have proven feasible end-of-life options for heat-shrinkable biocomposites.
Collapse
Affiliation(s)
- Angelica Avella
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden
- Wallenberg
Wood Science Centre, Chalmers University
of Technology, Kemigården 4, 41296 Gothenburg, Sweden
| | - Mathieu Salse
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden
- Laboratoire
MATEIS, Institut National des Sciences Appliquées
Lyon, Bât. B. Pascal, Avenue Jean Capelle, 69621 Villeurbanne, France
- Wallenberg
Wood Science Centre, Chalmers University
of Technology, Kemigården 4, 41296 Gothenburg, Sweden
| | - Valentina Sessini
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden
- Department
of Organic and Inorganic Chemistry, Institute of Chemical Research
“Andrés M. del Río” (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, 28871 Madrid, Spain
- Wallenberg
Wood Science Centre, Chalmers University
of Technology, Kemigården 4, 41296 Gothenburg, Sweden
| | - Rosica Mincheva
- Laboratory
of Polymeric and Composite Materials, University
of Mons (UMons), 7000 Mons, Belgium
| | - Giada Lo Re
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden
- Wallenberg
Wood Science Centre, Chalmers University
of Technology, Kemigården 4, 41296 Gothenburg, Sweden
| |
Collapse
|
11
|
Roy S, Ghosh T, Zhang W, Rhim JW. Recent progress in PBAT-based films and food packaging applications: A mini-review. Food Chem 2024; 437:137822. [PMID: 37897823 DOI: 10.1016/j.foodchem.2023.137822] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Bioplastics are a promising alternative to non-biodegradable plastics. One of these bioplastics, PBAT (polybutylene adipate co-terephthalate), is a polyester-based bioplastic commonly used to manufacture flexible packaging films. PBAT-based films have high flexibility but relatively low strength compared to other bioplastics. The strength of PBAT films can be improved by blending them with other fillers/polymers. Additionally, the functionality of PBAT films can be enhanced by incorporating bioactive functional fillers. The physical and functional properties of PBAT films produced by adding active ingredients provide functionality and are a good alternative to non-degradable petrochemical-based plastics. The PBAT-based functional films protect food and improve packaged foods' quality and life span. Thus, this review provides recent advances in PBAT-based films and their use in active food packaging applications. After briefly describing the different fabrication methods of PBAT films, various important physical and functional properties and biodegradability are comprehensively discussed. PBAT-based active packaging film in real-time food packaging is also briefly covered. Through this review, more attention is expected to be focused on research on PBAT-based biodegradable active food packaging.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Tabli Ghosh
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028, India
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
12
|
Taher MA, Wang X, Faridul Hasan KM, Miah MR, Zhu J, Chen J. Lignin Modification for Enhanced Performance of Polymer Composites. ACS APPLIED BIO MATERIALS 2023; 6:5169-5192. [PMID: 38036466 DOI: 10.1021/acsabm.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The biopolymer lignin, which is heterogeneous and abundant, is usually present in plant cell walls and gives them rigidity and strength. As a byproduct of the wood, paper, and pulp manufacturing industry, lignin ranks as the second most prevalent biopolymer worldwide, following cellulose. This review paper explores the extraction, modification, and prospective applications of lignin in various industries, including the enhancement of thermosetting and thermoplastic polymers, biomedical applications such as vanillin production, fuel development, carbon fiber composites, and the creation of nanomaterials for food packaging and drug delivery. The structural characteristics of lignin remain undefined due to its origin, separation, and fragmentation processes. This comprehensive overview encompasses state-of-the-art techniques, potential applications, diverse extraction methods, chemical modifications, carbon fiber utilization, and the extraction of vanillin. Moreover, the review focuses on the utilization of lignin-modified polymer blends across multiple manufacturing sectors, providing insights into the advantages and limitations of this innovative approach for the development of environmentally friendly materials.
Collapse
Affiliation(s)
- Muhammad Abu Taher
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaolin Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | | | - Mohammad Raza Miah
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
13
|
Yu W, Qiu R, Li M, Lei W. Effects of Wood Content and Modification on Properties of Wood Flour/Polybutylene Adipate Terephthalate Biocomposites. Molecules 2023; 28:8057. [PMID: 38138546 PMCID: PMC10746050 DOI: 10.3390/molecules28248057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Biodegradable polymers have recently become attractive and have been increasingly used as matrix materials to replace fossil plastics due to concerns about the environmental issue. However, their application areas are limited due to their high costs and natural properties. In this study, we fabricated ecofriendly and economical polybutylene adipate terephthalate (PBAT) composites loaded with various concentrations of wood flour (WF) to investigate the effects on the PBAT and WF interfaces as well as the physical properties of the WF/PBAT biocomposites. Then, WF was acetylated with acetic anhydride, and the effect of WF acetylation on the mechanical and thermal properties of the biocomposites were investigated. The results showed that the tensile strength, tensile modulus, flexural strength and flexural modulus increased with WF loading in the composites, and acetylation could not only further increase these properties, but also increase the impact strength and elongation at break. The incorporation of WF would weaken the thermal stability of PBAT, but the thermal stability of the biocomposite could be improved after WF acetylation. The cold crystallization temperature and hydrophobicity of the WF/PBAT samples would be increased with the increasing load of the WF, while the melting enthalpy and the crystallinity of the samples reduced gradually. A morphological analysis of the modified composites revealed that the matrix exhibited greater interfacial interactions with the WF compared to the WF/PBAT. Considering the much lower cost of WF compared to PBAT, the improved properties of WF/PBAT biocomposites will make it economically competitive with other commercial polymers, and these biocomposites should have much wider application areas.
Collapse
Affiliation(s)
- Wangwang Yu
- School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Rui Qiu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengya Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli MB, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers (Basel) 2023; 15:4700. [PMID: 38139951 PMCID: PMC10747240 DOI: 10.3390/polym15244700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
| | - Laura Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy;
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| |
Collapse
|
15
|
Wang J, Zhao D, Jiang G, Wu Y, Shen Y, Wang T. Bioinspired Tannic Acid-Modified Coffee Grounds as Sustainable Fillers: Effect on the Properties of Polybutylene Adipate Terephthalate Composites. Polymers (Basel) 2023; 15:2769. [PMID: 37447415 DOI: 10.3390/polym15132769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Preparing composites from gricultural waste with biodegradable polymers is one of the strategies used to ensure the long-term sustainability of such materials. However, due to the differences in their chemical properties, biomass fillers often exhibit poor interfacial adhesion with polymer matrices. Inspired by mussel foot silk, this work focused on the surface modification of coffee grounds (CGs) using a combination of tannic acid (TA) and alkali treatment. CGs were used as a biomass filler to prepare polybutylene adipate terephthalate (PBAT)/CG composites. The modification of CGs was demonstrated by Fourier transform infrared spectroscopy (FTIR), the water contact angle, and scanning electron microscopy (SEM). The effect of CGs on the rheological, tensile, and thermal properties of the PBAT/CG composites was investigated. The results showed that the addition of CGs increased the complex viscosity, and the surface modification enhanced the matrix-filler adhesion. Compared with unmodified CG composites, the tensile strength and the elongation at break of the composite with TA-modified alkali-treated CGs increased by 47.0% and 53.6%, respectively. Although the addition of CGs slightly decreased the thermal stability of PBAT composites, this did not affect the melting processing of PBAT, which often occurs under 200 °C. This approach could provide a novel method for effectively using biomass waste, such as coffee grounds, as fillers for the preparation of polymer composites.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guodong Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong Wu
- Nanjing Wurui Biodegradable New Material Research Institute Co., Ltd., Nanjing 211816, China
| | - Yucai Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingwei Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
Xie C, Xiong Q, Wei Y, Li X, Hu J, He M, Wei S, Yu J, Cheng S, Ahmad M, Liu Y, Luo S, Zeng X, Yu J, Luo H. Fabrication of biodegradable hollow microsphere composites made of polybutylene adipate co-terephthalate/polyvinylpyrrolidone for drug delivery and sustained release. Mater Today Bio 2023; 20:100628. [PMID: 37122839 PMCID: PMC10130625 DOI: 10.1016/j.mtbio.2023.100628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Sustained drug release has attracted increasing interest in targeted drug therapy. However, existing methods of drug therapy suffer drug action time, large fluctuations in the effective concentration of the drug, and the risk of side effects. Here, a biodegradable composite of polybutylene adipate co-terephthalate/polyvinylpyrrolidone (PBAT/PVP) consisting of electrospun hollow microspheres as sustained-released drug carriers is presented. The as-prepared PBAT/PVP composites show faster degradation rate and drug (Erlotinib) release than that of PBAT. Furthermore, PBAT/PVP composites loaded with Erlotinib provide sustained release effect, thus achieving a better efficacy than that after the direct injection of erlotinib due to the fact that the composites allow a high drug concentration in the tumor for a longer period. Hence, this work provides a potential effective solution for clinical drug therapy and tissue engineering using drug microspheres with a sustained release.
Collapse
Affiliation(s)
- Chuan Xie
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qinqin Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yuanzhi Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Li
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jiajun Hu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Min He
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yufei Liu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, 550014, China
- Corresponding author. Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Corresponding author.
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jie Yu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Corresponding author. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
17
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
18
|
Hararak B, Wanmolee W, Wijaranakul P, Prakymoramas N, Winotapun C, Kraithong W, Nakason K. Physicochemical properties of lignin nanoparticles from softwood and their potential application in sustainable pre-harvest bagging as transparent UV-shielding films. Int J Biol Macromol 2023; 229:575-588. [PMID: 36592857 DOI: 10.1016/j.ijbiomac.2022.12.270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
Technical lignin can be mainly obtained as a waste by-product from pulp industry, and it exhibits unique properties including ultraviolet adsorption, biodegradable, antibacterial, and antioxidant which can be utilized for bioplastic applications. However, common limitations of technical lignin for plastic applications are compatibility mainly due to poor interfacial adhesion, relatively large particle size and impurity. In this study lignin nanoparticles from softwood (S-LNPs) were successfully produced through a continuous-green-scalable antisolvent precipitation and the suitability of S-LNPs for fabrication of bio-composite polybutylene succinate (PBS) films using conventional blown film extrusion was examined. The attained S-LNPs showed lower ash content, higher phenolic content and higher lignin content compared to pristine softwood kraft lignin (S-lignin). Rheological property including shear viscosity and melt-flow index was determined. The obtained PBS/S-LNP composite films showed improved tensile modulus, higher water vapor transmission rate and excellent UV-shielding ability compared to neat PBS and PBS/S-lignin films. Accelerated weathering testing was conducted to replicate outdoor conditions. Degradation indices including carbonyl, vinyl and hydroxyl of the weathered PBS/lignin composites were evaluated for photo-oxidative stability. The S-LNPs as multifunctional bio-additives in biodegradable composite film exhibited superior performances of transparency, UV-absorption and stiffness with high photo-oxidative stability suitable for outdoor applications.
Collapse
Affiliation(s)
- Bongkot Hararak
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Pawarisa Wijaranakul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Natcha Prakymoramas
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Charinee Winotapun
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Wasawat Kraithong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Kamonwat Nakason
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| |
Collapse
|
19
|
Kovinchuk I, Haiuk N, Lazzara G, Cavallaro G, Sokolsky G. Enhanced Photocatalytic Degradation of PE Film by anatase/γ-MnO2. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
20
|
Fabrication of a Polybutylene Succinate (PBS)/Polybutylene Adipate-Co-Terephthalate (PBAT)-Based Hybrid System Reinforced with Lignin and Zinc Nanoparticles for Potential Biomedical Applications. Polymers (Basel) 2022; 14:polym14235065. [PMID: 36501461 PMCID: PMC9739168 DOI: 10.3390/polym14235065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Polybutylene adipate-co-terephthalate (PBAT) was used in an effort to improve the properties of polybutylene succinate (PBS). The resultant blend consisting of PBS/PBAT (70/30) was reinforced with lignin at different loadings (5 to 15 wt.%) and zinc (ZnO) nanoparticles (1.5 wt.%). Hot melt extrusion and injection moulding were used to prepare the hybrid composites. The mechanical, thermal, physical, self-cleaning, and antimicrobial properties of the resultant hybrid composites were investigated. The transmission electron microscopy (TEM) results confirmed that ZnO was successfully prepared with average diameters of 80 nm. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that there were interactions between the fillers and the blend. The tensile strength and elongation at the break of the resultant materials decreased with increasing the loadings, while the tensile modulus showed the opposite trend. The melting behaviour of the blend was practically unaffected by incorporating lignin and ZnO nanoparticles. In addition, the incorporation of fillers reduced the thermal stability of the materials. Furthermore, the incorporation of ZnO nanoparticles introduced photocatalytic properties into the polymer blend, rendering it to be a functional self-cleaning material and enhancing its antimicrobial activities.
Collapse
|
21
|
Zhou X, Ren Z, Sun H, Bi H, Gu T, Xu M. 3D printing with high content of lignin enabled by introducing polyurethane. Int J Biol Macromol 2022; 221:1209-1217. [PMID: 36113592 DOI: 10.1016/j.ijbiomac.2022.09.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
The efficient utilization of lignin in 3D printing had attracted increasing attention using this abundant and eco-friendly material. However, the large-scale utilization of lignin in 3D printing remains a great challenge due to its inherent brittleness and non-thermoplasticity. In this study, thermoplastic polyurethane (TPU) was introduced to regulate the rheological properties of lignin for 3D printing. The Lignin/TPU composite of 3D printing exhibited a smooth surface, non-plastic, warm wood touch, and natural color at 50 wt% lignin loading. To further improve the mechanical properties of the composite, carbon fiber (CF) was added to the Lignin/TPU composite. The resulting CF/Lignin/TPU composites possessed 1.7 times higher tensile strength and 2.4 times higher elongation at break compared to Lignin/TPU composite. Meanwhile, the smooth surface of filament and dense interlayer bonds of printed specimens are also achieved. This work provides new insights to realize the high-value utilization of lignin and expands the practical application of lignin in 3D printing.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Zechun Ren
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Hao Sun
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Hongjie Bi
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Tongfei Gu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Min Xu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|