1
|
Roa K, Boulett A, Santander P, Bruna J, Salfate G, Pizarro GDC, Hu L, Xu C, Sánchez J. Carboxylated cellulose nanocrystals in semi-interpenetrated network hydrogels and its application in water absorption and antibiotic removal. Int J Biol Macromol 2025; 305:141154. [PMID: 39965701 DOI: 10.1016/j.ijbiomac.2025.141154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
The water scarcity crisis is currently deepened by the presence of emerging contaminants, such as amoxicillin (AMX), threatening ecosystems and living beings due to their toxicity and bioaccumulation. Due to this, in the present study, superabsorbent hydrogels reinforced with oxidized cellulose nanocrystals (CCNC) were developed, forming semi-interpenetrated networks with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS). The CCNCs were obtained by acid hydrolysis and subsequent chemical oxidation to introduce carboxylate groups with two different levels (low and high) of 200 mmol kg-1 (L-CCNC) and 677 mmol kg-1 (H-CCNC), respectively. The effective oxidation of the crystals was confirmed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction, where this reaction did not affect their crystallinity, but reduced their thermal stability. While the obtained hydrogels were characterized chemically, thermally, morphologically and mechanically by FTIR, TGA, scanning electron microscopy, hydration and dynamic compression tests. The incorporation of CCNC to PAMPS increased the thermal stability and modified the surface area of the hydrogels. In addition, the maximum hydration capacity reached 4900 % for PAMPS hydrogels with 10 % H-CCNC, maintaining greater flexibility under compression. Finally, in AMX adsorption studies, parameters such as pH, contact time, initial AMX concentration and amount of adsorbent were evaluated. Achieving a maximum adsorption capacity of 136 mg g-1 with the possibility of reuse in three consecutive adsorption-desorption cycles. These findings highlight the potential of superabsorbent hydrogels reinforced with CCNC as sustainable materials for environmental applications.
Collapse
Affiliation(s)
- Karina Roa
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrés Boulett
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Paola Santander
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Julio Bruna
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Gabriel Salfate
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Guadalupe Del C Pizarro
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Liqiu Hu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Åbo/Turku 20500, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Åbo/Turku 20500, Finland
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Torres FG, Troncoso OP, Urtecho A, Soto P, Pachas B. Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13179-13196. [PMID: 38865700 DOI: 10.1021/acsami.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In recent years, polysaccharides have emerged as a promising alternative for the development of environmentally friendly materials. Polysaccharide-based materials have been mainly studied for applications in the food, packaging, and biomedical industries. However, many investigations report processing routes and treatments that enable the modification of the inherent properties of polysaccharides, making them useful as materials for energy applications. The control of the ionic and electronic conductivities of polysaccharide-based materials allows for the development of solid electrolytes and electrodes. The incorporation of conductive and semiconductive phases can modify the permittivities of polysaccharides, increasing their capacity for charge storage, making them useful as active surfaces of energy harvesting devices such as triboelectric nanogenerators. Polysaccharides are inexpensive and abundant and could be considered as a suitable option for the development and improvement of energy devices. This review provides an overview of the main research work related to the use of both common commercially available polysaccharides and local native polysaccharides, including starch, chitosan, carrageenan, ulvan, agar, and bacterial cellulose. Solid and gel electrolytes derived from polysaccharides show a wide range of ionic conductivities from 0.0173 × 10-3 to 80.9 × 10-3 S cm-1. Electrodes made from polysaccharides show good specific capacitances ranging from 8 to 753 F g-1 and current densities from 0.05 to 5 A g-1. Active surfaces based on polysaccharides show promising results with power densities ranging from 0.15 to 16 100 mW m-2. These investigations suggest that in the future polysaccharides could become suitable materials to replace some synthetic polymers used in the fabrication of energy storage devices, including batteries, supercapacitors, and energy harvesting devices.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Adrián Urtecho
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Percy Soto
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Bruce Pachas
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| |
Collapse
|
3
|
Yu F, Liu Q, Ding Y, Zhang W, Ma MG. Multi-performance sodium alginate-based composite films for sensing and electromagnetic shielding. Int J Biol Macromol 2025; 287:138557. [PMID: 39662558 DOI: 10.1016/j.ijbiomac.2024.138557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
As science and technology progress swiftly, the demand for high-performance composite films designed to shield against electromagnetic interference (EMI) and for strain sensing applications has significantly increased, making these films essential components for the future generation of smart wearable electronics. However, designing and developing multifunctional flexible composite films remains a considerable challenge. This study employed vacuum-assisted filtration techniques combined with calcium ion cross-linking to create multifunctional MXene/sodium alginate/liquid metal (MSL) composite films exhibiting exceptional EMI shielding and strain sensing capabilities. The mechanical strength of the MSL composite films was optimized by implementing continuous hydrogen bonding and ionic interactions among MXene, sodium alginate, liquid metal (LM), and calcium ions, resulting in a tensile strength of 71.71 MPa. The composite film exhibits excellent electromagnetic absorption properties, resulting in an exceptional EMI shielding efficacy of 50.61 dB and a specific shielding effectiveness value of 7563 dB·cm2·g-1. This is due to the heterogeneous interface between MXene and LM nanoparticles. Furthermore, the composite film exhibits favorable electrothermal and photothermal conversion capabilities. The film can be a flexible sensor to detect human motion, contingent on the conductive network between MXene and LM. This research illustrates the potential of multifunctional MSL composite films for EMI shielding and human motion monitoring, offering a promising pathway for creating adaptable wearable electronics in challenging electromagnetic conditions.
Collapse
Affiliation(s)
- Fengwei Yu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qi Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yan Ding
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China; Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, PR China..
| | - Ming-Guo Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
4
|
Xu T, Li M, Luo Z, Ye L, Tong Y, Zhang J, Hu E, Chen Z. "Seaweed Structure" design for solid gel electrolyte with hydroxide ion conductivity enabling flexible zinc air batteries. J Colloid Interface Sci 2024; 675:883-892. [PMID: 39002238 DOI: 10.1016/j.jcis.2024.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
The construction of solid-state electrolytes for flexible zinc-air batteries is extremely challenging. A flexible and highly conductive solid electrolyte designed with a "seaweed structure" is reported in this work. Sodium alginate serves as the backbone to form a robust network structure, and the grafted quaternary ammonium groups provide channels for rapid ion transport, achieving excellent flexibility and hydroxide conductivity. The conductivity of the modified electrolyte membrane (QASA) is 5.23 × 10-2 S cm-1 at room temperature and reaches up to 8.51 × 10-2 S cm-1 at 75 °C. In the QASA based battery, bending at any angle is realized, and the power density is up to 57.28 mW cm-2. This work provides a new way to prepare high conductivity, green solid-state zinc-air batteries, and opens up a research line of thought for flexible energy storage materials.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Mengjiao Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zipeng Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Longzeng Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yurun Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
| | - Enlai Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China; Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Chemistry, Huzhou University, Huzhou 313000, People's Republic of China.
| | - Zhongwei Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China; Power Battery and Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
| |
Collapse
|
5
|
Zou X, Song Y, Zhang Y, Xing L, Li P, Cheng J, Feng Y, Wang K, Liu W, Wang J. Calcium alginate/Polyaniline double network aerogel electrode for compressible and high electrochemical performance integrated supercapacitors. Int J Biol Macromol 2024; 282:136995. [PMID: 39476914 DOI: 10.1016/j.ijbiomac.2024.136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
As a new type of energy storage device, supercapacitors have attracted more and more attention due to their excellent performance. However, the current electrode materials have limited specific surface area and cannot meet the needs of high energy storage. The aerogel material is a 3D network structure containing interconnected micro-nano structures, and also has hierarchical pores on the micro, meso and macro scales. The microporous and mesoporous structures can provide high specific surface area, while the macropores provide channels for the entry of active substances. In this study, calcium alginate (CA)/polyaniline (PANI)/reduced graphene oxide (RGO) aerogels based on double network structure with high mechanical property and excellent electrochemical performance are successfully constructed by sol-gel method. Due to the double network structure, the CA/PANI/RGO aerogel exhibits self-supported 3D porous network structures with high surface areas (330.3 m2/g). CA/PANI/RGO composite aerogel electrode shows high specific capacitance (908 F/g at 1 A/g) and excellent rate performance. The initial capacitance of more than 80 % can be maintained after 10,000 times of charge/discharge cycle test. Most importantly, the assembled flexible solid-state supercapacitor has high specific capacitance (885 F/g at 1 A/g) and mechanical flexibility (92.6 % of the capacitance retention after 1000 bending cycles).
Collapse
Affiliation(s)
- Xinquan Zou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yaoting Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yi Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lu Xing
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peiyuan Li
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jinggang Cheng
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yuwei Feng
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Kun Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wenxiu Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jikui Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
6
|
Mullaivendhan J, Ahamed A, Gurusamy R, Akbar I. Synthesis of omega-3 mediated copper (ω-3-Cu) and copper oxide (ω-3-CuO) nanocatalyst dual application of dye decolourization and aerobic oxidation of eco-friendly sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58176-58195. [PMID: 39312113 DOI: 10.1007/s11356-024-34941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
In this study, ω-3-Cu and ω-3-CuO nanocatalysts were investigated for industrial environmental issues. Nowadays, green methodology is very important for addressing industrial environmental issues. In this regard, the current study focuses on ω-3-Cu and ω-3-CuO used for aerobic oxidation and dye decolourization via an eco-friendly approach. The synthesised ω-3-Cu and ω-3-CuO nanocatalysts were characterised using FT-IR, UV, XRD, TEM, GC-MS, 1H and 13C NMR. The results showed that the prepared ω-3-Cu catalyst was almost spherical with forms and sizes typically less than 20 nm and the ω-3-CuO nanocatalyst 10 nm. The ω-3 Cu and ω-3-CuO nanocatalysts were investigated for the conversion of pentan-2-ol into pentan-2-one, which was observed by GC-MS analysis. The ω-3-CuO nanocatalyst decolourised the Brilliant Blue dye more quickly (100% in 30 min) than ω-3-Cu (85% in 60 min) and ω-3 (no colour in 60 min), and Rhodamine B was not decolourised because our ω-3-Cu and ω-3-CuO nanocatalysts inactivated the rhodamine B dye. The aerobic oxidation process using the ω-3-CuO nanocatalyst as the end product of pentan-2-one resulted in a retention time of 30.33. To the best of our knowledge, ω-3-Cu and ω-3-CuO nanocatalysts have not been documented for their application in decolourisation and aerobic oxidation. By highlighting the potential use for the continued advancement and innovation of ω-3-CuO nanocatalysts in the long-term future, cost-effective and eco-friendly methods for producing reusable ω-3-CuO nanocatalysts have the potential to be applied in advanced technical fields, particularly in the areas of dye decolourisation and aerobic oxidation. Finally, we successfully accomplished these processes using the ω-3-CuO nanocatalyst. The ω-3-CuO nanocatalyst evaporated more quickly than the ω-3-Cu and ω-3-CuO nanocatalyst, without any additional energy. ω-3-CuO is the most effective nanocatalyst for dye decolourization and aerobic oxidation (Dual application). ω-3-CuO is used in textile and pharmaceutical industries.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Tamil Nadu, Puthanampatti, 621007, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Raman Gurusamy
- Department of Life Science, Yeungnan University, Gyeondsan-38541, Gyeondsan-Buk, South Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Tamil Nadu, Puthanampatti, 621007, India.
| |
Collapse
|
7
|
Gupta SK, Deshpande AP, Kumar R. Rheological and dielectric behavior of sodium carboxymethyl cellulose (NaCMC)/Ca 2+ and esterified NaCMC/Ca 2+ hydrogels: Correlating microstructure and dynamics with properties. Carbohydr Polym 2024; 335:122049. [PMID: 38616088 DOI: 10.1016/j.carbpol.2024.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polyelectrolyte-based conductive hydrogels are being extensively explored for applications in energy storage and as electrode materials for batteries. We synthesized ionically crosslinked sodium carboxymethyl cellulose (NaCMC), esterified NaCMC, and Ca2+ doped esterified NaCMC hydrogels. This work aims to understand the effect of Ca2+ ions on the NaCMC and esterified NaCMC. FTIR, SEM, Rheology and EIS studies were performed to understand the structure and dynamics of hydrogels. Results confirmed that Ca2+ ions have an important role in determining the rheological and dielectric response of hydrogels. Power law behavior was observed in their rheological response with exponent (n) of 0.81 for G' and 0.76 for G″ of ionically crosslinked NaCMC, 5.38 for G' and 4.70 for G″ of esterified NaCMC, whereas, negative exponents -1.44 for G' and -1.10 for G″ of Ca2+ ion doped esterified NaCMC. Ionically crosslinked NaCMC hydrogels have relaxation times (τ) in the range of 8.9 × 10-5 s-2.8 × 10-5 s may be due to the formation of temporary dipoles by electrostatic bridge formations with dc conductivity of (0.1 S/cm-5 S/cm), whereas, esterified NaCMC showed relaxation times (10-3 s-8.9 × 10-5 s) with increasing ester crosslinks and dc conductivity of (0.05 S/cm-0.8 S/cm). Interestingly, Ca2+ ion doped esterified hydrogels showed multiple dielectric relaxations on Ca2+ ion addition with different relaxation times may be due to change in ionic environment. The understanding obtained from this work may be useful for designing tuneable hydrogels with optimum electrical and mechanical properties.
Collapse
Affiliation(s)
- Sateesh Kumar Gupta
- Department of Physics, Dr. Harisingh University, Sagar 470003, Madhya Pradesh, India.
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ranveer Kumar
- Department of Physics, Dr. Harisingh University, Sagar 470003, Madhya Pradesh, India
| |
Collapse
|
8
|
Wang Q, Yan S, Ning Y, Zhu Y, Sergeeva I, Li Y, Qi B. Effect of sodium alginate block type on the physicochemical properties and curcumin release behavior of quaternized chitosan-oxidized sodium alginate Schiff base hydrogels. Food Chem 2024; 444:138688. [PMID: 38341919 DOI: 10.1016/j.foodchem.2024.138688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Controlling bioactive ingredients release by modulating the 3D network structure of cross-linked hydrogels is important for functional food development. Hereby, oxidized sodium alginate (OSA) with varying aldehyde contents was formed by periodate oxidation of sodium alginate (SA) with different β-d-mannuronic acid (M) and α-l-guluronic acid (G) ratios (M/G = 1:2, 1:1, and 2:1) and its structure was characterized. Moreover, hydrogels were prepared via Schiff base and electrostatic interactions between quaternized chitosan (QCS) and OSA. The properties of hydrogels such as microstructure, thermal stability, swelling and controlled release were investigated. The results showed that OSA with M/G = 1:2 had the highest content of aldehyde groups, and the hydrogel formed by it and QCS had higher thermal stability and a denser network structure with the lowest equilibrium swelling rate, which could better control the release of curcumin. Additionally, it had good self-healing and can recover rapidly after the rupture of its network structure.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yijie Ning
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yan Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Irina Sergeeva
- Department of Plant-Based Food Technology, Kemerovo State University, Kemerovo 650000, Russia
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (International Cooperation), China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Li W, Yang S, Chen W, Yang J, Yu H, Lv R, Fu M. Free-standing and flexible polyvinyl alcohol-sodium alginate-polypyrrole electrodes based on interpenetrating network hydrogels. J Colloid Interface Sci 2024; 664:299-308. [PMID: 38479266 DOI: 10.1016/j.jcis.2024.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
Flexible supercapacitors (FSCs) have attracted much attention due to their strong mechanical flexibility, wearability and portability, which greatly rely on the employed flexible electrodes. The conductive polymer hydrogels with excellent flexibility, processability and capacitive performance are one of the most promising candidates, which are still limited by their poor mechanical properties. Constructing robust interpenetrating polymer networks (IPN) is an effective approach to promote their mechanical properties. Herein, interpenetrating polyvinyl alcohol (PVA)-sodium alginate (SA)-polypyrrole (PPy) hydrogels are prepared by the freeze-thaw and in-situ polymerization method. The IPN structure composed of PVA and SA not only enhances the mechanical properties of hydrogels, but also provides substantial active sites for electrochemical reactions. Moreover, the hydrogen-bonding interaction between different components in the PVA-SA-PPy hydrogel boosts the charge/ion transfer. The optimal PVA-SA-PPy hydrogels show an elongation at break of 380 %, a tensile strength of 1.5 MPa, and a specific capacitance of 2646 mF cm-2 at 2 mA cm-2. The symmetric PVA-SA-PPy FSCs show an energy density of 96.7 μWh cm-2 at a power density of 999.9 μW cm-2, and the capacitance retention is 66.3 % after 10,000 cycles. These exceptional mechanical and electrochemical properties make the PVA-SA-PPy hydrogels a promising candidate for FSCs.
Collapse
Affiliation(s)
- Wenzheng Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Siyuan Yang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wei Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jing Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruitao Lv
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Min Fu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
10
|
Pan X, Li Q, Wang T, Shu T, Tao Y. Controllable synthesis of electric double-layer capacitance and pseudocapacitance coupled porous carbon cathode material for zinc-ion hybrid capacitors. NANOSCALE 2024; 16:3701-3713. [PMID: 38291954 DOI: 10.1039/d3nr06258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The designability of the porous structure of carbon material makes it a popular material for zinc-ion hybrid capacitors (ZIHCs). However, the micropore confinement effect leads to sluggish kinetics and is not well resolved yet. In this work, a pore-size controllable carbon material was designed to enhance ion accessibility. The experimental and calculated results revealed that suitable pore sizes and defects were beneficial to ion transfer/adsorption. Meanwhile, oxygen-containing functional groups could introduce a pseudocapacitance reaction. Its large specific surface area and interconnecting network structure could shorten the ion/electron transfer length to reach high ion adsorption capacity and fast kinetic behavior. When used as a zinc-ion hybrid capacitor cathode material, it showed 9.9 kW kg-1 power density and 100 W h kg-1 energy density. Even at 5 A g-1, after 50 000 cycles, there was still 93% capacity retention. Systemic ex situ characterization and first-principles calculations indicated that the excellent electrochemical performance is attributed to the electric double layer capacitance (EDLC) - pseudocapacitance coupled mechanism via the introduction of an appropriate amount of oxygen-containing functional groups. This work provides a robust design for pore engineering and mechanistic insights into rapid zinc-ion storage in carbon materials.
Collapse
Affiliation(s)
- Xiaoyi Pan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qian Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Tongde Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tie Shu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yousheng Tao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
11
|
Al Kiey SA, Menazea A, Ismail A. Flexible free standing electrodes based on laser-irradiated PVC/PVDF/AuNPs for the development of high performance supercapacitor electrodes. JOURNAL OF ENERGY STORAGE 2023; 72:108723. [DOI: 10.1016/j.est.2023.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Wang Y, Song L, Wang Q, Wang L, Li S, Du H, Wang C, Wang Y, Xue P, Nie WC, Wang X, Tang S. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors. Carbohydr Polym 2023; 318:121106. [PMID: 37479435 DOI: 10.1016/j.carbpol.2023.121106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 07/23/2023]
Abstract
The rapid development of flexible sensors has greatly increased the demand for high-performance hydrogels. However, it remains a challenge to fabricate flexible hydrogel sensors with high stretching, low hysteresis, excellent adhesion, good conductivity, sensing characteristics and bacteriostatic function in a simple way. Herein, a highly conducting double network hydrogel is presented by incorporating lithium chloride (LiCl) into the hydrogel consisting of poly (2-acrylamide-2-methylpropanesulfonic acid/acrylamide/acrylic acid) (3A) network and acetylated distarch phosphate (ADSP). The addition of ADSP not only formed hydrogen bonds with 3A to improve the toughness of the hydrogel but also plays the role of "physical cross-linking" in 3A by "anchoring" the polymer molecular chains together. Tuning the composition of the hydrogel allows the attainment of the best functions, such as high stretchability (∼770 %), ultralow hysteresis (2.2 %, ε = 100 %), excellent electrical conductivity (2.9 S/m), strain sensitivity (GF = 3.0 at 200-500 % strain) and fast response (96 ms). Based on the above performance, the 3A/ADSP/LiCl hydrogel strain sensor can repeatedly and stably detect and monitor large-scale human movements and subtle sensing signals. In addition, the 3A/ADSP/LiCl hydrogel shows a good biocompatibility and bacteriostatic ability. This work provides an effective strategy for constructing the conductive hydrogels for wearable devices and flexible sensors.
Collapse
Affiliation(s)
- Yingjie Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Linmeng Song
- School of Public Health, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Qi Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Lu Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Shiya Li
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - HongChao Du
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Chenchen Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Yifan Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Peng Xue
- School of Public Health, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Wu-Cheng Nie
- Sichuan Jinjiang Building Materials Technology Co. Ltd, Deyang, Sichuan 618304, PR China
| | - Xuedong Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China.
| |
Collapse
|
13
|
El-Sayed NS, Hashem AH, Khattab TA, Kamel S. New antibacterial hydrogels based on sodium alginate. Int J Biol Macromol 2023; 248:125872. [PMID: 37482158 DOI: 10.1016/j.ijbiomac.2023.125872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Nowadays, the combined knowledge and experience in biomedical research and material sciences results in the innovation of smart materials that could efficiently overcome the problems of microbial contaminations. Herein, a new drug delivery platform prepared by grafting sodium alginate with β-carboxyethyl acrylate and acrylamide was described and characterized. 9-Aminoacridine (9-AA), and kanamycin sulfate (KS) were separately loaded into the hydrogel in situ during graft polymerization. The grafting efficiency for the resulting hydrogels was 70.01-78.08 %. The chemical structure of the hydrogels, thermogravimetric analysis, and morphological features were investigated. The swelling study revealed that the hydrogel without drugs achieved a superior swelling rate compared to drug-loaded hydrogels. The hydrogel tuned the drug-release rate in a pH-dependent manner. Furthermore, the antibacterial study suggested that the hydrogels encapsulating 9-AA (88.6 %) or KS (89.3 %) exhibited comparable antibacterial activity against Gram-positive and Gram-negative bacterial strains. Finally, the cytocompatibility study conducted on normal lung cell line (Vero cells) demonstrated neglectable to tolerable toxicity for the drug-loaded hydrogel. More interestingly, the cell viability for the blank hydrogel was 92.5 %, implying its suitability for biomedical applications.
Collapse
Affiliation(s)
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, P.O. 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo, P.O. 12622, Egypt
| |
Collapse
|
14
|
Mao G, Tian S, Shi Y, Yang J, Li H, Tang H, Yang W. Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing. Carbohydr Polym 2023; 311:120757. [PMID: 37028858 DOI: 10.1016/j.carbpol.2023.120757] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
In this paper, the mixed solution of sodium alginate (SA) and arginine (Arg) was dried into a film and then crosslinked with zinc ion to form sodium alginate-arginine-zinc ion (SA-Arg-Zn2+) hydrogel for skin wound dressings. SA-Arg-Zn2+ hydrogel had higher swelling ability, which was beneficial to absorbing wound exudate. Moreover, it exhibited antioxidant activity and strong inhibition against E. coli and S. aureus, and had no obvious cytotoxicity to NIH 3T3 fibroblasts. Compared with other dressings utilized in rat skin wound, SA-Arg-Zn2+ hydrogel showed better wound healing efficacy and the wound closure ratio reached to 100 % on the 14th day. The result of Elisa test indicated that SA-Arg-Zn2+ hydrogel down-regulated the expression of inflammatory factors (TNF-α and IL-6) and promoted the growth factor levels (VEGF and TGF-β1). Furthermore, H&E staining results confirmed that SA-Arg-Zn2+ hydrogel could reduce wound inflammation and accelerate re-epithelialization, angiogenesis and wound healing. Therefore, SA-Arg-Zn2+ hydrogel is an effective and innovative wound dressing, moreover, the preparation technique is simple and feasible for industrial application.
Collapse
|
15
|
Appiagyei AB, Anang DA, Bonsu JO, Asiedua-Ahenkorah L, Mane SD, Kim HS, Bathula C. Sucrose-directed porous carbon interfaced α-Fe2O3-rGO for supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Zaidi SFA, Saeed A, Ho VC, Heo JH, Cho HH, Sarwar N, Lee NE, Mun J, Lee JH. Chitosan-reinforced gelatin composite hydrogel as a tough, anti-freezing, and flame-retardant gel polymer electrolyte for flexible supercapacitors. Int J Biol Macromol 2023; 234:123725. [PMID: 36822151 DOI: 10.1016/j.ijbiomac.2023.123725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Hydrogel-based electrolytes for flexible solid-state supercapacitors (SSCs) have received significant attention due to their mechanical robustness and stable electrochemical performance over a wide temperature range. However, achieving flame retardancy in such SSCs at subzero temperatures to increase their practical utility remains challenging. Furthermore, there is a need for sustainable and bio-friendly SSCs that use natural polymer-based hydrogel electrolytes. This study reports a novel approach for developing a chitosan-reinforced anti-freezing ionic conductive gelatin hydrogel to meet these demands. Immersion of chitosan-containing gelatin hydrogels in salt solutions caused chitosan precipitation, resulting in composite hydrogels. The precipitated chitosan contributes to the reinforcement of the gelatin hydrogel network, resulting in a high mechanical toughness of up to 3.81 MJ/m3, a fracture energy of 26 kJ/m2, anti-freezing properties (below -30 °C), and excellent flame retardancy without softening. Furthermore, the hydrogel exhibits excellent electrochemical performance, with an ionic conductivity ranging from 72 mS/cm at room temperature (26 °C) to 39 mS/cm at -30 °C. The proposed hydrogel exhibits potential for use in SSC as a gel polymer electrolyte. This study demonstrates a novel strategy for controlling the mechanical, thermal, and electrochemical characteristics of flexible supercapacitors using biological macromolecules.
Collapse
Affiliation(s)
- Syed Farrukh Alam Zaidi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of Metallurgical and Materials Engineering, University of Engineering and Technology (UET), Lahore 39161, Pakistan
| | - Aiman Saeed
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van-Chuong Ho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hui Hun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Nasir Sarwar
- Department of Textile Engineering, University of Engineering and Technology (UET), Faisalabad Campus, Lahore 38000, Pakistan
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Junyoung Mun
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Core Research Institute, Suwon 16419, Republic of Korea.
| |
Collapse
|
17
|
Al Kiey SA, Khalil AM, Kamel S. Insight into TEMPO-oxidized cellulose-based composites as electrochemical sensors for dopamine assessment. Int J Biol Macromol 2023; 239:124302. [PMID: 37011750 DOI: 10.1016/j.ijbiomac.2023.124302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
The diagnosis and treatment of many neurological and psychiatric problems depend on establishing simple, inexpensive, and comfortable electrochemical sensors for dopamine (DA) detection. Herein, 2,2,6,6 tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOC) were successfully loaded with silver nanoparticles (AgNPs) and/or graphite (Gr) and crosslinked by tannic acid, producing composites. This study describes a suitable casting procedure for the composite synthesis of TOC/AgNPs and/or Gr for the electrochemical detection of dopamine. Electrochemical impedance spectra (EIS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the TOC/AgNPs/Gr composites. In addition, the direct electrochemistry of electrodes treated with the prepared composites was examined using cyclic voltammetry. The TOC/AgNPs/Gr composite-modified electrode improved electrochemical performance towards detecting dopamine compared to TOC/Gr-modified electrodes. Upon employing amperometric measurement, our electrochemical instrument has a wide linear range (0.005-250 μM), a low limit of detection (0.0005 μM) at S/N = 3, and a high sensitivity (0.963 μA μM-1 cm-2). Additionally, it was demonstrated that DA detection seemed to have outstanding anti-interference characteristics. The proposed electrochemical sensors meet the clinical criteria regarding reproducibility, selectivity, stability, and recovery. The straightforward electrochemical method utilized in this paper may provide a potential framework for creating dopamine quantification biosensors.
Collapse
|
18
|
Darwish A, El-Sayed NS, Al Kiey SA, Kamel S, Turky G. Polyanionic electrically conductive superabsorbent hydrogel based on sodium alginate-g-poly (AM-co-ECA-co-AMPS): Broadband dielectric spectroscopy investigations. Int J Biol Macromol 2023; 232:123443. [PMID: 36709806 DOI: 10.1016/j.ijbiomac.2023.123443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
In this study, the dielectric behavior of polyanionic electrically conductive superabsorbent hydrogel based on sodium alginate-g-poly(AM-co-ECA-co-AMPS) was investigated by broadband dielectric spectroscopy (BDS). The dielectric spectra obtained from -70 to 70 °C showed a superposition of three distinctive processes, electrode polarization, charge carrier's transport, and a molecular relaxation process. These dynamic processes were further analyzed along with the effect of both temperature and reduced graphene oxide (rGO) content. The development of a clear electrochemical double layer (ECDL) at the electrode/hydrogel interface strongly supports its possible application in supercapacitors' forms of energy storage. TGA, DSC, rheology, and electrochemical properties were studied. Furthermore, when the composite hydrogel with rGO content of 2.5 % was assembled into a symmetric supercapacitor, it displayed a specific capacitance of 756 F.g-1 at 1 A.g-1 and 704 F.g-1 after 5000 cycles with high capacitance retention of 93.2 %. The superior conductivity and porous structure of the rGO composite hydrogel are credited with the hydrogel's excellent electrochemical capabilities.
Collapse
Affiliation(s)
- Abdelfattah Darwish
- Microwave Physics and Dielectrics Department, National Research Centre, 12622, Egypt.
| | | | - Sherief A Al Kiey
- Physical Chemistry Department, National Research Centre, 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 12622, Egypt
| | - Gamal Turky
- Microwave Physics and Dielectrics Department, National Research Centre, 12622, Egypt.
| |
Collapse
|
19
|
Abdelmonem IM, Allam EA, Gizawy MA, El-Sharkawy RM, Mahmoud ME. Adsorption of 60Co(II) and 152+154Eu(III) radionuclides by a sustainable nanobentonite@sodium alginate@oleylamine nanocomposite. Int J Biol Macromol 2023; 229:344-353. [PMID: 36586656 DOI: 10.1016/j.ijbiomac.2022.12.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/11/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
A sustainable and efficient nanobentonite@sodium alginate@oleylamine (Nbent@Alg@OA) nanocomposite has been successfully synthesized via coating reaction of nanobentonite (Nbent) with alginate (Alg) and oleylamine (OA). The nanocomposite has been characterized and examined for the adsorption of 60Co(II) and 152+154Eu(III) radionuclides from simulated radioactive waste solution. FT-IR, XRD, SEM, and HR-TEM techniques have been applied to confirm the structural and morphological characteristics of the Nbent@Alg@OA nanocomposite. The effects of various parameters, such as pH of the medium, initial concentration of the radionuclides, contact time, and temperature on the adsorption of 60Co(II) and 152+154Eu(III) radionuclides were investigated by the batch adsorption technique. The results revealed that the optimum pH values for the adsorption of 152+154Eu (III) and 60Co (II) radionuclides were 4 and 5, respectively. The adsorption capacity of 152+154Eu(III) (65.6219 mg/g) was found greater than that of 60Co(II) (47.3469 mg/g). The adsorption process was found to be well described by the pseudo-second-order kinetic model. Furthermore, the equilibrium isotherm evaluation revealed that the Langmuir model was adequately matched with the adsorption data. According to the thermodynamic characteristics, the adsorption process was endothermic and spontaneous. Regeneration and reuse of Nbent@Alg@OA nanocomposite confirmed that the recycled nanocomposite was sufficiently efficient in several successive practical applications.
Collapse
Affiliation(s)
- Islam M Abdelmonem
- Nuclear Chemistry Department, Hot Labs Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| | - Elhassan A Allam
- Central Laboratories of Alexandria, Ministry of Health and Population, P.O. Box 21518, Alexandria, Egypt
| | - Mohamed A Gizawy
- Egyptian Second Research Reactor complex (ETRR-2), Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Rehab M El-Sharkawy
- Faculty of Dentistry, Chemistry Department, Pharos University in Alexandria, P.O. Box 37, SidiGaber, Alexandria, Egypt
| | - Mohamed E Mahmoud
- Faculty of Science, Chemistry Department, Alexandria University, P.O. Box 426, Ibrahimia21321, Alexandria, Egypt
| |
Collapse
|
20
|
Polysaccharides-Based Injectable Hydrogels: Preparation, Characteristics, and Biomedical Applications. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polysaccharides-based injectable hydrogels are a unique group of biodegradable and biocompatible materials that have shown great potential in the different biomedical fields. The biomolecules or cells can be simply blended with the hydrogel precursors with a high loading capacity by homogenous mixing. The different physical and chemical crosslinking approaches for preparing polysaccharide-based injectable hydrogels are reviewed. Additionally, the review highlights the recent work using polysaccharides-based injectable hydrogels as stimuli-responsive delivery vehicles for the controlled release of different therapeutic agents and viscoelastic matrix for cell encapsulation. Moreover, the application of polysaccharides-based injectable hydrogel in regenerative medicine as tissue scaffold and wound healing dressing is covered.
Collapse
|